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results of the present experiment). Combining this
result with the relative measurements published pre-
viously' seems to indicate that the cloud-chamber
results are higher than the delayed coincidence meas-
urements. More exact determination of the reason for
this difference is dificult because of the uncertainty in
zenith angle distribution (as well as the variation, in
scattering among the different experiments). Moreover,
the cloud-chamber results may still contain some small
contributions from other particles such as electrons and

mesons, whereas the present experiment records only
the p+ and ~+ mesons which stop in the absorber.

ACKNOWLEDGMFNTS

The author is very much indebted to Professor M. H.
Shamos for his unfailing encouragement and. helpful-
ness. Mr. Richard RuS.ne assisted in assembling the
equipment and in taking data. Publication has been
assisted by the Reports Group of the Hughes Research
Laboratories.

PH YSI CAL REVI EW VOLUME 104, NUMBER 4 NOVEMBER 15, 1956

Comparison of Spin-Flip Dispersion Relations with
Pion-Nucleon Scattering Data*

%'. Q. DAvjDON, Argonne Xational Laboratory, Lemont, Illinois

AND

M. L. GOLDBERGER Enrico Perrni Institute for Nuclear Studies, Unioersity of Chicago, Chicago, Illinois
(Received July 25, 1956)

The dispersion relations for the spin-Qip, forward-scattering amplitude have been tested against pion-
nucleon scattering data for energies up to 300 Mev. The Fermi set of phase shifts satisfy these relations
while the Yang set do not. An approximate value for the renormalized coupling constant, fs= (gti/2M')', of
0.1 is obtained from the P-wave phase shifts.

1. INTRODUCTION

'HERE are four noninterfering scattering ampli-
tudes for pion-nucleon scattering, corresponding

to the independent possibilities of Qipping the spin or
isotopic spin of the nucleon. The squared magnitude of
each gives its contribution to the differential cross
section. Independent dispersion relations have been
derived' for each of these amplitudes, which relate
their real part to integrals over energy of their imaginary
part.

We will consider here only the amplitude for spin

Rip, and examine the phase shift interpolations made by
Anderson and Metropolis' in the light of these disper-
sion relations. We are thus imposing some new con-
straints on the phase shift determination problem. Since

we are discussing the spin-Rip amplitudes, we are in

eRect performing a theoretical polarization experiment

and will in fact be able to differentiate between the
Fermi and Yang phase shifts.
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1174 (1956); A. Salam, Nuovo cimento 3, 424 (1956).' H. L. Anderson, Sixth Annual Rochester Conference on High
Energy Physics, 1056 {Interscience Publishers, Inc. , New York, to
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2. THE DISPERSION RELATIONS

Though the spin-Rip amplitude vanishes in the for-
ward direction, we can determine its derivative with
respect to sine, where 8 is the angle of scattering in the
center-of-mass system, evaluated at 0=0. This deriva-
tive (in the center-of-mass system) can be written as
(1/ )ti' rtitwhere rt is the center-of-mass momentum in
units of p,c and a is a dimensionless quantity which in
general approaches a finite nonzero limit as g—+0. We
will work with four u's, a" corresponding to isotopic
spin nonRip and Rip, and a3, 1 corresponding to total
isotopic spin of 3/2 and 1/2. These are related by

a'= s (2as+ar),

it = s(ttr —its)
(2 1)

The quantities c3 and a& can be expressed in terms of
the corresponding phase shifts by

l(l+1) 1
a —Q (esisi+ esiei-)

2z
(2.2)

where b~~ is the phase shift for the state of orbital
angular momentum l, total'angular momentum 1&1/2,
and total isotopic spin 3/2 or 1/2 as indicated outside
the parenthesis.

To terms of order (tt/y)', the dispersion relations
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for a~ are
f' 2v p" Im(a')

Re(a')=2 —+—P ~'. dv
7 ~ & 7 7

(2.3)
f'(v ) 2 p" v'Im(a')

Re(a') = —2—
(
—~+ P~— dv'

v ~v) ~ v"—v'

where f' is the renormalized coupling constant
(f=glJ/2M, where g is the renormalized coupling con-
stant of the symmetric pseudoscalar theory), v is the
total laboratory energy in units of pc', and vii ——p/2M.

Our knowledge of 5» is considerably better than that
that of the other phase shifts, and by taking the di6er-
ence of these two equations, we obtain one in which
only u3 appears on the left and in that part of the
integral containing a singularity. Specifically,

1+0.77'' t'1.9427—v q
g' cot833=

0.248 ( 0.9427 )

q' cotba| ———
0.0415—0.00775''

(3.1)

Since we have only P waves, Eq. (2.2) reduces to

3. COMPARISON WITH EXPERIMENT

The values of a3 were obtained from the energy de-
pendence of the phase shifts found by Anderson' to
give the best ht to the present pion-proton data for
energies up to 300 Mev. He has set D waves equal to
zero. Since our dispersion relation does not contain 5
waves, only the P-wave phase shifts are involved. The
energy dependence which Anderson obtained is

(3 2)as (e2i533 g2i531)/j~3f' 1'

Re(a3) =2—
I

1+—I In Eq. (3.1), v is the total pion energy in the center-of-
mass system in units of pt,'.

The integrals, Ia(v), were evaluated numerically.
(2 4) In the neighborhood of the pole, the integrand varies

rapidly, and the more direct methods introduce con-
ble error. However, the integral can be written as

00

+ P~ ifv' Im—
-v' —v 3(v'+v)

side ra
To within the accuracy of the experimental data, the
contribution to the integral from the u~ term is neg-
ligible and we will drop it. The contribution to the
integral from large values of y' may be separated out

where
into, a term independent of 7 to give

I(v) =-P dv', f(v'), (3 3)

f(v') =Im(aa)/v'

where

1
t

" 1 Im(ag)
Is(v) =-P

P I dv' f(v')=P w„f„,7'—7 n
( )

If the energy dependence of a3 is known up to suK-
ciently high energy to determine the integrals I(v)
but not C, then we can consider f' and C as parameters ~ —(n+.1) lni m+1 (+.(e—1) ln

(
n 1

i

—2e—ln
~
e

and adjust them to 6t the data. This can be conveni-
ently done by plotting the experimental points so that The w„are constants independent of f and 6 and have
Eq. (2.5) is represented by a straight line whose y the properties
intercept depends on f' and whose slope depends on C.
We make the substitutions ZV „=—gr,

Va'| is a smoothly varying function and can be well approxi-+ ~+ C+VL '(V)+ ' V)~' ' mated by a sequence of straight lines. The integrals
over each region in which f(v) varies linearly can be
evaluated exactly. We choose equal intervals defined byi'™a
v =v+eA, where e is a positive or negative integer

31I and 6 is the length of each interval. At these points,
and we denote the values of the function by f„=f(v')

=f(v+eA). Then with this straight-line interpolation,

E v)'
y= l (Re( )—vP (v)+lI (—v) l) (& 6)

wp= 0.

+ + + i, (3.5)~1X» 3X4tia 5X6~' ) '

which satisfy

y =f'+Ca.

The values of x and y corresponding to laboratory
kinetic energies of 0, 60, 100, i60, 200, 240, and 300 Mev

(2.7) are plotted in Fig. 1.The line drawn through the points
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has an intercept of f'=0.10 and a slope of C=0.03.
The contribution to C from the integral up to 300 Mev
is 0.025, which is in reasonable agreement. This value of
f' is somewhat higher than the value of 0.082&0.015
which has been obtained from other extrapolation pro-
cedures, '4 but the difference does not appear beyond
the range of experimental uncertainties, and these have
not yet been evaluated quantitatively. Anderson's
value for a~ —u3 is 0.282g as compared to the value of
0.2'/rt used by Chew and Haber-Schaim. This would
raise their value slightly.

It is perhaps worth pointing out that our equations
used for the determination of f' have the following

advantages over those used previously: (1) They are
more accurate than those of the Chew-Low theory in

that they are rigorously correct to order (tt/M)', and

(2) they do not involve the rather poorly known S-wave

phase shifts.

4. CHOICE BETWEEN FERMI AND YANG SOLUTIONS

The Yang set of phase shifts can be obtained from

the Fermi set by changing the sign of the spin-Rip ampli-

tude. Speci6cally, if 533 and 83~ are the Fermi phase
shifts, then, de6ning 8 by

2 sin23ss+ sin25sr
tan8= ——

2 cos25ss+ cos20sr

(and the sign of sin() the same as that of 2 sin23ss

+sin2bst), we obtain the Yang phase shifts from

(4.2)

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
4 G. F. Chew, Midwest Conference on Theoretical Physics,

State University of Iowa, Iowa City, 1956 (unpublished); U.
Haber-Schaitn, Phys. Rev. 104, 1113 (1956), this issue.

Frc. i. Plot of
y = gx(Re(aa)
y(I3(y)+-,'Ie (—7)g}
vs x=y/(1~+ps/y) to
test dispersion rela-
tions and obtain a
value of the coupling
constant by extra-
polation.
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' Anderson, Davidon, and Kruse, Phys. Rev. 100, 339 (1955);
R. Karplus and M. Ruderman, Phys. Rev. 98, 771 (1955).

e Note added va proof.—Gilbert and Screton have also used this
dispersion relation to exclude the Yang phase shifts. A. Salam,
CERN Symposium on High Energy Physics, Geneva 1.5, Switzer-
land (June, 1956).

Since this dispersion relation involves the spin-Rip
amplitude, it determines the sign of this amplitude and
hence can exclude the Yang solutions, much as the
nonQip relations determined the sign of the forward-
scattering amplitude. s The values for a3 corresponding
to the Yang set were evaluated using Eqs. (4.1) and
(4.2) and from these, the values of x and y were calcu-
lated for the same energies as in the Fermi case. This
set of phase shifts extrapolates to a negative value for
f', and at the higher energies deviates grossly from a
straight line behavior. In lieu of an experiment to
measure directly the polarization of the recoil nucleus,
this represents a stronger argument for the Fermi solu-

tions than that based on photoproduction data. '
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