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Exact Quantum Dynamical Solutions for Oscillator-Like Systems*
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(Received August 13, 1956)

The solution of the quantum dynamical equation ijtdT/Ct=IIT, for the time-displacement operator T,
is given, when the Hamiltonian H is a polynomial of the second degree in canonically conjugate variables,
with arbitrary time-dependent coeKcients. Heisenberg's equations of motion are then solved, and the
general integral of Schrodinger's equation in coordinate space is expressed by the Green's function cor-
responding to T. An example is given.

INTRODUCTION

HERE are very few cases in which the exact
solutions of the quantum-mechanical equations

of motion are known, For a certain class, however, it is
possible to obtain explicit solutions, or rather to express
the quantum-mechanical solutions in terms of the
classical ones. This class consists of systems whose
Hamiltonians are polynomials of the second degree in
canonically conjugate dynamical variables (i.e., "oscil-
lator-like" ). As these systems play a rather important
role in quantum theory, it seems worth while to present
brieRy an exact treatment of their dynamics.

In order to study the variation with time of the
state or, of the dynamical variables, of a system, it is
convenient to introduce the unitary time-displacement
operator T, which satisfies'

ihdT/dt= HT, T(0)= 1.

The solution of Heisenberg's equation of motion for a
given dynamical variable e(p, q) is then expressed by

&t(p tI) = T'&(Pa)T=&(pi@i) (2)

The solution of Schrodinger's equation of motion for
the state I t), when the initial state IO) at t=0 is known,
is given by

I t)=T I0).

In this paper we first present (without proof) an
explicit expression for the operator T, for the case in
which the Hamiltonian has the following form:

2+ ijpipj+ttip i+ i&ijtIigj+&i/i+ 2&ij (pitrj+tIjpi)
=-,'p A p+a p+-', q B q+b q

+-'(p'C'q+q'C 'p) (4)

The upper limit of the summation, say e, is unspecified.
The jt-dimensional vectors a,b and tensors (dyadics)
A=Ar[(Ar);;=—A j;],8=Br, C are arbitrary functions
of the time. Their components are c-numbers. The
dynamical variables p and q have commutators

[p„,q„]= —ihb„„.
*The main results in this paper were presented at the Meetings

of the Norwegian Physical Society held in Bergen 1953 and in
Oslo 1955. A more extensive paper with proofs and applications
will be published elsewhere.

P. A. M. Dirac, The Prirlci p/es of QNantum N echamc
(Clarendon Press, Oxford, 1947), third edition, P, 110.

By means of this T operator, the explicit form of the
moving operators p& and q~ will be given. The time-
dependent state function in coordinate space is then
expressed by an integral operation on the initial state
function, and the corresponding kernel is given. Finally
the formulas are applied to a typical case, vis. , a 3-di-
mensional harmonic oscillator in a time-dependent
homogeneous magnetic field and the corresponding
(induced) circular electric field. In order to cover a
greater variety of special cases, we add an extra
homogeneous time-dependent field.

MATHEMATICAL PROCEDURE

Our method consists mainly in using unitary trans-
formations, i.e. (St=S)

ti, =exp(iS/h) j exp (—iS/h)
= t+ ('/h) [S,H+ l ('/h)'[S, [S6j+",

of the following kinds':

S=f(p), q&r= q+~f/BP& p&r= pi

S=g(q), gtr= Qy

S=-,'(p I' q+q I'r p),
ger=8 g,

p& = p Bg/Bq

p~=p e 'p,

where I'r (and er) are tensors. In addition, we utihze
a formula, which we present without derivation':

ih(cl/Bt) exp[ ',ih '(p—-I' q—+q r.r p)j
=-', (p C q+q Cr p) exp[——,'ih '(p I' q+q. I'r p)j,

where

(r)/at)er= C e'.

The "deformation" tensor e~ can be factorized into
a rotation part t,~ and a dilatation part e~:

e~=e~ e~
7

C~= —C )

where

et' = [(er)r.er], ee er. [(er)r.er~—1

If we introduce the principal axes of 6 as coordinate

' They can be proved directly by series expansion.
s ~ A special form of this unitary operator has also been used byJ. Plebanski, Phys. Rev. 101,. 1825 (1956).
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axes, the dilatation tensor has the component matrix It is possible to give other explicit forms of 7, for

0 example

[e~]= 0 es"

~ ~ ~ ~ ~ ~

[ee]= sing cosP 0 .

0 0

The tensor exp(&XI) thus brings about a rotation
by an angle p about the axis P. This corresponds to

S=-', (y C.r+r. c'y)=P (rXp).

In passing, we note that if4

[r; [r; rr]]=0,
it can be shown that

C =-', (r—rr), A=-;(r+r')+-', [r', r],
r=e+~+-'[c ~]

TIME-DISPLACEMENT OPERATOR

The solution of Eqs. (I) and (4) can be given in the
following form:

T=exp[ —iit—'(-', q S q+g. q+0)]
Xexp[—ik—'-', (y I'. q+q rr p)]

Xexp[—ih—'(-,'p Q, .p+e p)], (5)

where the tensors Ct= Sr, $=$r, I', the vectors e, II

and the scalar 0. are functions of time given by

dS/dt+S. C+C" S—S A S=B, $(0)=0,
r—=8, de/dt=(C —A S) 8, I'(0)=0, 8(0)=I,

dp
e-'A (e')-'Ch,

t

g=(er)-' t 6~ (b—S a)dt,

6—'(a —A g)ch,

The transformation e~ q thus consists of multiplying
each component of q along the principal axes of e~

by the corresponding eigenvalue of e~.
The rotation tensor e~ may, in the 3-dimensional

case, be expressed in the following way:

C =QeXI, ee=ee+(I —ee) cosg+eXI sing.

(I—=unit tensor, e—=unit vector). In an orthogonal
coordinate system a&, a&, f3=a, the rotation tensor e

has the component matrix

cosf —sing 0

DYNAMICAL VARIABLES

From (2) and (5) we obtain the following expressions
for the moving (Heisenberg) coordinates and momenta:

q, =TtqT=8 q+e e p+e. n,

p, =T'pT=((e')-' —$ e n) p —s e q
—(y+$ e n).

These operator functions q& and y& are formally the
same as the classical solutions, say q(t) and p(t), of
Hamilton's equations

dq(t) BH
=A p(t)+C q(t)+a,

dy(t)

dt
= —B q(t) —C'y(t) —b.

Bq(t)

The initial operators q and y correspond to the classical
constants of integration q(0) and p(0). The agreement
is of course a general property of the Heisenberg
operators in a classical-like system, apart from the
symmetrized form of operator products. Because,
however, qt, and y& are linear functions of the operators
q and p, the expectation values (qi& and. (pi) will also
agree with the classical solutions. DiBerent states just
imply diGerent values of the initial constants (q) = q(0)
and (p) =p(0)

As an application of (7) we shall find the connection
between the movement of the "center" and the varia-
tion of the "width" of an arbitrary wave packet in
coordinate space. ' ' This connection is demonstrated
by comparing (q,) with the mean square deviation in
position

&q ')—(q )'=(q &' q&
—(q»'(q)

+(p tt n'e p) —(p&. o', n'0, (y)
+(q.O.e y)+(y e n'q&

—(q) xP o', (p) —(y) e n'(q&.

Here we have introduced the dilatation tensor X)—=es
= (8~ 6)1. We notice that the variation with time of
the width is closely connected with the homogeneous
solution

((q)"-)=" & (q&+" & & 0»

T= Ti exp[ —i it '—
z (t)Ho],

where Hp is some time-independent part of H. This
form is clearly convenient when the initial state is an
eigenstate of Ho.

4p
(z).A II—a g)dt.

for the movement of the wave packet (i.e., independent
of a and b).

4 LA; B]=—A.B—B A. ' I. R. Senitzky, Phys. Rev. 95, 1115 (1954).
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STATE FUNCTION

The coordinate representation of (3) is

g (q, t) = 2'(q, i—j'ia/Bq, t)P(q, o).
This differential operation on the initial state g (q,o)
can be expressed by an integral operation in the n-di-
mensional q space:

P(q, t) = JI d„q'E (q', q, t)iP(q', 0).

We obtain the kernel

E(q', q, t) = [(ih)" exp(P I';,) dete] —
&

Xexp[—i7i '(-,'q s q+g q+0)]
Xexp[i@—'-,' (q'+n —8—' q)

~ 0, '(q'+u —6 'q)].
EXAMPLE

As a typical example we choose the Hamiltonian

H= (I/2m)(y —(e/c)A)'+-', nuop'r' —F r,
where

[S]=—~ o

. 0

0 0

hobo '.
~o

——cos~ot,

d'8/dt'+(cup'+oP)8=0 8(0)=I 5(0)=0

[p]=[~7+[~]
0 —1 —0 lnb 0 0

0

0 + O I.S O

dp
0 0) .0 0 lnbp,

'cos& —sing 0 8 0 0

[6]=j e~] [ea]= sing cosp 0 ~ 0 8 0

0) 1. .0 0 bp.

From Eqs. (6) we get the following expressions (the
tensors are given by the matrices of their components):

where

we see that
(o—= eH(t)/2mc, —

A= ,'H(t)l Xr-, F=F(t).
The classical equation of motion is, accordingly

d f ( e ) dH (e) dr
xry ]

—
I
—xH+F.

dP &2c) d &c)dt

By writing

H = (I/2m) (p*'+p'+ p')
+-',m((~o'+~') (x'+y')+~o's')

+op (xp„—yp, )—(F,oo+F„y+F,s),

0 0

.0 0 bp',

t

II= —e—a e~ ) e ~ ea Fdt,
p

pt
cosa&ot FN(t )dt,

coscoot ~o

(notice that [C;a]=0, or [I', I"r]=0),

meso
tan&ok,

1 0 0
1

[A]=—o I o, [s]=m
0 0 1.

0 —1 0

ooo +M

0

coop+coo

0

GOp

~t
[8(t)—8(t')] e ~&'& ea&'& F(t')dt'

t

sinoop(t —t')F (t )dt',
5$Goo cosh)pf p

[c]=
0

0 0, a=o, b= —F.

0 0.
0 = —

i
g'dt.

2m p


