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In connection with the tracing of the origin of the apparent irreversibility exhibited by a class of simple
mechanical systems, namely all multiply or conditionally periodic Hamilton-Jacobi systems, estimates
are obtained for the Poincaré recurrence time of such a system in terms of the preassigned limits of error
of the mechanical recurrence, e. By applying the theory of diophantine approximations, the asymptotic
fraction of the time a system spends in such recurrences is found exactly. These results allow further
deductions concerning the fraction of time a given system obeys a strict version of the second law of
thermodynamics, as well as the existence and order of magnitude of the average Poincaré recurrence time
of a Gibbsian ensemble of such systems whose degrees of freedom are indistinguishable.

The relation of the results obtained for this important class of mechanical systems and the resolution
of the paradoxes of heat theory propounded by Zermelo, Loschmidt, etc., due to Boltzmann and von
Smoluchowski, is discussed. An especially easily visualized model, the one-dimensional gas of hard spheres,

is treated, in particular, in some detail.

I. INTRODUCTION

ENTRAL in the theory of heat lies the problem of
reconciling the irreversible phenomenological laws
governing the transport of properties and matter and
the reversible laws of mechanics which are simul-
taneously obeyed by the molecules involved in the
transport process. In particular the Poincaré cycle
theorem! has been the starting point for a number of
paradoxes showing the incompatability of statistical
mechanics (based on dynamics) and macroscopic ther-
modynamics on the one hand and the kinetic theory of
gases on the other.? The resolution of these paradoxes by
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! For an excellent review of these matters see S. Chandrasekhar,
Revs. Modern Phys. 15, 1 (1943). This theorem asserts that for
a system of material particles under the influence of forces which
depend only on the spatial coordinates, a given initial state
(given by a representative point in phase space) must, in general,
recur, not exactly, but to any desired degree of accuracy, infinitely
often, provided the system always remains in the finite part of
the phase space.

2 J. Loschmidt, Wien. Ber. 73, 139 (1876); 75, 67 (1877);
E. Zermelo, Ann. Physik 57, 485 (1896); 59, 793 (1896).

Boltzmann? von Smoluchowski,* and others have de-
pended on the recognition that the period of one such
Poincaré cycle is so very large that the recurrence of an
initially improbable state is so highly improbable that
during the times normally available for observation the
chance of reversal of a spontaneous thermodynamic
process is exceedingly small. Unfortunately, except foran
incomplete and very rough estimate of this recurrence
time for a gas by Boltzmann!? no completely satis-
factory demonstration of the emergence of apparent
irreversibility from a strictly mechanical system has
been achieved.® In this connection, a number of
quasi-mechanical models incorporating certain statis-
tical assumptions, such as the urn and wind-tree
model,’ have been recently investigated.”8

The purpose of the present investigation will be to
elucidate certain details of the reconcilation suggested

3 L. Boltzmann, Ann. Physik 57, 773 (1896); 60, 392 (1897).
1; %I) von Smoluchowski, Physik. Z. 13, ‘1069 (1912); 14, 261
( 5 This includes von Smoluchowski’s theory of fluctuations in
molecular concentrations! which has been criticized by M. Kac,
Am. Math. Monthly 54, 369 (1947).

6 P. and T. Ehrenfest, Physik. Z. 8, 311 (1907).

7 B. Friedmann, Comm. Pure and Appl. Math. 2, 59 (1949).

8D. ter Haar and C. D. Green, Proc. Phys. Soc. (London)

A66, 153 (1953); Proc. Cambridge Phil. Soc. 51, 141 (1955);
Physica 21, 63 (1955).
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by Boltzmann, von Smoluchowski, etc. for a class of
simple mechanical systems. In particular this will
involve finding estimates of the Poincaré recurrence
time of conditionally or multiply periodic mechanical
systems derivable from a time-independent Hamiltonian
function. More to the point, we will describe exactly
the asymptotic distribution of recurrences up to a
given time of observation in terms of the preassigned
limits of error of the mechanical recurrence. For
simplicity we shall carry out the discussion in terms of
the least complicated mechanical model system of
the general type described, namely a one-dimensional
gas of identical rigid spheres. The ease with which
details of the statistical behavior of this model can be
grasped suggest further pedagogical resons for the
procedure we shall follow below.

II. VELOCITY DISTRIBUTION OF THE ONE-
DIMENSIONAL GAS OF RIGID SPHERES

Consider a one-dimensional gas composed of N—1
identical perfectly elastic spheres contained between
two perfectly reflecting (elastic) walls. Without loss
in generality, we can represent the walls as another
perfectly elastic sphere and think of all N spheres now
as being distributed along the circumference of a circle
of unit radius. Let the mass, (angular) position, and
(angular) velocity of the spherical gas molecules be
m, 0;, w;, respectively, with ¢=1, 2, ---, N. Since the
molecules must collide head-on and the molecules are
elastic, we have on collision to satisfy the two conserva-
tion conditions:

witwipi=w/Fwy,
witwilt=w w1,

where the primed quantities refer to the molecules
before the collision and the unprimed quantities to the
molecules after collision. The solution

J— ’ — ’
Wi=Wipl, Wit1= Wi,

shows that the velocities are only permuted among
the different particles. Furthermore, a collision involv-
ing more than two particles can always be factored
into a product of two-particle collisions. Since the
molecules are indistinguishable, we can think of a
collision as not only exchanging momentum but also
the assigned numbers by which the particles had
originally been distinguished. The particle with a
given assigned number moves as if it passed clear
through another particle without collision.

If u=u(by,---,0x; w1, -,wy;t) denotes the density
in phase space of a Gibbsian ensemble of such systems,
then the (N-particle) molecular velocity distribution
(M.V.D.) ¢(wy,- - * on; £) is given by

b(wi, - on; 1)

=f'"fu(01,"',0N;w1,"',w1v;t)d01'"dHN,
@)

with the normalization condition

f. . 'qu(wly' . ',(IJN;'t)d(,O]" . 'dCON=1-

Let ¢(wy,: - ,on; i=0)=¢ (w1, * - ,wny)=¢ be the initial
M.V.D. If the particles are indistinguishable, ¢ must be
a symmetric function of its arguments. Since we have
shown that collisions in the system only permute the
w; and since a symmetric function remains invariant
under the permutation of its arguments, it follows that
for all times

¢(w1,"',wN;t)=¢(w1,"',O)N). (1)

Thus our M.V.D. is determined if the initial symmetric
distribution is given. We can say something about the
physically unrealistic case where ¢ is initially not
symmetric for, by the above argument, ¢ can never
become symmetric and hence can never represent
indistinguishable particles.

An immediate consequence of Eq. (1) is the vanishing
of the time derivative of the average over phase of any
time-independent function F of the velocities w;, i.e.,

d(F(w1," - - wn))/dt=0, (2)
where

(F)=f---fF(w1,---,wN)u(Gl,-~-,wN;t)d01--~dwN

=f~-fF(w1,---,wzv)¢(w1,~-~,wN)dwi-~-dwN.

III. DENSITY DISTRIBUTION IN A ONE-
DIMENSIONAL GAS OF RIGID SPHERES

While the above system is highly “nonergodic” as
regards its velocity distribution, it behaves in a manner
expected insofar as the distribution in the positions of
the NV molecules is concerned; exhibiting the expected
“diffusion” of molecules from regions of high density
to regions of low density in molecules. Thus if initially
the molecules are uniformly distributed everywhere
except in a circular sector of 6 radians and the velocities
are bounded from above, then the probability of finding
m particles in the sector of 0 radians at any later time
tis given by a Bernoulli distribution {{N !/m !(N—m) !]
Xp™(H[1—p(#) ¥} with the parameter p(¢) depend-
ent on the time, which can be explicitly obtained by
induction on N, the total number of particles. For
large N, this distribution becomes more and more
peaked and in the limit approaches a Gaussian distribu-
tion. The latter is centered about the mean (m) which
incidentally rapidly approaches,® in an oscillating
fashion, (m)ise=(8/2x)N. Thus the sort of diffusion

9 This and similar results were also obtained by E. Teramoto
and C. Suzuki, Progr. Theoret. Phys. (Japan) 14, 411 (1955),
whose discussion of these points is quite explicit.
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of molecules predicted by a Second Law consideration
actually occurs.

IV. POINCARE RECURRENCE TIME

How can one reconcile then this apparent “irrevers-
ible” behavior with the approximate recurrence of any
initial state in time according to the theorem of
Poincaré? To answer this, we will first clarify the
meaning of such a recurrence and then estimate its
duration. By a Poincaré recurrence of such a mechanical
system, we will mean a recurrence of a given initial
pattern of positions and velocities, the former specified
to within an error of 27e radians, 0K ¢<1, independently
of any permutation in the numbering of the gas
molecules. The Poincaré recurrence time is then the
time of the first recurrence of such a pattern,
t=1i(v1, - +,vn;€) where »;=w;/2r are the angular
frequencies. The remarkable thing is that { depends only
on the frequencies and e. Precise recurrence (i.e., e=0)
occurs only if the »; are rationally dependent, i.e.
there exist integers my,- - -,my such that > m»;=0.
Otherwise £ is the least real number such that, given
N1 arbitrary real numbers »;(i=1,---,N) and ¢,
>0, the NV inequalities

[iVi_nil <e (3)

are simultaneously satisfied for suitable integers #;.

Before proceeding with the development of Eq. (3),
we would like to show the almost complete analogy in
the dynamical behavior between the one-dimensional
gas of rigid spheres and a multiply periodic mechanical
system with a time-independent Hamiltonian function.
Let the generalized coordinates and momenta of the
latter system be ¢i,- - -,gn and py,- - -,px and the total
energy E. Making use now of well-known results from
the Hamilton-Jacobi theory,’® we can introduce action
and angle variables Jy,---,J5 and wy,- - -, wy in terms
of Hamilton’s principal function S and the character-
istic function W satisfying

S=—Et+W,
as

Ji= fPisz: —dg:= —dgs,
6qi aq,,

W

In terms of these variables, E is a function of the J’s
alone and

aE/a]i= Vi (4)

yields the constant angular frequencies »;. A multiply
periodic system is further, by hypothesis*!! a system

10 H. Goldstein, Classical Mechanics (Addison-Wesley Press,
Inc., Cambridge, 1950), Chap. 9.

LA thorough discussion of the existence theorems involved
here is given by M. Born, The Mechanics of the Atom, translated
by J. W. Fisher (G. Bell and Sons, London, 1927).

for which the characteristic function W is separable
in at least one set of canonical variables ¢;, p:(i=1,
---,N). For these systems the recurrence behavior
is completely determined by the set of frequencies
vy, +,wy since all coordinates can be represented as a
Fourier series:

0
Qk — Z ane%rink%t_

nE=—o0

It can be shown'? that the motion of any such system
is completely specified in any cube of w space of
length 2. The locus of the motion of the system in
this space is a straight line whose direction cosines
vr with the axes stand in the relation

Yiiye: YN =WiiWel Wy =Viivelc VN,

in complete analogy with the behavior of our model
gas. The Poincaré recurrence time is again given by
Eq. (3) with the constant frequencies »; [see Eq. (4)]
and 2me the error in w,;. Henceforth, in treating the
mechanical recurrence properties of this class of systems,
it suffices to examine the analogous property of a
one-dimensional gas of rigid spheres. If furthermore
we specialize to the class of multiply periodic mechanical
systems whose degrees of freedom are indistinguishable,
then the analogy is complete and the statistical
mechanics of this subclass and our model are identical;
e.g., Eq. (1) applies.

Returning now to Eq. (3), the item of greatest
physical interest concerning { is its behavior as e—0
for fixed N. In order to deal with dimensionless
parameters, let y=maxw;(i=1,---,N), r=v", i=uf,
and §&=v,;/v; then Eq. (3) becomes

[¢Ei—ni| <e. (5)

An upper bound for ¢ is immediately obtained by
virtue of the following theorem!®: N real numbers
&1, - +,En are to be approximated by rational fractions
with denominator ¢ such that the error

1

q1+1/n'

If at least one of §; is irrational, then there exist an
infinite number of systems of NV fractions of this type.
Thus, with given ¢, choose the least ¢ such that e>¢*/¥;
then we certainly have [see Eq. (5)]

¢<et,
which can by a theorem due to Minkowski# be improved

12 See, e.g., W. Weizel, Lehrbuch der Theoretischen Physik
(Springer-Verlag, Berlin, 1949), pp. 121-125.

180, Perron, Irrationale Zahlen (Chelsea Publishing Company,
New York, 1948), second edition, p. 132 (Th. 54).

1], F. Koksma, Diophantische Approximationen (Chelsea
Publishing Company, New York, 1936), pp. 70-86.



4 HARRY L. FRISCH

to .
¢ <[(N+1)e]
N
r N4+1)eT™¥
o< [T ©
N

The fact that i~7Cye~, with
14+1/N<Cxy<2(N+1) J[N+1],

is suggested by the further result due to Furtwingler
that there exist many sets of N real numbers &1, - - &x
such that there exist at most a finite number of fractions
with common denominator ¢ for which

n;
Ei__l < l/Cqu'H/N
q

and Cy<[2(N+1) P[NH-172,

{ rises very sharply as expected with decreasing e.
This result still applies if the mechanical system is
m-fold degenerate (m<N); i.e., there exist integers
jisuch that >~ ;_1”7»;=0. An extension'® of a previously
cited theorem allows us to conclude that i< 7e=¥—m),

A further question concerns itself with whether there
exists an average recurrence time for these systems
where the averaging is carried out over the Gibbsian
ensemble of systems. Assuming that Eq. (1) holds, we
can write for the average recurrence time 7'(e) :

T(e)———f- . -fi(ul,- cow; € (w1, - - wr)dwr - - - dwy.

From Eq. (6), we can conclude that

T(e)<[(ﬂj%)e]w<f>,

© 2
<T>=f ---f~¢(w1,---,wN)dw1~--dwN.
w1

—o0

Hence for M.V.D.’s for which (7) is finite, T'(¢) certainly
exists. It is this time which von Smoluchowski* chooses
as a scale for the apparent irreversibility of a process.
Thus, a process appears irreversible (or reversible)
according as whether the initial state is characterized
by a long (or short) average time of recurrence compared
to the times during which the system is under
observation.!

V. ASYMPTOTIC DISTRIBUTION OF RECURRENCES

While the previously given estimates of the Poincaré
recurrence times support strongly the central intention
of this paper, they do not by themselves suffice to
satisfy our curiosity as to the recurrence of an initially

15 Reference 13, pp. 137-138 (Th. 57)

improbable state. The type of question we should like
to ask is not, given that we start from some arbitrary
initial state in phase space, what is the average length
of time before we return to an e neighborhood of that
state; but rather, assuming that we perform a large
number of observations on our system, what fraction of
the time does the system actually spend in states within
an e neighborhood of our initial one?

An answer to the above question is obtained by a
modification of a theorem due to Weyl*16: If to a
system of whole numbers #i,---,my (N>1) there
belong N+1 real numbers, »y,- - - ,vx and v, such that

ne<wy—ni<nita;; a;<l, )

then there exist an infinite number of such y and
these form an open interval. Because a;<1, no y can
belong simultaneously to two different systems
71, - +,my. If ¢ denotes any positive number, then there
exist only a finite number of systems to which belongs
a v in the interval 0<y<{, since the #; are bounded.
Those numbers y in the interval 0<y<{ for which
Eq. (7) holds for suitable integers #,- - -,ny form a
finite number of open intervals. Their total length is
henceforth denoted by Ni(y:;a:;t). If the numbers
vy, +,vy are rationally independent and if 4, #s,-- -,
tr,+ - - denotes any sequence for which

lim fp= 0,
k—o0
then
]Vl(ﬂi' a;; lk) N
lim ————= 1] @ (8)
k—00 tk =1

Identifying the f;’s with the end points of the observa-
tion time intervals and choosing 5,=0 and a;=¢, then
applying Eq. (8) we find for the desired fraction F

N1(0; €; ti)
F=lim———
k— tk

=V, 9)
If the error bounds on the w; are different, then Eq. (9)
becomes

. .
F=T1] &; 0<e<l.

=1

Thus, the larger the number of molecules (degrees of
freedom) of the gas (system), the smaller is the fraction
of the time spent near any initial state.

Consider now some initial state of the system
specified to within limits of error determined by e, .S;.
As the system evolves in time, it may pass through a
succession of different states, each, say, specified to
within the same limits of error as S;. Assuming that a
suitable system entropy can be defined,!” we can
classify all successive states to .S; according as the

16 Reference 13, pp. 168-169 (Th. 67).
17 See, e.g., F. Lurcat, Compt. rend. 242, 1686 (1956).
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entropy difference with respect to S; is positive,
zero, or negative. Denote the fraction of all accessible
states of the system from .S; in an arbitrarily large time
which are characterized by a negative entropy difference
by Q&(S;,«). Since the principal negative contribu-
tions come from the vicinity of the recurrent state,
Eq. (9) suggests that the fraction of the time for which
the Second Law!8 fails for this system is of the order of
Q(S;,0)-e¥< V. Thus for these systems we can
conclude in a restricted sense that the larger the
number of molecules (degrees of freedom), the greater
can be our belief in the applicability of the laws of
thermodynamics.

VI. CONCLUDING REMARKS

While the Poincaré recurrence time certainly ranks as
one of the important parameters characterizing the
temporal unfolding of a mechanical system, it is not
the only such parameter. Particularly important in the
description of transport processes are various very much
shorter relaxation times. Among the latter might be
classed a time such as the one required on the average
for the smoothing out of some initial inhomogeneity
in the density of molecules of, say, our model gas. If L
denotes the length of the circumference of our circle,
then this time is of the order of L/(2E/m)%.% A partic-
ularly challenging question arises if we consider the
various interrelations between these times, since these
determine the choice of the best approximate irrevers-
ible transport theory for the description of the reversible
mechanical system. In view of the simplicity of this
model, the study of both exact and approximate trans-
port theory appears feasible, particularly in view of
relations such as Egs. (1) and (2).

What is very characteristic of both the Poincaré

18 By the Second Law we mean here the strong statement that
the (system) entropy of an isolated system (of constant energy)
never decreases.

recurrence times and their distributions for the class
of mechanical systems under consideration is their
independence of the location in configuration space of
the recurring initial state. Hence one is little surprised
to find that these systems are quasi-ergodic.10'?

One should note that ¢ satisfying Eq. (1) can
always be expressed in terms of the elementary sym-
metric functions o1, - +,0n, Where

o= X

all permutations

Wiwe* * *W;,

as
¢(w17' : ':wN)=¢(o'17° : '70N>)

where both ¢ and ¢ obviously satisfy the integral
equations

d(wy,*+ oy = f —Z f ﬁ d(wi—wi’)

i=1

X¢(w1”. . '7(0N,)d<’~’1,‘ . 'dwzv’,

N
Y(oy," - ','TN)=f' . fH 6(oi—a)
=t
Xl[/(dll,' . -,o’N')da‘l'~ . 'dG’N,.

This relationship is a direct consequence of the fact
that the vector of the wvelocities after collision,
o=o(wy,- " ,wy), is obtained from the vector of
velocities before collision, o'='(w!, - ,wx") by a
suitable rotation of a sphere of radius (2E/m)* on
which both @ and «' lie. Since this is also true of
two-, three-, etc., dimensional gases of rigid spheres,
we can expect that the analog of the integral equations
(10) exists for a suitable kernel function K(w,0’). We
shall not pursue this question further here.

The author is indebted to Dr. W. Noll of the Depart-
ment of Mathematics of the University of Southern
California for many thought-provoking discussions in
the course of this work.



