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GoMberger's relations for the forward scattering of pions are used in the following way. Two linear
functions of v, where v is the total pion energy in the laboratory system, are constructed from quantities
taken from experiment, i.e., forward amplitudes and integrals over total cross sections. The extrapolation
of one of these functions to v=0 gives 2f, where f is the renormalized pion-nucleon coupling constant.
Various sets of phase shifts are compared as to their compatibility with the above functions.

q= (v' —tts) &. All quantities are in the laboratory system.
Now we make use under the integral of the following
identity:

I. DISPERSION RELATIONS
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and multiply both sides by (v' —v&s)/v to obtain
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' 'N a recent paper Goldberger, Miyazawa, and Oehme'
~ ~ have written down dispersion relations for the for-
ward amplitude for pion-nucleon scattering. They split
the forward scattering amplitude of a pion from an
isotopic spin state P to an isotopic spin state n into two
parts, corresponding to no isotopic spin Rip and isotopic
spin Rip, respectively:

where v is the total energy in the laboratory system.
T&"(v), which is the amplitude we shall discuss first,
can be expressed in terms of the coherent x and m.+
scattering amplitudes or the isotopic spin —,

' and -',

amplitudes.

T"'( )= l(T-( )—T ( ))= l(T'( )—T'( )) (2)

Using the relation between the imaginary part of
the coherent scattering amplitude and the total cross
section we then 6nd the following equation:
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f is the renormalized pion nucleon coupling constant;
vtt=tts/2M where /t and M are the pion and nucleon
masses, respectively. 0. and (T+ are the total cross
sections for negative (positive) pions on protons, and
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From (2) one finds for ReT&s~(v):

2v /ts )ReT&»(v) =—
~

1+—+
6q( M M'J

X [sin2trt+sin2trr i+2 sin2trts+

—s!n2ns —sin2nsr —2 sin2nss —~ ). (5)

The o, 's are the phase shifts in their usual notation.

Since v&'=0.55xi0-'p, ', we may neglect it and obtain
a simpli6ed expression:

v' I" (o (v') —o+(v') ) q'dv'
v ReT" (v)—

2zs J„( 2 ) v"(v"—v')
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Fin. 1. The left-hand side of Eq. (4') plotted against v'. The
experimental points are taken from the following papers: (a) J.
Orear, Phys. Rev. 100, 288 (1955); (b) H. L. Anderson et al. ,
Phys. Rev. 100, 268—279 (1955), 165 and 189 Mev, respectively;
(c) J. Ashkin et a/. , Phys. Rev. 101, 1149 (1956), 150 Mev;
M. O. Stern et al. , Bull. Am. Phys. Soc. Ser. II, I, 72 (1956), 220
Mev; (d) W. Rarita (private communication to Professor Ber-
nardini), 217 Mev.

II. COUPLING CONSTANT

The integral on the left-hand side of (4') is certainly
rapidly convergent and should be well approximated by
replacing the upper limit by 1.9 Bev. The integral on
the right-hand side will converge only if

Lim„„t a (v) —o~(v)j=0.

Let us assume that this is the case. Then the apparently
complicated v dependence indicated by the left-hand
side of (4') boils down to a linear function of v'. Its
value at v=0 is equal to 2f' and its slope is given by
the integral. If we do not want to assume the con-
vergence of the integral on the right-hand side of (4'),
we may write down a dispersion relation for T(v) jv'.'
This will result in the same equation as in (4'), with
the divergent integral replaced by an unknown constant.
Actually, as will be seen later, the value of the coefFicient
of v' as determined by the slope is very close to that
found by performing the integration up to 1.9 Bev.
This may be taken as an indication that the integral
converges. '

only about 10 j&. (2) vs=4 or 140 Mev kinetic energy.
Here +33=45 and therefore 2 sin2a33= 2, which means
that the most important contribution to ReT&" (v) at
this point comes from o.» and yet it is very insensitive
to the exact value of e». It will be noted that only
around 140 Mev are the results of the various sets of
phase shifts in agreement with each other. The extrapo-
lation to v=0 yields 2f'=0.164. Considering the experi-
mental error for ai—as we find f'=0.082+0.015. The
quoted error is meant only as an indication of the un-
certainties involved.

This value of the coupling constant is in close
agreement with the one found by Chew and Low' by
using quite a different method of extrapolation. Whereas
their procedure involves a linear function of v and
depends on the (ss, ss) state only, our method de-
pends both on s and p states, and requires a smaller
extrapolation due to the linearity in v'.

The value of the right-hand integral in (4') as given
by the slope is I,i,„,———5.1&10—' as compared to the
calculated value I„i,———5.15X10 '. They are certainly
equal within experimental errors even when allowance
is made for possible small contributions from higher
energies. We can, therefore, also define the straight
line by using only the point at v=1 and the slope as
given by the integral, thus using only total cross sections.
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III. PHASE SHIFTS

Continuing our straight line towards higher energies
(Fig. 1), we notice that the points calculated with
Orear's prescription for the phase shifts' fall pretty
well on it. The exception at v'=4. 75 (165 Mev) is not
disturbing since that point is very sensitive to the
exact shape of s[o (v) —o+(v)) in the vicinity of,the

The results of the calculation are shown in Fig, 1.'
The energy scale is taken in units of p,'. For the deter-
mination of the straight line the following two points
were used: (1) v'=1, i.e., zero kinetic energy. This
point is practically determined by the difference be-
tween the scattering lengths, a~—a3=0.27. The con-
tribution of the integral on the left-hand side of (4 ) is

t.O

l.2

l.6

—2.0—
b ~

5 6 r' This has to be performed with some care. See Gell-Mann, Gold-
berger, and Thirring, Phys. Rev. 95, 1612 (1954). An alternative
procedure is to write down Eq. (3) for some particular value of r,
say v =p, and subtract it from (3) itself. This was done by Gold-
berger ef al.'

3 The total cross section were taken from Anderson, Davidon,
and Kruse, Phys. Rev. 100, 337 (1955),R. L. Cool and O. Piccioni,
Bull. Am. Phys. Soc. Ser. D, 1, 173 (1956).

FIG. 2. The left-hand side of Eq. (7) plotted against v'. The ex-
perimental points are taken from the same papers as in Fig. 1.

4 G. E. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
s J. Orear, Phys. Rev. 100, 288 (1955).
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maximum. This is not the case for the other points,
i.e., those at 189 and 220 Mev. One may wonder if
the good fit of the Orear phase shifts (with nii=nig
=n» ——0) has some deep meaning or is merely the
result of an accidental cancellation. To investigate
this question, we return to the non-isotopic-spin-Rip
amplitude T&"(v). Like T&'&(v), it can be expressed in
the following form:

T'"( )=l(T-( )+T+( ))=l(T'( )+2T'( )) (6)

It is readily seen that the dispersion integral for T0&

will diverge and we therefore write it from the start for
T"'(v)/v' and obtain

p~ p2 pB~
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where g'= (2M/p)'f'. Ti'&(0) is the amplitude at zero
total energy and is an unknown real number. ReT"'(v)
will again be expressed in terms of phase shifts:

1( 2v p
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Evaluating (7) for v=1, we obtain an equation for
T&'i (0) which yields T"i (0)=2.07. It should be noticed
that the main contribution to the left-hand side of (7)
for v=1 comes from the integral since ai+2aa ———0.06
is small. Using the above value for T&"(0), we find

that the straight line defined by (7) starts out very
close to the origin and goes down with a slope
T"I(0)—g'/M= —0.13. The integral has been evalu-
ated numerically up to 1.9 Bev and analytically from
there on, assuming a constant value for the sum of the
cross sections 2i(0 +0+)=28.7 mb.

We can now use the dispersion relation for T&') as
an additional test for the various sets of phase shifts
used previously in the dispersion relation for T&2).

The results are shown in Fig. 2. We notice that the
points obtained with Orear's precription for the phase
shifts lead in the wrong direction as the energy increases.
This may indicate that some contributions of the small
p-phase shifts and perhaps a nonlinear behavior of the
s-phase shifts canceled out in (4') but added up in (7).
Also the other points in Fig. 2 are quite far from the line.

One has, of course, to bear in mind that these tests
are fairly severe. The functional form of the right
hand side of (4) and (7) results from the cancellations
of two large terms. The distance of the points in Fig. 1
and 2 from the straight lines is therefore a "second-
order" eGect as compared to the general behavior of
the scattering amplitudes found by Anderson et al.'
In some cases, though, the eGect is quite large. This
need not always be due to the incorrectness of the set
of phase shifts in question. The total cross sections
are not known accurately enough to permit the drawing
of unique curves for 0. and 0.+ as functions of energy.
The uncertainties may be important for principal-
value integrals evaluated in the vicinity of the reson-
ance. The straight line in (7), however, depends on the
value of the integral at v=1 and is therefore quite
reliable.
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