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A semiquantitative explanation of the experiments of Reynolds and Zucker on transfer reactions arising
in the collision of N'* with N4 is arrived at, making use of the effect of Coulomb excitation to virtual levels.
These excitations are shown to be important even though a permanent separation of nuclei in Coulomb
excited states may be energetically impossible. The process is of sufficient generality to have application to
other similar reactions. An analysis of the experimental material shows that the process is probably im-
portant in the case of the N4 N reactions for all energies below that required for contact between nuclear
surfaces and that it is probably the only important process at bombarding energies below 15 Mev.

I. INTRODUCTION AND NOTATION

N attempt! to explain the experimental results of
Reynolds and Zucker? on N“¥+4N" transfer reac-

tions on the basis of tunneling of nuclear particles from
one nucleus to the other gave a too rapid variation of
the reaction cross section with energy, the disagreement
with experiment being by a factor of about 35. It also
gave angular distributions in qualitative disagreement
with experiment. In both cases the results are inde-
pendent of assumptions regarding the nuclear radius
as long as the radius is not so large as to give contact
of nuclear surfaces. Since it is very improbable that the
latter may take place, one has to suppose that some
other process is modifying the transfer process. The
modification resulting from static distortion of the
shape of the nucleus has been estimated and according
to reference 1 can at most reduce the factor 36 to 18.
It has been concluded! therefore that some other process
is taking place. The tunneling from the ground state
just referred to has made little use of specialized assump-
tions regarding the nature of nuclear forces. The essen-
tial assumption made is that they have a short range.
For this reason one expects a strong drop of yield at
low energies and an associated dominance of large
deflections. The assumptions made regarding the char-
acter of the ground configuration enter the calcula-
tions referred to mainly in the determination of numer-
ical energy-independent coefficients. These assump-
tions have, to be sure, been too specialized, the exist-
ing evidence being in better agreement?® with an inter-
mediate rather than extreme j—j coupling model.
Nevertheless, the only essential change which would
affect the character of the energy or angular dependence
of the cross section is a large change in the nuclear
radius. The change has to be so large that at 10-Mev
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bombarding energy there is an appreciable force on a
nucleon in one nucleus due to nucleons in the other.
Such a change would make it incorrect to use the bar-
rier penetration factor for leakage through regions of
negative kinetic energy of the transferred particle.
It appears unlikely that such phenomena can take
place as a result of specifically nuclear forces for energies
at which the N nuclei are never closer than 1.37X 1012
cm to each other.

The electric field of one nucleus at the other brings in,
however, a long-range interaction without making
radical changes in the assignment of nuclear radii. It
offers a possibility for increasing the yield at low ener-
gies and for distant collisions provided it is capable of
exciting the nucleus on which it acts to a state in which
the wave function of the nucleon to be transferred de-
creases appreciably more slowly outside the nucleus
than in the ground state. The present paper is con-
cerned with this process.

In Sec. IT the relative coordinates appropriate to the
problem are considered. The Hamiltonian is written
in forms showing the way in which the terms group
themselves so as to correspond to the introduction of
internal functions, the energy responsible for virtual
Coulomb excitation, and the perturbing part respon-
sible for the transfer. In Sec. III the separation of
variables is discussed and approximations simplifying
the treatment are introduced. In Egs. (3.4) and
(3.5) there occurs an initial state wave function W%,
the transfer from which takes place on account of the
perturbing effect of V; according to Eq. (3.5) or, more
explicitly, Eq. (4). The ¥°¥ contains parts correspond-
ing to the ordinary Coulomb wave describing the rela-
tive motion of two charged particles and other parts
corresponding to Coulomb excitation having taken
place in one of them. The calculation of the latter is
made in a special but reasonably typical case in the
remainder of this section beginning with Eq. (5).
The function ¥V is replaced by a somewhat simpler
quantity ¥ which does not refer to the whole system
but applies to one of the heavy aggregates having been
replaced by a point charge. The internal coordinates of
the particle doing the Coulomb excitation are clearly
unessential to this part of the consideration. The result
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of this work is Eq. (7.5), which gives the Coulomb-
excited wave at arbitrary points in configuration space.

In Sec. IV the two special cases of excitations result-
ing in bare dissociation and in the formation of states
lying high in the continuum are considered. The sum
over partial waves occurring in Eq. (7.5) is carried out
making some approximations and results in Eq. (9.2) for
one case and Eq. (11.3) for the other. In Sec. V the
wave mechanical calculations are compared with corre-
sponding estimates by means of a semiclassical theory
(SCT) in which the motion of the heavy aggregates is
considered by means of classical mechanics while the
excitation process is treated quantum-mechanically. An
approximate agreement between the two ways is found.
Numerical estimates are then made employing the f sum
rule for dipole transition probabilities along the lines
of Levinger and Bethe.* This procedure makes the
conclusions essentially independent of the specialization
to s-p transitions which was made in the preceding
section. It is then found that with a conservative esti-
mate of the chance of transfer due to virtual state forma-
tion one may expect a factor of about 5 in favor of
transfer by this process in a comparison with tunneling
from the ground state. This discussion is found in con-
nection with Eq. (15). A set of limitations and omissions
in the treatment is discussed in items (a) to (i) in the
text following Eq. (15). In view of the difficulty of tak-
ing into account all of these omissions properly, the
remainder of the paper is concerned with an attempt to
infer from the experimental material the relative im-
portance of the factors entering the interpretation
which have not been explicitly calculated. It is found
that reasonable agreement with experiment is obtain-
able by bringing in some of the effects of different
degrees of adiabaticity of the collisions depending on
the collision time. This view is not in disagreement with
the approximate resonance caused by the nearly equal
binding energy of the last neutron in N** and N'5. The
part of the continuum mainly responsible for the excita-
tion matters in determining the energy dependence and
the angular distribution. ' o

The phenomenon of virtual state formation by
Coulomb excitation is a special case of a more general
situation which was discussed by one of the writers® in
connection with Li” reactions. According to this view,
proximity of the two colliding nuclei can cause transi-
tions to other configurations within one of the nuclei
which can influence the course of the reaction and in
particular can give effects somewhat similar to an
effective increase in nuclear radius, especially for im-

47J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).

5 G. Breit, Rev. Sci. Instr. 9, 63 (1938). On hearing an account
of the present work and in reply to a question, Professor E. P.
Wigner recalled an unpublished consideration of S. M. Dancoff
[U. S. Atomic Energy Commission Report' AECD-2853, May,
19507 regarding spontaneous alpha emission in which an excita-
“tion of the residual nucleus of a temporary type, and therefore
somewhat similar to that considered here, has been studied.
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probable reactions. Qualitatively the effect of the
virtual-state formation worked out in the present paper
has resulted in the increase in the reaction cross section
which is large for large impact parameters, as though
the nuclear radius were increased.

From a formal viewpoint, the consideration of
virtual-state formation differs from the more familiar
type such as enters the theory of bremsstrahlung® in
that in the present case the starting point is very far
from being a plane wave. It is in fact a wave highly
distorted by the action of the Coulomb field. On account
of the fact that the masses of the colliding nuclear ag-
gregates are large, one can picture the collision process
approximately by means of classical mechanics. In
doing so one arrives at an approximate and at first sight
paradoxical situation in which the energy required for
virtual-state formation can be borrowed from a classical
kinetic energy in an amount larger than the kinetic
energy. This paradox is apparent rather than real
because the classical orbit picture is only a convenient
substitute for the more complete consideration of the
wave function. :

The present paper is not intended as a quantitative
treatment. As has been mentioned many effects have
been left out of the considerations. In addition to those
discussed below there are several others such as that of
higher multipoles which is likely to become more im-
portant at short distances and neglect of effects of
particle identity. A complete treatment is probably
impossible without a thorough study of the photo-
disintegration cross section, and the analysis of the
experiments would be more certain with the addition
of measurements of angular distributions at lower ener-
gies. It appears probable nevertheless that virtual
Coulomb excitation plays perhaps the main role in the
transfer reactions for N“4-N™" at energies below the
Coulomb barrier and probably also in transfer reactions
for other similar nuclei.

The following symbols are used in the paper:

r,= coordinate of proton with respect to nucleus
to which it is initially attached.
r=relative coordinate for motion of nuclei.
Ze, Zse=charges of colliding nuclei in initial state.
m=reduced mass for the colliding particles in
initial state.

M =reduced mass for the relative motion of the
proton with respect to the nucleus to which it
is initially attached.

¥CN¥=wave function for the system neglecting
possibility of transfer. _
¥ =first order correction to ¥°¥ resulting from
transfer.
Y=wave function describing proton and relative
~motion of nuclei.
¥°= Coulomb wave function for motion of nuclei.

6 H. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146, 83
(1934).
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2;, wy=wave functions describing initial and ex-
cited states of proton.
E,=energy of states w, measured with respect
to v;.
v, v, =relative velocities of nuclei in initial and final
states, respectively.
n= Z1Z262/ﬁ'0.
ik, ik, =relative momenta of nuclei in initial and final
states, respectively.
er=[T(L+1+in)/T (L+1—1in) ]
Y 1,=spherical harmonic of order /.
br#=coefficient used in the addition of angular
momenta, defined by Eq. (5.9).

F1, GL=respectively, the regular and irregular solu-
tions of the differential equation for rXradial
function in a Coulomb field.

Cow={2mnw/[ — 1+exp(2mn.) 1}
a,=HW/(Z1Zyme?) is the Bohr length for the
collision.
d= (ra,/2)?.
B= (2m/1?) (Ey—E).
ro=separation of nuclei at the perihelion of the
classical orbit.
24’ =distance of closest approach of the nuclei.
¢, w=parameters of classical orbit.
¢=E.n/2E.
b=nuclear radius.
p=impact parameter of the collision.

II. RELATIVE COORDINATES

On account of the change in the grouping of the
particles which results as a consequence of the transfer,
it is necessary to present in detail the grouping of terms
in the Hamiltonian made in treating the relative coordi-
nates. A particle of mass ms3 is supposed to be attached
initially to a mass m. and to be transferred, as a result
of the collision, to mass ;. The masses m; and m.
are those of nuclear aggregates such as N¥ and N
One introduces for the final state the coordinates

Ris=Ra1= (mari+-msrs)/ (mi+ms),
R= (m1r1+m2r2+m31'3)/ (m1+m2+m3): (1)

as well as momenta

I31=13—1I1,

Ps1= — p1s=ps (ps/ms)— (p1/m1) ]
= (m1ps—msp1)/ (m1t+ms),
P2, 13=[ma(mat+ms)/ (my+mao-tms) ]
X[ (p2/m2)— (p1+ps)/ (m1+m3) ]
= [(m1~l—m3)p2— M2(p1+ Pa)]/ (m1+mz+m3), (1-1)
with
(1.2)

standing for the reduced mass of 1 and 3. The alterna-
tive expressions for the momenta are given so as to
show the entrance of velocities as well as the direct
meaning in terms of momenta. The kinetic energy of

p13=mms/ (m1+M3)
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the system, discarding the term depending on the total
momentum, is

T=p3% Qpas)+ P2, 18/ (Cpe, 13),

where
e, 15=ma(mytms)/ (mit+mat-ms)

is the reduced mass for the relative motion of 2 with
respect to the center of mass of #; and m3. The Hamil-
tonian may be written as

H= 1%/ u13)+ p2, 1%/ u2, 13)
+Va3(xs, 15+ mars/ (ma-tms))+ Vis(rs)
+ Vie(maris/ (mitms)— 19 13) +Hu+Hee  (1.3)

with ry, 13 standing for the displacement vector from the
center of mass of 1 and 3 to 2. The last two terms in
(1.3) represent respectively the parts of the Hamil-
tonian pertaining respectively to the internal coordi-
nates of particles 1 and 2.

Since in the applications the ratios ms/m1, ms/ms are
reasonably small, terms of order ms/m1, ms/ms will be
neglected and the Hamiltonian will be written in the
approximate forms

H22p152/ (2u13)+ po, 182/ Qpus, 13)+ Vaa(| 19, 15+ 113])
+Vis(ris)+Via(| 12, 13] )+ Hu+Hae (1.4)

for the final state and

H=2p93/ 2pas)+ b1, 267/ (21, 23)+ Vas(ras)
+Vis(| 1y 25t res| )+ Via(| 1y, 23] )+ Hut+Hae  (1.5)

for the initial. The unessential specialization consisting
in the replacement of displacement vectors by their
absolute value is now being made. For simplicity the
dependence on the vector directions has been sup-
pressed. It may be introduced without inherent com-
plication but at the expense of a more complicated
notation.

In each of Egs. (1.4) and (1.5) there enters a different
set of relative coordinates. In Eq. (1.4) particle 3 is
considered as attached to m; and the mass m. is con-
sidered as moving with respect to the center of mass of
mi+ms. In these respects the situation is as in the
exact Eq. (1.3) but an approximation is made in (1.4)
regarding the potential energies V3 and Vs, The effect
of the approximation is that the problem contains
only the coordinates ri3 and ry 13 in addition to the
internal coordinates of aggregates m; and ms. The co-
ordinates ris, rs 13 enter V3 in a combination such as
would enter a problem in which a particle p is displaced
from ms by a vector r, and from m; by r,—r which
corresponds to setting riz=r—r,, ry13=—r. With
these identifications the potential energy terms Vas+ Vs
+ V1 occur in Eq. (1.4) as though one were dealing
with the particle p in the fields of m, and ms and as
though the effective mass for r were s 13 and that for
r—r, were ui;. For the initial motion the approximation
of Eq. (1.5) corresponds to rz»=r,, Iy 23=T, Iy 23+ Te3
=Tr—T1,; the effective mass for res is pes, that for r is



NUCLEON TRANSFER

u1,23. Equations (1.4), (1.5) could have been set down
on an intuitive basis but the approximations made
would then not be as readily accessible to inspection.
Since at the larger distances between 3 and the other
two particles the surviving interaction is the Cou-
lombic one, the important terms in the present problem
are Va3, V13 For these the important interaction energy
depends on distance only and the simplified notation is
therefore justifiable.

The charges of the colliding nuclei are taken to be
Z1e, Zse, respectively. For the sake of concreteness par-
ticle 3 will be taken to be a proton and will be referred
to by the subscript p. The proton is attached initially
to ms. In the r, r, notation,

V23(1’23) = (Zy— 1)32/7p+ Vz(rp)y
V13(7’13)=Z1€2/|fp_l"+V1(|r—pry (2)
Vis(rie)=Z1(Za—1)e¥/r,
where
Ir=1r1—"~9.

Here Vi, V. are potentials of non-Coulombic origin.
For the initial state, in terms of the identifications dis-
cussed right after Eq. (1.5), one may arrange the con-
tributions to V as follows

212262 1 1
V= +Z182( ——)
7 [t—r1,| 7

+( Vz(rp)+w—(z2_1)62)

"p

+Vi([r=1, )+ Vut+Ve (2.1)

The first term represents the Coulomb energy of two
point charges Zie, Zse at a distance » from each other.
It may be used in the definition of the Coulomb func-
tions for the initial stage and may be removed from the
wave equation by employing wave functions containing
the Coulomb functions as factors. The second term,
containing Ze?, brings in a potential energy such as
occurs in the theory of Coulomb excitation and will be
referred to as the Coulomb excitation potential. It
gives rise to Coulomb excitation of proton p by Z;e while
p is attached to m.. The third term contributes to the
potential energy of p in the field of m; and has to be
taken into account in the definition of the eigenfunc-
tions describing the condition of p before transfer. The
term V(| r—r,| ) brings about the possibility of transfer.
For the final grouping of particles the following ar-
rangement of terms in the potential energy is natural.

V=(21+1)(Z2“'1)3 +(Z2—1)e2(i—-1—)
r rp 7

A 4 )
[r—r,|

+Va(rp)+ VitV

+(V1<xr—rp|)+

(2.2)
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The Coulomb functions describing the relative mo-
tion of the heavy particles contain now the product
(Z1+1)(Z2—1) instead of Z1Z; for the initial state. In
the final state there exists also the possibility of Cou-
lomb excitation of the final nucleus under the influence
of the charge (Z;—1)e which is left on that nucleus
which has lost the proton, and the remaining terms have
a meaning similar to that described for corresponding
terms in relation to (2.1). It is seen that in the arrange-
ment of contributions to V there occur the combinations

Z162
Vieff= V1([I'—l'p|)+ s (23)
[r—1,]|
and
V2eff= Vz(f’p)—f-(Zz"‘l)e?/Tp. (24)

The first of these represents the effective potential for
the proton after transfer when it is attached to m;
the second gives similarly the effective potential of the
proton before transfer while it is still attached to m..
The Coulomb potential energies which enter these ex-
pressions are to be modified for small |r—r,| and 7,
on account of the space distribution of nuclear charge.
Since no explicit use of these parts of the potential
energies will be made in the present paper, this modifi-
cation is not consistently indicated but it is nevertheless
useful to remember that these contributions to Vy°ff
and V,°ff are not literally correct. The main object in
exhibiting the forms of V,°f and Vi is, however, to
show how these quantities are related to the parts of the
Hamiltonian which are not absorbed in the definitions
of the Coulomb functions for heavy particles, the
Coulomb excitation potential, and the potentials used
in the definitions of internal functions. In the initial
grouping shown in (2.1) the r, is contained only in
Vi(Jr—r,|) after the other potentials are absorbed
in the introduction of the three kinds of functions just
mentioned. This perturbation potential is, however,
not Vy°f but
Z 182
Vv 1eff_

(2.3"

b
|r—1,|

and is therefore considerably more attractive than the
effective potential needed for the description of the
proton after capture.

III. SEPARATION OF VARIABLES

In accordance with (2.1), it is convenient to intro-
duce ¥°V by means of

(HON— E)¥ON=(, A3)

with HCN containing all but the V; part of the poten-
tial energy so that

HEN=H—V(|r—r1,). (3.1)

By means of the identification r,=rss, r=ry 23 which
has been discussed in connection with (1.4), the kinetic
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energy part of (1.5) becomes
(=#/ 2u98) A(xp) — (B*/ 211, 25) A(1),

where the quantity in parentheses after the A indicates
the variables with respect to which differentiations are
made in the A. The expression for the kinetic energy will
be written by introducing symbols

M=l“23; (32)

so that m is the reduced mass for the colliding particles
in the initial state while M is the reduced mass for the
relative motion of the proton with respect to the nucleus
to which it is initially attached. This notation does not
give a convenient distinction between initial and final
reduced masses. Since in the applications contemplated
here the mass of the transferred particle is relatively
small, one has, however,

M= 1, 23,

3.3

and a distinction between these reduced masses and
those for the initial state would not be altogether con-
sistent with the approximations made in obtaining
Egs. (1.4), (1.5) from the more accurate initial equa-
tions such as (1.3).

The function WY is the solution of the problem if one
neglects the possibility of transfer. The superscripts on
this symbol are intended to indicate the Coulomb wave
solution by means of C and the entrance of heavy
nuclei in the solution by N. The Coulomb repulsion of
the heavy colliding particles and the possibility of
Coulomb excitation of the proton from the ground state
of the composite system 2, 3 are taken into account in
WCN_ The plan of the calculation is to employ ¥°¥ in a
perturbation procedure in which Vi(|r—r,|) is con-
sidered as the perturbing part of the Hamiltonian.
Representing the first order correction to ¥V by ¥@®
one has

pis=M,  po 155m,

U=YoN g, (3.4)
and since WV satisfies (3) one has
(H—E)¥W=—V ¥CN, 3.5)

In solving for ¥® one can use on the left side of this
equation either the arrangement of V such as in (2.1)
or else the one corresponding to the final state and
shown in (2.2). The second of these has the advantage
of showing more directly the relation to the final state.
Employing it, one has to solve

n? l/

—— A+ Vit ———A(r)
2M 2m’

1 1\ (Zi+1)(Z—1)e
e e

+ Vz(fp)+H11+H22—E}‘I’<1)

=—Vi([r—r,)¥N. (4

G. BREIT AND M. E. EBEL

Here the difference in the meaning of the coordinates
and masses for the final state from that for the initial
is indicated by primes. This distinction will be dropped,
however, in view of the smallness of this difference
which results from the fact that m;<myi, msms.
In treating Eq. (4), the following approximations will
be made. In the first place, Va(r,) will be dropped.
This approximation is partially justifiable because the
main effect of ¥@ is to cause the appearance of the
proton at m; and in this region Vs(r,) is small. The
approximation is not completely justifiable, however,
because ¥® originates at ms as a result of Coulomb
excitation by Zie and is thus not necessarily negligible
in the region of appreciable Vs. A second approximation
will be made in neglecting the term (Zs—1)e2(1/7,— 1/7),
corresponding to disregarding the effect of Coulomb
excitations after transfer. This procedure is also not
completely justifiable because ¥® has appreciable
values in the region of small 7,. In fact, looking at the
reaction in the reverse direction of time, Coulomb ex-
citation of the final states may be expected to be im-
portant if it matters for the initial states. The approxi--
mations made amount, therefore, to an unsymmetric
treatment of initial and final states resulting in the
omission of terms arising in the time reverse reaction in
a manner similar to those kept.

With these approximations and conventions, one
may expand

YO=3";u;(r,—1)0;(1), (4.1)
where
{— #/2M)A(x,)+ Vo (rp— 1)+ Hu+Hos— Ej}
Xuj(r,—r)=0. (4.2)

Here the u; are eigenfunctions for the final nucleus
obtained by transferring the proton to m,. The entrance
of internal coordinates of m; and m. is understood but
not shown in #;. The index j distinguishes not only the
states of the proton but also those of the aggregate
systems 1, ms. The right side of Eq. (4) may be
expanded as

—Vi(|r—1, )WV =37 ;(xr,—1)x;(r),

where the x; are functions of r only which are otherwise
defined by the above expansion. Combining Egs. (4),
(4.1), (4.2), and (4.3), there results the approximate
equation

K2 (Zi+1)(Z2—1)
——A(r)+
2m 7

(4.3)

¢— (E—E,)

pi(1)=x;(r). (4.4)
The requirement will be made that the ¢;(r) be asymp-
totic to constant multiples of exp(ix;) for E—E;>0
and to constant multiples of exp(—ay) for E—E;<0
with «;>0, a;>0. These requirements together with the
equations just mentioned determine ¢;(r).
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The amplitudes of the ¢;(r) at = determine the
probabilities of the transfer reaction taking place.
According to (4.4) these depend on the magnitudes of
the x;(r), and according to (4.3) the x;(r) owe their
existence to WOV, The latter consists partly of a term
representing the incident wave with the initial grouping
of particles in their ground states. For this term, the
factor Vi(|r—r,|) on the left side of (4.3) exercises a
strong selection because of the limited range of V..
The left side of (4.3) vanishes unless ¥V has appreci-
able values for sufficiently small |r—r,|, and ¥V
cannot have such values unless 7 is sufficiently small.
Otherwise the leakage of p out of the aggregate may+m;
is not sufficient to make it lie close enough to ;.
The situation is radically different, however, for the
parts of ¥ for which the aggregate mo+ms has been
raised to an excited state, for now the leakage of m;
is more pronounced-and p can find itself in the region
of small [r—r,| even if 7 is large. It becomes necessary
to compare therefore the relative sizes of contributions
to WC¥ arising from the ground state and from excited
states of the colliding nuclei. In particular, if ¥¢¥
contains a part for which p is in an excited state relative
to m» while the remainder of m, is in its ground state,
then the #; can also contain the ground state of m, and
the ¢; is energetically possible at large » whenever this
is the case for the part of ¥@ in which all of ms+ms is
in its ground state. The main requirement on the calcu-
lation to be performed therefore is to compare the
values of the contributions to W¢¥ arising from p being
in its ground state or in an excited state with respect
to ms, while the internal condition of m. is unexcited.

The problem is thus essentially reduced to the con-
sideration of the relative magnitudes of parts of ¥°¥
just described. For large 7, these values are much smaller
for the highly excited states of p. Thus, for example, for
r= o these parts of ¥°¥ vanish whenever the excitation
energy is higher than the initially available kinetic
energy of the colliding nuclei. For states in which the
process is energetically possible but the excitation
energy is high, the probability of Coulomb excitation is
low because of the nearly adiabatic character of the
collision. Neither of these considerations excludes,
however, the existence of an appreciable probability
of an excited state of p at smaller 7.

The calculation of ¥°V will be made employing the
form (2.1) for the potential energy. The perturbing part
of the Hamiltonian responsible for Coulomb excitation is

H’=Zle2(|r—lrp} _;) ®

In order to deal with a simple case, the dipole type of
excitation only will be considered so that the relevant
part of H’ will be contained in the approximation

H'= (4n/3)Z16* 34 p(r5/7%) V*1,05,00) Y1.(0,9),

(5.1)
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where (75,8,,0,) and (7,6,¢) stand respectively for the
polar coordinates of r, and r, with 6 denoting the colati-
tude and ¢ the azimuth. The Coulomb wave without
Coulomb excitation will be denoted by y° and the
nucleus with mass m; will be considered for the present
as a single particle with charge Zie. The latter simplifica-
tion is unessential since in the present part of the prob-
lem it amounts to the omission of the factor in the wave
function which contains the internal coordinates of ;.
The subscript u covers the values —1, 0, 1 and the
Y. are spherical harmonics of order / used with the

normalization
f| V,l2d0=1,

the integration being over all solid angles. The phases
are in the standard convention’ giving simple forms for
angular momenta. A complete treatment of the problem
should involve the consideration of the complete wave
function of the aggregate mo+ms. For simplicity, how-
ever, the effect of changing the central-field states of
particle p alone will be discussed for the present. The
spin of p will be left out of the consideration and p will
be taken to be in an s state. The initial state of p will
be denoted by v;(r,), the three final substantes to which
it may be excited for a given energy level by w,(r,).
Considering these three substates only, the wave
function is

'P:‘//cvi‘*‘Zu wp Dy (5-2)

Substitution of ¥ into the wave equation gives then the
approximate equation

(HO+E,—EW®,=—H' 3, (5.3)

where the Hamiltonian for the system consisting of m;
and the aggregate mo+m; is H®-+H’ and where the
energy of the degenerate level with eigenfunctions w,
is E, when measured with respect to the ground state
of ma+ms while

H = f w,*(2,) H'vs(x,)dr,. (5.4)

On account of the presence of (7,6,¢) in H' the H',;is a
function of these quantities. On expanding ¥ in partial
waves, one encounters on the right side of (5.3) the
combinations ¥°Yy,, the ¥V, coming from the last
factor in (5.1). Employing for ¢ a Coulomb modified
plane wave of unit density

Ye=> 1 1L (2L+41)Pr(cosO)erF .(kr)/ (kr),

with symbols as in the list of notation, one finds

(5.5)

sL—1

i
VeVy,=@m)i 3, k—[(ZL— Dier br 1#Fr
r

— (2L4-3)*er11br1*Frial¥V 1, (5.6)

7B. L. van der Waerden, Gruppentheoretische Methode in der
Quantenmechanik (Verlag Julius Springer, Berlin, 1932).
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where
er=[T(L+1+41in)/T (L+1—in) ]},
Y 3y
T ler-neLrn
L(L+1D]E LL+1D]
X([( S )J), -
23 23
(3/4m)?
bL+1#=
LRL+1)(2L+3)
L(L+1)7]¢ L(L+1)]:
ML
2% 2%

for p= (1, 0, — 1), respectively. The coefficients & enter
through

Vi,,V10=B1(Lu)Y 141, s tB-1(Lop) VL1,
Bi(L—1u)=brs*, B_1(L+1,p)=br1* (5.9)

The notation in terms of the b;_*, br1* would be con-
fusing, being incomplete, if it were not for the fact that
in the present paper br_,* always refers to a 8; and
bry1* toa By

From (5.1) and (5.4), it follows that

H'\,i=KY1,*0,0)/7%, (6)
with
K=[(47)}/3]Z:6Xr,), (6.1)
where
(ry)= f Ry (rp)Ri(rp)rbdrp, (6.2)

and the radial functions R;, R, for the initial and final
states of p are normalized according to

f R ry)r,2dr = f RE(r)rdry=1. (6.3)
0 0

For states in the continuum, the normalization integral
is understood to extend through the radius of a quan-
tizing sphere. Introducing (6) in (5.3) and remembering
that

Vi = ('— )"Ylm
one has

(HO+Ea— EYO_,= (— WK/ T (64)

The right side of this equation is a sum of products of
radial functions multiplied by the ¥y, as is seen from
(5.6). Equation (6.4) may be solved therefore by
identifying parts containing the same ¥, on both
sides and solving the resultant radial equations subject
to the appropriate boundary conditions. The latter
have to represent the requirement that the y®, con-
tain outgoing waves only, since the incident state is
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being dealt with here. The equations are of the type

(_f_% i_ku}-;-cu(r)—[-L(L_*-l))X

ar* rdr 72

=Fi(kr)/ (kr*)  (7)

k= 2m/B?) (E—E,)

and U(r) standing for the term introduced by the
Coulomb energy. The solution of (7) is

with

X=[1/(kk)] f ) Grlry)F (k") (1/r")dr’, (7.1)
with '
Gr(ry)=Hp(kwrs)Fr(kur<), Hip=Gp+iFr, (7.2)

the functions Fy, G, being here Coulomb functions for
the state having energy E— E,, and

(r>7")
'>7).

(7‘>,7’<) = (1’,7’/) )

(1’>,7’<) = (rl:r):

(7.3

The notation is here abbreviated by omitting explicit
indication of the argument of the Coulomb functions
which is independent of r. No confusion will arise,
however, if it is remembered that whenever k,r rather
than %7 enters the Coulomb function the second argu-
ment corresponds to an energy E— E,, rather than E.
If E—E, <0, the definition of Hy, given in Eq. (7.2)
has to be changed so as to make Hj exponentially
decaying at large r but preserving the validity of

H.dF/dr—F 1 dHy/dr= k., (7.4)

which is needed for the correctness of (7.1). By means
of (7.1), (5.6), and (6.4), one obtains

m Y,

Y= (=) (4m)i—K 31

2
2. h2

Rt

X ( (QL—1)%er_1b14* f Gr(ry’)

/

ar
X FL_1 (ki’,)_’z— (2L+3)%€L+1bb*_1”
r

X fo ) gL(r,r')Fm(kr')dr—Z). (7.5)

According to (7.2), the G contains in one of its terms
the product Gz (kwr>)Fr(kur<). When 7=27', the small-
ness of Fy, within the Coulomb and centrifugal barriers
is largely compensated for by the largeness of G. The
large barrier-penetration effects do not enter therefore
for values of r for which the factor multiplying G (r,7')
in the integrand has an appreciable value. It is thus
immediately obvious that the value of E— E,, does not
enter nearly as critically as it does for larger values of 7.
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For these the G (k,r) enters only with the larger argu-
ment, and since for large » G, is asymptotic to a sine
function of unit amplitude the compensation of the
smallness of F;, cannot take place.

IV. SPECIAL CASES

The case E—E, will be considered first. The param-
eter 7, which enters the Coulomb functions is

Nw= Z12262/ﬁ‘0w,
where
v,=[2(E—E,)/m]}

is the classical velocity of relative motion corresponding
to the residual energy E—E, when p has been excited
to the energy E,. In the limit E—E,, the classical
velocity vanishes and 7,—. One has accordingly®

FL(kwf)gz_%'f)w_l{ [1+L2/77w2:|
X[+ (L—1)*/m?]- - -[1+1/7.2])

XCow(r/au)or11(x), (8)

Gr(kur)=— (2}/Cou) (r/au)}

X (L1 L2/ ]+ (L= 1)/n,2]
~[141/n B Ko (@),
where I,(x), K,(x) are Bessel functions of imaginary
argument in the notation of Whittaker and Watson,®
w= (87/aw)t= (8kurmu)?,

Cow="[2mn,/(—1+4exp(2mn.,) ]}, (8.1)
while

ap="Hh2/(Z1Z2me?) (8.2)

is the Bohr length for the collision. The values (8) give
Fr (kwr)GL (kwr')g - 2kw (1’1”) %I2L+1 (x)K2L+1 (x') , (8.3)

where # is the value of « corresponding to #’. For the
distance of closest approach in the collision of N
and N at 10-Mev bombarding energy the argument
of I and K is about 36, so that asymptotic expressions
for large values of the argument apply. Employing,
therefore,

Ior1(w)~e®/ (2ww)},
one has

Fr(kyr)Gr (k)22 kya, (1) exp (x—a').

Kori1(x)~— (w/2x) 2,

(8.4)
The coefficient of the exponential may also be written as
kw(rr')}/ (xx')t.

For r=+', one has
F1.(kyr)Gr(kwr)=22"3k, (ayr)?. (8.5)
8 Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936) ; G. Breit
and M. H. Hull, Jr., Phys. Rev. 80, 392, 561 (1950).

® E. T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, London, 1920), third edition, Chap. X VII.
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The large effects of barrier penetration are contained in
the factor Cowe® in Fr and the reciprocal of this factor
in Gr. These factors cancel out completely in (8.5),
and in (8.4) for moderate x—«’ there is only a weak
effect left. Since (8.4) enters for »’>7 only, the effect
of the factor exp(x—=«’) is to decrease G (r,7’) and to
give it a cusp-like behavior as #’ is varied while 7 is
fixed. The integrals in (7.5) can be evaluated approxi-
mately by making use of this circumstance. One has

o=l |22|r'=r|/d, d=(a/2},  (8.)

as follows by differentiation. For 10-Mev bombarding
energy in the case of N"4-N™* at the distance of closest
approach, r=14.0(7) X 10~ cm, while a=8.4(7) X 1015
cm for these two nuclei and d=0.77X 10~ cm. On the
other hand, for the incident state and the above r, one
has kr=18.2. A quarter-wave change corresponds
roughly to a change of 7/2 in kr which corresponds to a
change of 1.2X1078 c¢m in r. Thus d is only slightly
smaller than a quarter wavelength and the cusp may
not be considered as infinitely sharp. On the other hand,
d is relatively small compared with 7 so that one may
treat all factors multiplying exp(—|x—#'|) in the
integrands of (7.5) except Fy, as constants. Proceeding
in this manner one finds

f Srlr,/\[F(kr')/r'*]dr’
0

=~ (1/(2rn))[Fr(kr)+BFL (kr)].  (8.7)

In obtaining this formula, the integrations over r—7’
have been taken from — e« to 4 « rather than over the
actual range. The error caused by this approximation
is doubtless not as important as some of the other
inaccuracies on account of the smallness of d/r. The
second term in brackets on the right side of (8.7) gives
a rough correction to the first term. Since (8.7) contains
the infinite quantity 5, in the denominator, the right-
hand side vanishes. On the other hand, (7.5) contains
in the denominator the vanishing %, and the right side
of (7.5) is finite and does not vanish. Disregarding the
second term in brackets in (7.5) and another circum-
stance to be discussed presently, it is possible to perform
the summation over L in (7.5) as follows:

(2L—1)ter_1bs 1 f Grlry')
0
XLF_1(kr")/r'¥]dr' — (2L+3) er 1br1*
Xf SrLlry")F Lya(kr") /r*]dr’
0

g[ (ZL— 1) 5eL_1bL,1“FLﬁ1 (kr)

— (2L+3)ter by Fria(kr)]/ 2rmw), (9)
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and substituting into (7.5) one needs the sum

-y,

=

L kr

[(2L—1)ter1br1*F 1 (kr)

— (2L43)Yeri1br1*F i1 (kr)]
s L

1
=2 —QL+1)B (L) Y i1, p
L kr
+B1 (L)Y 11, JerF 1. (kr)
=1 i%QL+1)lerY 1, oF 1(kr)/kr]V1,,

= (4m) "tV e (9.)

Employing this value in (7.5), one obtains, on making
use of n.k,=1/a,

mK
2,

hr/a

NI S
(4m)?
7r) <1'p> VO 2

ot

= (=) (9.2)

This value of y®_, is approximate only, several ap-
proximations having been made as is clear from (8.7)
and the related discussion. According to (9.2) the
Coulomb excited wave is decidedly smaller than ¢, but
the factor involved is essentially the moderately small
(rp)/ (Zor) rather than the very strong barrier-penetra-
tion factor.

The last of the two expressions for ¢ @ given in Eq.
(9.2) does not contain Z; except for its appearance in
¥°. On the other hand, the first expression shows that
if r/a is kept constant, ¢ ,/y° is proportional to K and
hence to Z;. The occurrence of K for fixed 7/a is not
surprising since the radial functions in the partial
wave analysis of ¢ @, have a shape dependent on 7/a
only. The disappearance of Z; from ¢®,/y¢ in the
second of the two forms in (9.2) requires explanation,
however, because the effect of Z; is present in a con-
cealed form. It enters in the applicability of the asymp-
totic expansions for Iaz,11(x), Kor1(x) used in obtaining
(8.4) which requires that x be large enough. Since, for
fixed 7, this « is proportional to Z%, the last form in
Eq. (9.2) is only apparently independent of Z;. It
gives the quantity in the limit of sufficiently large Z;.
It should be mentioned that in the derivation of (9.2)
the asymptotic forms used for Isr41, Kory1 become in-
applicable for sufficiently large L. For this reason, as
well as the approximations related to neglecting the
second term in square brackets in (8.7), one has to
regard Eq. (9.2) as a crude approximation. On the other
hand, the large L are not important for close collisions
which are of main interest for the nucleon transfer
cross section.

The effect will next be considered for very high excita-
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tions. The radial equation for 1, becomes

® 2 L(L+1)

—_ 2——————)FL=0, (10)
dr? ar 72

with

82>0. (10.1)

One can introduce for this equation two solutions some-
what analogous to the case of positive kinetic energy and
referred to by the same letters:

r(L4+1+Q1
o TETIHWABD, e,
AT (2L+2)
HL(1)=Wx,m(267)y K=_1/(dﬁ),

where M, »(2), W, »(3) are solutions of the confluent
hypergeometric equation in Whittaker’s notation.
For large 7,

FL(I)N% (267)1/03657’

(10.2)

H O~ (28r)Vebb7, (10.3)

so that
H,VdFL®/dr—F,OdH LD /dr=.

Instead of Eq. (7), one deals in this case with

& 2d L(L+1) Fy(kr)
(_——A—+52+0u(r)+~*-—)X = , (10.5)
art rdr r kr®

(10.4)

which has the solution

1 0
X=—o f SV (r e \[Fu(kr')/r*]dr’, (10.6)
kﬂf 0
with
SO () =HL D (rs)FLV(ro).

Employing the approximations (10.3), which are justi-
fied by the assumption of largeness of 3, one has

(10.7)

G2 (r")2} exp (=Bl 7'—7]).

(11)

Here it was assumed that the lack of symmetry in this
cusp-like function is negligible, again in conformity
with the assumption of high excitation. This value of
G @ takes the place of (8.4) in the case of bare ioniza-
tion, i.e., zero relative kinetic energy of heavy particles.
One should compare therefore

oo 1
| sest-se=nir=

with
+o0 -
2—%kw(ar)%f exp(— |7 —r|/d)dr=3%kyra.

On account of the difference in these quantities, the
right side of (9.2) needs multiplication by

2/ (Bkyra). (11.1)
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In addition it is necessary to consider the reason for the
occurrence of the &, in the denominator of (7.5), which
is readily seen to be the presence of k, on the right
side of (7.4). Since in the analogous Eq. (10.4) of the
new case, k, is replaced by B, there occurs a 1/8 in
(10.6) instead of the 1/k, in the corresponding (7.1).
The application of (10.6) to obtain an equation taking
place of (7.5) for the new case gives therefore a similar
right hand side with 1/k, replaced by 1/8 and G
replaced by G.®. In addition to the factor (11.1),
there is therefore the factor k,/8 to be introduced. The
net factor is

2/ (B%a), (11.2)
and the approximation corresponding to (9.2) is
© +lZmK
o~ (—u o
Xb —n-—( ) h%BWYL M¢
2(4m)¥rp)
= (=) Ve (11.3)
3Zy5%r?

As in the previous case the barrier penetration effects
have disappeared. These are still present in (10.3) but
the relative smallness of the F,® at small 7 is not the
determining factor since it enters with H,® to give the
GL™ in which there is exact compensation of the
penetrability effects when r=7'. The effect of the ex-
citation energy is contained in (10.3) in the factor 1/4?
only. This type of dependence can be expected from
the general form of the first-order perturbation in a
wave function which is obtainable by the Rayleigh-
Schriodinger perturbation method and contains as a
factor the reciprocal of the excitation energy. The cal-
culation could have been performed in fact by employ-
ing a quantizing sphere and reducing the problem to the
calculation of the wave function of a stationary state.
Such a calculation would involve, however, a sum over
all possible B rather than just those corresponding to
conservation of energy and would be more complicated
than the one presented here. The first of the two forms
for y®_, shows proportionality to Z; which is con-
tained in K.

V. COMPARISON WITH THE SCT AND
NUMERICAL ESTIMATES

It is of interest to compare the results obtained so
far with the approximation of considering the relative
motion of the two heavy aggregates by means of classi-
cal mechanics. High excitation energies give then small
probabilities of ordinary Coulomb excitation. As has
been mentioned, however, an important influence in
this smallness of the effect is the increasingly adiabatic
character of the collision as the excitation energy is
increased. For this reason smallness of Coulomb excita-
tion after the particles have separated does not imply
its smallness for small distances of approach. The
general situation is in fact that appreciable probabilities
of Coulomb excitation at small distances are followed
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by a de-excitation in which the energy of excitation is
gradually returned to the kinetic energy of the colliding
particles.

In approximating a quantum problem by a classical
one, the question of correlation of initial and final
states frequently arises and in the sense of Bohr’s
correspondence principle one usually takes some kind
of mean of initial and final states in the classical calcu-
lations in order to obtain agreement with quantum
quantities. In the present case the initial state in the
above sense is the whole ¥ of (5.2) by means of which
one can obtain ¥ of (3.4), which gives rise to the
final state in which the neutron has been transferred
from one nucleus to the other. The results under im-
mediate discussion are concerned with ¢ @, which is
part of ¥, and the usual averaging procedure between
initial and final states does not apply therefore to the
consideration of the initial and final velocity of the
heavy aggregates in the determination of ¢ ®,. For this
reason it is simplest to calculate the probability: of
virtual state formation employing the initial relative
velocity. On the other hand, this simplified procedure is
an approximate one only because it would not give
correctly the probability of real Coulomb excitation for
which the ¢, at large » have to be considered as the
final states.

On the SCT there enters a matrix element of the
time-dependent perturbing Hamiltonian

H,i! ()=KY1,4*0n00)/77, (12)

where 7, 6;, ¢. are the values of 7, 0, ¢ at time {. The
amplitude of the excited state w, is

1 t
4= f H () expGE./B)dl,  (12.1)

where E,; is the energy of the state w, minus the energy
of v;. On account of the degeneracy with respect to u,
one may take

Em' = Ew = ﬁw

It is convenient to parametrize the hyperbolic mo-
tion by

(12.2)

x=a’(e+coshw), y=a'(&—1)}sinhw,
r=a’(14¢ coshw), ¢=(a’/v)(w+esinhw),

where x is the coordinate measure along the major axis
of the hyperbola, y in a direction perpendicular to x
and e is the eccentricity. For the closest collisions, e=1
and if one may set w=0, one has for the perihelion, on
making use of

(12.3)

® dw
f Ly (12.4)
o 1-4coshw .
k(7 ) :
0= , A1=A_1=0, (e=1,0=0, w=0). (12.5)
V3Z,

10 K. A. Ter-Martirosyan, J. Exptl. Theoret. Phys. (U.S.S.R.)
22, 284 (1952).
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The effect of the excitation energy is to change the
integral in (12.4) to

dw, (12.6)

fw eiot ; f°° exp[:’tf (‘w-'l— smhu))]
o 1-4-coshw 0 1+coshw

with

t=wa'/v=E.n/(2E), (12.7)

where the value of 7 is that for the initial velocity,
with some uncertainty inherent in the application of

classical mechanics to the present problem. The exact

treatment of (12.6) is tedious. A crude but apparently
fair approximation for high excitations can be obtained
as follows. Introducing

#=w-+sinhw, (13)
one has
* exp[1£(w+sinhw) ] °° dw\?
f pLiE( dw=f eif“(——) du. (13.1)
0 1+ coshw 0 du
By numerical trial it is seen that
(dw/du)*==20.25/[ 14 (u/2.75)] (13.2)

the approximation being reasonably good between
u=0and #=6.5. In this region (dw/du)? decreases from
0.25 to 0.032, and the principal part of the effective
range of values of this factor is covered therefore by
(13.2). Employing this approximation, one obtains
from (12.6) and (13.1)

eiwt

o 121 =
[ g1
o 1-4coshw 64 15.5

i
—~—¢2 75t Ei(—2.75¢)
5.5

e Fi(2.758) }
5.5

™
~1.89’- —2.75¢
5.5

i 1 2!
+—~[-+

4 ]} (133)
2.7512.75¢  (2.75¢)2
where

—Ei(—x)=fw (e t/t)dt, Ei(x)=P fx (et/t)dt,

and P stands for “principal value of.” For sufficiently
large £, Eq. (13.3) reduces to

©  glat 0.257
[ dw=
Jo 1+4coshw ¢

(13.4)
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Combining this result with (12.5),
Ao=20.145k(r )/ (Z2£), (13.5)

while the other two classical amplitudes are zero as in
(12.5). The calculations so far have been made for the
special case e=1, i.e., for orbits corresponding to head
on collisions and the limits of integration for w corre-
spond to the perihelion. Without these specializations
one can observe that for close approach and high excita-

tions
f+w eiwtdw
14 € coshw

—0

is much smaller than
eiwtdw

\ »[w 1€ coshw

’

and that therefore

fw eiwtdw ) eiwtdw
wldecoshw o 1+4ecoshw
On the other hand, if one sets #=w-¢ sinhw, the in-
tegral in the last equation is

© dw 2 o 7 dw 2 eiEu
LG oL (G
w du w \du i
dw)2 teiku
- i€ ( du a £(14¢ coshfw)f

ei&u

(13.6)

According to (12.3), the excitation amplitude is ex-
pected therefore to be proportional to 1/72. This de-
pendence on 7 is similar to that of ¢y®_, in Eq. (11.3).
The factor ¥° in that equation also contains 7, but since
the classical estimate is made in terms of the ratio of
the probability of excitation to the probability of
finding the particles in a certain relative position, the
comparable quantum estimate must be made by taking
the factor multiplying ¢° in (11.3). The entrance of r
in y¢ should not be counted therefore in the com-
parison with (13.6), and the comparison indicates ap-
proximately the same variation of the probability of
excitation with distance in the two cases.

The relative probabilities of excitation will now be
compared at the perihelion, i.e., =2q’. According to
(11.3), the factor multiplying ¢¢ is in this case, dis-
regarding signs,

K l Yl,lt[
—_— (13.7)
|AE| (2a')?
which is to be compared with 4, of (13.5). Employing
the value of K from (6.1), the ratio of the quantum-
mechanical amplitude to A4, reduces to unity if one
sets | V1,,| in (13.7) equal to (3/4w)% This number is
just the value of | ¥y ,| which was used in obtaining
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(12.5) on the SCT, the reason for using it having been
that in the plane of the orbit only Y7, is distinct from
zero. The correspondence between the SCT calculation
and the one by the quantum treatment of the relative
motion is seen to be rather close for the case of high
excitations.

The quantum calculation may be expected to be rela-
tively better for high excitations than for those barely
resulting in ionization, because for high excitations the
treatment of the Green’s function as having a very
sharp cusp is more nearly justified. The approximation
of Eq. (13.4) for the SCT also involves the assumption
of large & and is therefore more questionable when
applied to excitation resulting in bare ionization than
to high excitations. The comparison of the quantum
and SCT calculations by means of the approximations
worked out in the present paper is not as significant
therefore as the comparison for high excitations. Making
the comparison for »=2a’ by employing Eq. (9.2) for
the quantum case and Eq. (13.5) for the SCT and
setting ¥4,0=(3/4m)} in the quantum calculation, the
ratio

A quant/ A=AE/E. (13.8)

In the application to N“¥+N% one is interested es-
pecially in a bombarding energy of 10 Mev, correspond-
ing to E=5 Mev, and the excitation energy is the tight-
ness of binding of a nucleon, which is about 10 Mev.
The right-hand side of (13.8) is thus of the general
order of unity in this case. The quantum estimate gives

21Z2e2/1’
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a slower decrease of the excitation amplitude with dis-
tance than the classical one. There is also some penetra-
tion into the region of negative kinetic energy for the
heavy aggregates implied in ¢¢ which is absent in the
SCT. These effects are in the direction of making the
quantum effect relatively the more important one. It
should be observed however that the term k2d*F ./’ (kr)
in (8.7) has been omitted in the estimates and that
through the oscillatory region F1” has a sign opposite
to that of Fz. This correction is in the direction of
decreasing the quantum quantity but the effect of this
correction is least important in the vicinity of the
classical turning point. It is seen therefore that the SCT
gives a fair approximation to the quantum result.

Returning to the consideration of Eq. (4), one sees
that on its right side there is present in ¥°¥ a contribu-
tion caused by the presence of Coulomb excited waves
having their origin in 3, way W, of Eq. (5.2). This part
of WCN gives rise to contributions to ¥® of Egs. (3.4)
and (4). Since the w, are more highly excited than the
ground state function v;, the tunnelling factor in the
nucleon transfer calculations’! varies for them less
critically and transfer from these states may be ex-
pected to take place more readily once they are present.
No attempt will be made here to take their effect into
account exactly, the main object being to consider the
qualitative implications of the virtual state Coulomb
excitation effects. The ratio of the high excitation form
of y®, to the form derived for bare removal of a nu-
cleon gives, by comparison of (11.3) with (9.2),

amplitude for high excitation

(13.9)

E,—E  amplitude for excitation to bottom of continuum

For closest approach, the numerator in the above
formula is the kinetic energy in the center-of-mass
system. For N*¥+4N* at a bombarding energy of 10 Mev
and for E,—E=20 Mev, the above ratio is 1/4. The
comparison indicates therefore that the excitations to
the lower part of the continuum are the more important
ones.

In order to make numerical estimates, it is necessary
to remove the specialization in the calculations which
was made in considering s-p excitations only. These
will not actually be important for the valence shell of
N, since this is a p-shell. The (r,) of Eq. (6.1) thus has
to be interpreted in terms of the dipole transition matrix
element by setting

(e{r p)?= 2240 | M [ 24 | 9@ 24 |92 | 2], (14)

where 91U is the electric dipole operator and the sum is
extended over the sublevels of the upper state. The
dipole operator is that of the whole nucleus and includes
the effect of the electric field on all nuclear protons. The
correctness of the above identification can be verified
by observing that for the s-p transition

Ly, i= 3ﬁ%<rp>’

and employing spectroscopic stability. The replacement
of {r,) by its generalization by means of (14) takes care
of a decrease in the effect caused by the near equality
of charge-to-mass ratio of the proton and the remainder
of the nucleus as well as the increase caused by the
presence of seven protons instead of one in the N
nucleus. An estimate of the right side of Eq. (14) can
be made by means of the Thomas, Reiche, Kuhn sum
rule which is usually stated in terms of f wvalues.
According to Levinger and Bethe,* this sum rule as-
sumes the form

*© 2x%*h

o (Ey)dE,=
j; W=

221 fir

NZ
=0.060; Mev-barn, (14.1)

where in the subscript i and f stand for the initial and
final states, respectively, and the sum is taken over final
states including sublevels. The last quantity listed in

1t Breit, Hull, and Gluckstern, Phys. Rev. 87, 74 (1952); G.

Breit, Phys. Rev. 102, 549 (1956); G. Breit and M. E. Ebel,
reference 1; M. E. Ebel, Phys. Rev. 103, 958 (1956).
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the above equation does not include exchange-effect
modifications*!? of the sum rule. The first quantity is
the energy integral of the photodisintegration cross
section, approximate values of which are available
from experiment. The quantity of the middle entry in
(14.1) contains numbers of equivalent harmonic oscil-
lators of dispersion theory, fi, for the nucleus as a
whole, with e, M standing respectively for the proton
charge and mass. The harmonic oscillators are also
supposed to have charge and mass values e and M.
In the treatment of the present paper, the effect of the
whole nucleus was represented for simplicity by that
of a single proton. One obtains the correspondence be-
tween the |9s;|2 and the fis therefore by employing the
relation between these quantities for charge e and mass
M. This relation is®

Ejq

2
ezfi =

(19107 [P |91, [ 24 952 7). (14.2)

3n?

Insertion in (14.1) gives

472 NZ
pr S Ere X ny | My [2=0.0607 Mev-barn. (14.3)
c

Lumping the whole effect in the vicinity of one energy
E, and letting AE=Ey; and making use of (14) one
has approximately from the above equation

472 ¢ NZ
— —AE(r,)*=20.060— Mev-barn,  (14.4)
3 ke 4
which gives
(ray=063 b (14.5)
70):=0. arn, 14.5
? AAE

provided AE is measured in Mev. For AE=10 Mev, one
obtains

(r)=47X10"5 cm (AE=10 Mev)  (14.6)

as the equivalent value of (r,).
A crude comparison with the tunnel penetration
effect can now be made by writing

(15)

where g, is the probability of virtual state (vs) formation
at the perihelion, and ¢, the ratio of tunnel penetration
probability from the virtual state to that from the
ground state.

For excitation to an excitation energy of 10.55 Mev
as measured from ground, the neutron is just ready to be
detached. The value of £ is 9.6 and the SCT factor cor-
recting the amplitude for finite excitation is 1.89/[9.6
X (2.75)¥]=0.026 otherwise obtainable from (13.4) as

Uvs/ Ttun=20102,

12 E. Feenberg, Phys. Rev. 49, 328 (1936); A. J. F. Siegert,
Phys. Rev. 52, 787 (1937).
138, A. Korff and G. Breit, Revs. Modern Phys. 4, 471 (1932).
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0.25/9.6. The value of a; on the SCT without the correc-
tion factor for excitation is, according to (12.5),
[&rp)/ (3%Z2) 2. For a bombarding energy of 10 Mev,
one has k=10“/(7.72 c¢cm) and the above-mentioned
parameter is 0.251. The resultant value of ¢, is therefore
(0.026)2X0.251=1.7X10"% As a first approximation,
one may use for as the barrier penetration, tunneling
from the ground state, factor which is given* by
Eq. (28.1) of reference 1. For. 10-Mev bombarding
energy a="7.13X102 cm™, 2¢'—2b=7.31X10"3 cm,
and 2a(24'—2b)=10.42. Assuming for the present that
the virtual state is equally effective in its transfer except
for absence of the barrier penetration, it is €°-42=3.36
X 10* times more effective. The gain over tunneling
from the ground state is therefore 3.36)X104X1.7X10~*
=35.7. This estimate indicates that the virtual state
formation process is the more important of the two
considered here. The estimate as made is defective
regarding the following matters.

(a) As has been considered in connection with Eq.
(3.4) the virtual state formation process should enter
in the consideration of the final Y°V as well as in that
of the initial. The initial wave without Coulomb excita-
tion is coupled by this process to the Coulomb excited
virtual states of N®¥4N'®, This coupling gives rise to
an additional term for the final amplitude which is of
the same order as that estimated. The phase relation
of this contribution to the one estimated has not been
ascertained. Assuming the phase relation to be random
as in quadrature, one expects a factor of about 2 in
addition to the factor 5.7.

At first sight it would appear that a similar circum-
stance neglected in the estimates is that both nuclei,
rather than one, are excited in the initial state. Since
each excitation leads to a transfer in a definite direction
this omission, apart from interference effects caused by
particle identity, cannot be distinguished from the
consideration of counting recoils. Since the tunneling
from the ground state estimate as used here does not
include these either, this effect can be omitted.

(b) The application of the correction factor for ex-
citation by means of the SCT estimate and the em-
ployment of the SCT estimate for the condition close
to bare removal of a nucleon are not quantitatively
reliable. The agreement of the quantum result (9.2)
with SCT was obtained for example by replacing ¥4, .
in (9.2) by (3/4r)? and counting only one u instead of
taking angular integrals. Secondly, there is a factor
1/7 in (9.2) which decreases the probability of virtual
state formation at large . For the latter reason one
might expect the virtual state process to be over-
estimated, if it were not for the fact that the collision
for the virtual state part of ¥ is less adiabatic since the
probability of the presence of the virtual state varies

1 A factor 2 should be inserted in the exponential on the right
side of Eq. (28.1) of reference 1. Furthermore, the nuclear radius,

denoted in reference 1 by g, is indicated in the present work by
b, a being reserved for the Bohr length of the collision.
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with 7. For the latter reason the transfer via the virtual
state should be more effective.

(¢) The comparison of virtual state transfer with
ground state transfer is crude because the ¥ ,w, pene-
trate to the other nucleus very effectively, and the
application of perturbation theory such as has been
used for the ground tunneling can give only a rough
approximation for the y @, w, part of ¢. The w, factor
can be expected to be strongly perturbed by the second
nucleus, making the estimates as carried out here have
a qualitative significance only. This is especially true
on account of the approximate equality of binding
energies of the last neutron in N and N5,

(d) The effect of virtual-state formation may have
been overestimated because the virtual state function
consists partly of components in which the wrong
kind of nucleon is excited. Also the virtual state func-
tion may have parts in which the residual nucleus is
excited, making it necessary for a rearrangement of
particles to take place in it before the nucleon transfer
is completed.

(e) On the other hand, the excitation of the residual
nucleus can be expected to lead to an enlargement in its
radius and a consequent possibility of participation of a
second nucleon in the transfer.

(f) The possibility of interference from different parts
of the continuum or from the discrete part of the ex-
citation spectrum has been neglected in the lumping
procedure which gave rise to (14.4). For the effect
under study it is the sum of the 91;; that matters while
the f sum rule is concerned mainly with the sum of the
|91y 2. If one distributes the contribution to the f sum
into two parts, each one half of the original, there are
two contributions to the > 91y, each 1/vV2 of the orig-
inal. If these are in phase, as they are expected to be
according to (11.3) and (9.2), for the same g, the value
of YoMy, is 2/V2=V2 times the original and the prob-
ability of transfer is increased by a factor 2. There
exists therefore a possibility of an increase in the effect
for this reason.

(g) The effect of correction for the exchange character
of nuclear forces has not been included. This effect has
been included by Levinger and Bethe* in their esti-
mates of the theoretically expected photodisintegration
and it increases the effect. In the comparison with
experiment carried out by Levinger and Bethe there is
evidence for the existence of the effect, at least to the
extent of providing an empirical correction to their
estimates of the integrated photodisintegration cross
section made by means of the f sum rule.

(h) The comparison has been made for the perihelion
of the collision leading to largest deflection. This is the
most favorable condition for ground state tunneling.
The virtual state process is for this reason underesti-
mated, since for it proximity of the heavy aggregates
does not enter as critically.

(i) Dipole effects only have been considered so far.
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The presence of these effects makes it clear that the
estimates presented have no claim to quantitative
validity. On the other hand, they show that virtual
state formation by Coulomb excitation is more im-
portant at low bombarding energies than leakage
through the region of negative kinetic energy for
nucleons in their ground state.

An exact calculation of the energy dependence and
of the angular distribution will not be attempted in the
present paper. A few qualitative considerations will,
nevertheless, be carried through. Their object is to see
whether virtual state formation can conceivably fit the
observations of Reynolds and Zucker.? The problem of
capture of the nucleon from a virtual state by the
nucleus carrying charge Z; has some analogies to that
of the capture of an electron by an ion traveling through
a gas. The principal viewpoints regarding this problem
have been treated by Thomas,'s Bohr,'® and Brinkman
and Kramers.)” The important part of the process can
be pictured by regarding the electron as released by the
parent atom as soon as the forces exerted on it by the
atom and ion are equal and counting it as attached to
the ion whenever its energy in the system of the ion is
negative at the instant of release. Applying this picture
to the transfer of the nucleon from the virtual state to
(Z1,m1), conditions for the application of the criterion
are simple for virtual states in the continuum. The
condition for release is satisfied whenever the nucleon
is inside the capturing nucleus or even considerably
outside it. A wide range of energies in the continuum
satisfies the condition for the energy being negative at
the capturing nucleus. As the two nuclei approach, the
virtual state wave function increases in amplitude and
some virtual state nucleons thus move through the
capturing nucleus. As an approximation, it will be sup-
posed that the fraction (wb?)/(4wrre?) of all virtual state
nucleons is intercepted and captured. Here 7o is the
distance of closest approach for a given orbit. This
criterion leaves out of account many relevant features
of the process, in particular the influence of the adiabatic
character of the collision on the lack of effectiveness of
the transfer. The anisotropy of the virtual state also
was neglected. Such factors can be included in a later
improvement, however. The probability of transfer for
an orbit will thus be taken provisionally as

a;(8%/4r¢?). (15.1)
In terms of the impact parameter p, the cross section
corresponding to the annular region between p and
p+dp is 2wpdp. Close to nuclear dissociation the prob-
ability of the virtual state is obtainable from (11.3).
Taking 2-u[¢®.[%, one obtains |[(rp)/(Zx)[*¥]?,
which indicates that |{r,)/(Zar0)|? is the probability

15 1,. H. Thomas, Proc. Roy. Soc. (London) A114, 661 (1927).

16 N. Bohr, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
18, No. 8 (1948).

17 H. C. Brinkman and H. A. Kramers, Proc, Acad. Sci, Amster-
dam 33, 973 (1930).
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Fic. 1. Relative values of differential transfer cross section og
for low virtual state excitation plotted against angle 6 in degrees.
Dashed curve neglects recoils, solid curve includes recoils but
neglects interference.

of there being a virtual state at the perihelion. At
Eyomb=10 Mev, employing Eq. (14.6), the chance of a
virtual state is then, on substituting numbers,

(1/440) (2a’/70)2. (15.2)
By means of (12.3), one finds
a"?d (27 cosh) a?dQ
2rpdp= = (15.3)

 4sind(e/2) Asint(6/2)

where dQ is the solid angle for the deflected particles
corresponding to the annular region (p, p+dp). Com-
bining the value of the area with (15.1) and (15.2),
the chance of transfer per unit solid angle of scattered
direction is

b2
70 7600 1+sin(6/2) T (154)
One has [+sin®/2)]
f [1+sin(0/2)T4de=2x/3),  (15.5)

and employing 5=1.5X10"84% cm, 8%/17600=7.4
X 1072 cm? so that S oedQ=15.6X10~2° cm?. This value
is larger than the experimental ¢ for either neutrons or
protons at this bombarding energy, both of which are
between 102 and 10-2® cm? Since there are several
factors which can make the cross section larger, there
appears to be no objection to supposing that the partly
adiabatic nature of the collision has some effect and
also allowing some of the virtual states to be in the
region of high excitation energies, for which, it will be
remembered, the virtual state formation is less probable
according to (13.9).

The estimate of the total cross section is not in the
way of assuming that at 10-Mev bombarding energy the
transfer is mainly caused by virtual state formation.
The energy dependence expected for the mechanism
used in obtaining (15.4) will now be estimated. There
is a factor 1/E? present in &2 of (15.3). Similarly there is
a factor 1/E in every 7o which entered in the factors
(15.1) and (15.2). In (15.1) there is thus a factor E2.
In (15.2) there was at an earlier stage a factor 1/72
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giving rise to E2 There is a net factor E? which gives a
factor 2.2 between 10 and 15 Mev. This factor is smaller
than the experimental 9.0 10728/5.0X10~2°=18. One
can try to explain the discrepancy by assuming that at
15 Mev the virtual state process is subordinate to
nucleon tunneling which could be supposed to have
increased by a larger factor than the experimental ¢ in
this energy range. It has been found! in fact that the
nucleon tunneling should increase much more rapidly
with energy than the observed o.

Such an explanation cannot be reconciled with the
angular dependence of o at 16.3 Mev. The latter shows
a depression at small angles. On the other hand, the
above model gives a pronounced peak at small angles
which is the residue of the large small-angle Rutherford
scattering. In Fig. 1 are shown two plots. One of them
is the factor 1/[14sin(6/2) ] of (15.5), which cor-
responds to the angular variation of o0g trans for-
getting about recoil particles. The second represents
1/[14sin(6/2) 1*+1/[14+cos(6/2)]* and includes the
effect of recoils. The experience in reference 1 shows
that the effect of interference between the two effects
is not major and it will be neglected therefore. Even
a factor 4 at #=90°, which is a maximum possible esti-
mate for the interference effect and is larger than the
factor 2/3 calculated in reference 1 can only succeed
in flattening the curve to an approximately horizontal
line but does not reproduce the observed rise at inter-
mediate angles. A dominance of the nuclear tunneling
effect at 19.2 and 21.1 Mev would also give peaks of o
both at §=0° and = 180° which is in disagreement with
experiment. This part of the argument is not as strong
as the first because there could conceivably be inter-
ference between direct tunneling and virtual state
transfer. Also the higher energies are not clearly cases of
transfer at a distance. The lower energy observations
appear to be sufficient, however, to exclude the model.

The situation changes completely if one uses the
dependence on 7 to be expected from the high-excitation
conditions. The extra power of 1/7 in the amplitude for
virtual state formation present in (11.3) gives an extra
factor 1/r¢® in the differential cross section which be-
comes proportional to

sin2(6/2)/[1-+sin(8/2) 7,

and taking into account recoils but neglecting inter-
ference between the two amplitudes one expects o to be
proportional to

(15.6)

sin?(6/2) cos2(6/2)
[14sin(9/2)]° [14cos(6/2)]°

(15.7)

Plots of these quantities are shown in Fig. 2. They are
seen to be reasonably similar to the experimental o. The
data plotted are for the case of neutron transfer; how-
ever, it may be expected that neutron transfer and
proton transfer should be approximately equal in this
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model. Since nearly the same type of distribution is
observed at 16.3, 19.2, and 21.1 Mev, it appears prob-
able that the virtual-state formation process is domi-
nant through most of the energy range. At the higher
energies the direct tunneling process does not differ
from the experimental curve in as pronounced a way
as at low energies. One cannot exclude some direct
tunneling at 19.2 Mev, but at 16.3 Mev the proportion
of cases taking place by direct tunneling must be small.
In comparing total yields at 10 and 15 Meyv, it is im-
possible to assume therefore that at 15 Mev direct
tunneling is dominant.

The dependence on energy corresponding to (15.6)
and (15.7) differs from that for the first model through
the inclusion of an extra factor 1/ in (11.3) as com-
pared with (9.2). There is therefore an extra (1/70)?
in the expression for the transfer probability. Since 7,
contains a’ and @’ is inversely proportional to E, there
appears an extra factor E? corresponding to an E*
rather than E? dependence of ¢ on E. The expected
factor between 10 and 15 Mev is (1.5)*=5.1 as com-
pared with the observed ratio of 18. There remains a
discrepancy of a factor 3.5. This may be partly account-
able for by the participation of direct tunneling at the
higher energy. Such participation cannot be excluded
because the direct and virtual state processes give rise
to the same final states, so that interference terms be-
tween the two types of angular distributions cannot be
excluded. It is improbable that one could account for
the whole factor 3.5 on this basis, since this would
require dominance of direct tunneling at 15 Mev which
is hard to reconcile with the angular distribution. The
factor to be accounted for is appreciably smaller, how-
ever, than for the first model. It is seen therefore that
high rather than low excitation is favored by experiment.

The outstanding discrepancy is the factor 3.5 in the
total yield for the high excitation model. This factor
cannot be considered as an objection to the explanation
in terms of virtual state formation on account of the
following omissions in the considerations. In the first
place, the virtual states must be appreciably distorted
by the presence of the capturing nucleus. The distor-
tion is more pronounced at the higher energies. At 10
Mev the distance between closest points of nuclear
surface 2¢’—2b="7.3X10"3 cm while 2¢’=14.1X10"3
cm. At 15 Mev, 2¢’=9.4X10" cm and the distance
between closest points is only 2.6X 10718 cm. It would
not be surprising if both the direct tunneling and virtual
state formation estimates were seriously affected. In
particular the virtual state could conceivably form a
more intimate combination with the capturing nucleus
than has been considered, leading to a relatively higher
yield. Secondly the influence of the adiabatic nature of
the collision on the probability of transfer from the
virtual state has not been taken into account. In this
connection there enters the collision time of the process.
Approximating the radial motion at the perihelion by a
uniformly accelerated one and defining the collision
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Fi1c. 2. Relative values of differential transfer cross section og
for high virtual state excitation plotted against angle 6 in degrees.
Dashed curve neglects recoils, solid curve includes recoils but
neglects interference. The histogram shows experimental distribu-
tion? at 16.3 Mev.

time as the time necessary to move from 7o to 27, the
collision time is

At={2r¢/[v*— (Z1Z 26*/mro) ]} 1.

For close collisions, At=2r,/v. For distant collisions,
Ar=22%(ro/v)[ 144’/ (2p)]. Approximately, therefore, At
is proportional to 7. For close collisions at 10 Mev, one
has At=181 ¢2/mc=169X 1028 sec. The time needed
for a nucleon with 20-Mev kinetic energy to traverse
the nuclear radius §=3.62X107% cm is 5.75X 10~% sec.
The collision time is long compared to this time. It is
also long compared with the time %/AE where AE is the
excitation energy. If we take for the latter AE a nominal
5 Mev, the time is %/ (10mc?) =13.7¢%/mc*=12.6 X 1023
sec, which is again short compared with Az. The latter
fact means that Coulomb excitation is small compared
with virtual state formation at the perihelion. The
former indicates that a potential well will behave
adiabatically during the collision time. It would appear
at first sight that no capture is to be expected. In the
consideration of capture, however, there enters the time
of passage between the nuclei and return which is
2X14.1X10™ c¢m/3.62X 10~ cm=7.8 times longer
than the time to traverse b. The value of Af is further-
more too large because the amplitude of the virtual state
decreases by a factor 1/4 during that time and in addi-
tion there is a decrease at the capturing nucleus by a
factor 1/2 caused by the variation of the amplitude of
the function in space. The relevant times are therefore
comparable, leading to the expectation of an appreciable
transfer probability but with a dependence on the
collision time. This dependence produces effects similar
to those caused by going from the low-excitation to the
high-excitation model. It subdues the effectiveness of
small-angle collisions and produces therefore the same
kind of difference as that between Fig. 2 and Fig. 1.
Besides it subdues the effectiveness of low energies on
account of the more nearly adiabatic character of the
collisions in this energy range. This is the desired type
of effect for the high-excitation model which left a
factor of about 3.5 in the energy dependence to be
explained.
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In the above considerations, free use was made of
classical mechanics in making estimates regarding the
nature of the collisions. Among them there was the
estimate of the period of the whole system with fixed
positions of the heavy aggregates which enters a com-
parison with the collision time. In a quantum calcula-
tion there enters in place of this the time corresponding
to the transition frequency between the initial and final
states. In the case of N*+N¥—-NB4-NI5 this time is
especially long because of the approximate resonance
in neutron energies, i.e., the near equality of binding of
the last neutron in N* and N, In mass units N*¥4NM
— (NB-+N%)=0.00028=0.261 Mev. The value of
7/0.261 Mev is 240X 10~ sec which is longer than the
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collision time of 169X 102 sec but of the same order.
The qualitative situation is not changed by the quan-
tum estimate. It suggests, however, that characteristic
differences may be found in reactions with different
energy evolutions.

It appears from the above discussion that the meas-
urements of the differential cross sections suggest the
way in which virtual state formation enters the collision
process. The suggested picture is either excitation to the
lower part of the continuum strongly influenced by the
degree to which a given orbit performs an adiabatic
rather than shock-type collision; or else excitation to
higher energies with a smaller influence of the degree of
adiabaticity appears at present to be equally acceptable.
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The energy distribution of mass-97 fragments from thermal neutron induced fission of U5 was measured
with a high-resolution magnetic spectrograph. The fragments originate in a thin plating of U235 near the
center of the Oak Ridge National Laboratory graphite reactor and travel 16 feet to a wedge magnet which
analyzes and focuses them at the focal plane 6 feet beyond. There they are caught in an aluminum foil
which, after the irradiation, is cut into strips each of which is radiochemically analyzed for Zr*’. The Hp
distribution is complicated by the large energy width which leads to overlapping of momentum distributions
from successive charges. An analysis of the shapes of the Hp distributions obtained with different relative
charge populations determines that the width of the energy distributions is (11.44:0.8)%, corrected for
broadening due to prompt neutron emission. This result is in agreement with measurements of the distri-
butions of the number of neutrons per fission but is in sharp disagreement with the predictions of Fong’s
theory of the fission process. The most probable energy is 174.7+£2 Mev for the mass-97 fission mode, and

about 164.5+3 Mev for the mass-91 mode.

INTRODUCTION

HE energy spectrum of fission fragments of a
given mass has been investigated by several
groups! using ionization chamber techniques; they have
obtained roughly Gaussian distributions with the most
probable total kinetic energy release, /, about 155 Mev,
and full width at half-maximum, AE/E, about 159%.
Recent investigations of ionization defects for fission
fragments® have indicated that the former result is
much too small, and experiments using both time-of-
flight® and calorimeter? techniques have measured E to

1D. C. Brunton and G. C. Hanna, Can. J. Research 28A, 190
(1950) ; W. Jentschke, Z. Physik 120, 165 (1943); A. Flammers-
feld, Jensen, and Gentner, Z. Physik 120, 450 (1943) ; M. Deutsch
and M. Ramsey, U. S. Atomic Energy Commission Report
MDDC-945, 1945 (unpublished).

2 H. W. Schmitt and R. B. Leachman (private communication).

3 R. B. Leachman, Phys. Rev. 87, 444 (1952); R. B. Leachman
and R. W. Schmitt, Phys. Rev. 96, 1366 (1954); W. E. Stein
(private communication).

(14;}) B. Leachman and W. D. Schafer, Can. J. Phys. 33, 357

955).

be about 167 Mev. The situation regarding the width
of the distributions is considerably less certain. By
comparing the results of time of flight and ionization
chamber experiments, Leachman® concluded that the
experimental dispersion in the latter experiments was
about 9%, which would reduce AE/E to about 129,
However, Fong,® analyzing the same data, found AE/E
to be only 8%,. From measurements of range distribu-
tions in various gases, Good and Wollan® found AE/E
=69, ; however, their corrections for foil thickness were
quite large and appear to be inconsistent with other
data. The general consensus has been that, due to the
large dispersion and many other inaccuracies inherent
in ionization chamber and absorption techniques, these
experiments do not establish a lower limit to the widths
of the energy distributions. It was decided, therefore,
to measure these widths by magnetic analysis. In the
process, new measurements of & were obtained.

5 P. Fong, Phys. Rev. 102, 434 (1956).
6§ W, M. Good and E, O, Wollan, Phys. Rev. 101, 249 (1956).



