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Application of Adiabatic Functions to N"+N'4 Reactions*
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Nucleon tunneling in reactions of the type ¹4(N'4, N")N" and N'4(N'4, C")0"is calculated by using
adiabatic wave functions constructed by the well-depth eigenfunction method. The procedure is applicable
only if resonance effects in the transfer do not enter; in this case the results are shown to be equivalent with
those obtained in the more detailed considerations of the energy matrix method.

I. INTRODUCTION

~CONSIDERABLE interest has recently been at-~ tached to nuclear reactions between two nuclei
such as N", in which a nucleon is transferred from one
nucleus to the other. In particular, the role of simple
tunnelling of the nucleon in N'4(N'4 N")N" and
N'4(N'4, C")0" has been analyzed in some detail. ' A
special circumstance enters in the case of these re-
actions; namely, the binding energies of the last
neutron in X" and N" are approximately equal, as
are those of the last proton in N" and 0".The difter-
ence is about 0.3 Mev in each case, On the other hand,
if such a resonance condition does not exist, it may be
convenient to treat the tunneling process in terms of
adiabatic functions, employing the well-depth eigen-
function method. ' It is the purpose of this note to
show that such a treatment of the N"+N" reactions
leads to the same approximate result as the energy
matrix method of BE if the bombarding energy is so
low that the change in energy of the adiabatic states
from their values in the isolated nuclei is small com-
pared to the diGerence of the energies of the states in
the two nuclei, i.e., the resonance condition does not
obtain.

In the present treatment, the nucleon is considered
to move in a potential which is the sum of two poten-
tials, each describing its interaction with one of the
nuclei. In this respect these considerations are less
general than those in BE, in which the nucleon be-
havior was described in terms of conditions at the
nuclear surface. The reaction is considered in the semi-
classical approximation, i.e., the two potential wells
are assumed to move along the hyperbolic orbits of the
classical problem. The validity of this approximation
has been discussed in BE and in the references quoted
therein.

The calculation proceeds in two steps. First, adiabatic
wave functions which are solutions of the Schrodinger
equation for one nucleon in two potential wells are
obtained, with the fixed separation of the two nuclei

treated as a parameter. As the separation becomes large,
these wave functions approach functions describing
conditions in which the nucleon is bound to one or the
other of the nuclei. The one exception to this is the case
of exact degeneracy arising when the two potential
wells are identical. In this latter circumstance the
asymptotic wave functions would be symmetric and
antisymmetric combinations of the single-well eigen-
functions. The following treatment does not consider
such a case.

The second step invokes the adiabatic approximation,
in which the previously constructed functions are used
as approximate time-dependent wave functions, the
time entering through the dependence of the wave
function on the separation of the two nuclei. The varia-
tion of the adiabatic functions with time is known ex-
plicitly if the motion of the nuclei is treated classically.
The probability of a system which is in a state corre-
sponding to the localization of the nucleon in one well
at time t= —~ making a transition to a state corre-
sponding to the nucleon being in the other well, is then
calculated by the use of time-dependent perturbation
theory. The result is found to agree approximately with
that obtained from the energy matrix treatment of BE,
within the limit of validity of the present treatment,
which is just the range of bombarding energies in which
the perturbation treatment as applied converges
rapidly. The considerations regarding the eGects of
spin and of the identity of particles are just the same
as those made in BE for the energy matrix approach.
The notation used will be substantially that of B and
BE. The fact that the adiabatic wave function and the
energy matrix treatments agree regarding the entrance
of penetrability factors may be regarded as additional
evidence for conclusions reached by BE. In particular,
the expected dependence of cross section on energy and
on angle is very similar in the two approximations and
the evidence regarding the existence of a process operat-
ing in addition to ordinary tunneling is thus supported
by the present considerations.

*This research was supported by the U. S. Atomic Energy
Commission under Contract AT(30—1)—1807 and by the OKce o
Ordnance Research, U. S. Army.' G. Breit and M. E. Ebel, Phys. Rev. 103, 679 (1956). Thi
work will henceforth be referred to as BE.' G. Breit, Phys. Rev. j.02, 549 (1956). This work will hence
forth be referred to as B.

II. ADIABATIC WAVE FUNCTIONS

It is desired to construct wave functions describing a
single particle of positive separation energy interacting
with two nuclei. These interactions are represented by
potential energies (A'/2M) Vr(r) and (A'/2M) Vs(r),
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M being the nucleon mass; that is, solutions of the
Schrodinger equation

L~—"-V (r)- V (r)14(r) =O (1)

corresponding to states of energy —A2&:2/2M are sought.
For simplicity, nucleon and nuclear spins are ignored,
the results being easily generalized to include their
effects. Equation (1) is solved by using the method of
well-depth eigenfunctions outlined in B. The results of
3 which will be used below may be summarized as
follows.

The potentials Vl(r) and V2(r) are assumed not to
overlap. Then it is useful to consider solutions to the
related integral equations

S+=lVy[R1„AQ—2 j,
m =1V (Ael„+N2mj&

with the de6nition

(2)

the nucleon to penetrate the barrier between V~ and
V2, and for cases of practical importance will be small
compared to one. These results from 8 will now be used
to obtain the wave function for the particular system
under consideration.

Since the barrier penetration is assumed to be small,
a first-order calculation of the tunneling suffices. In
this case only the states between which the transfer is
supposed to take place enter into consideration, and
the solutions to Eq. (1.2) are found to be

Ni„(r)=Xi„E(r,r', ~') Vl(r')ul. (r')dr', A=—
i Vl„ ill„/(X2 —Xl ). (2 1)

(1 1)

212„(r)=X2 E(r,r', ~') V2(r')u2„(r')dr',

d

N(r) =g E(r,r'; ~') LV, (r')+ V2(r') $u(r') dr', (1.2)

(5—K')K(r, r', g2) =b(r —r'), (1.3)

where the kernel satisfies

Vl(r)u(r) =Q.bl Vl(r)ul„(r),

V2(r)u(r) =p b2„V2(r)u2 (r).
(1.4)

The coefficients b&, b2 satisfy the coupled equations

and is regular for
~
r~,

~

r'~ approaching infinity. If the
eigenvalues X, X~, A.2 were alt. unity, then solutions to
Eq. (1.2) would be the desired eigenfunctions, and the
solutions to Eq. (1.1) would be the ordinary Schrodinger
eigenfunctions of the single-potential problem. As it is,
solutions to Eq. (1.2) will be obtained in terms of the
functions N~„and N2, and the corrections for ) /1 dis-
cussed in B will be shown to be negligible in the present
application. The quantities Vl(r) u(r) and V2(r) u(r)
are expanded as

The eigenvalue 1/X+ associated with I+ differs from
1/Xi„by terms of second order in the barrier penetra-
tion, while 1/X differs from 1/X2 also by terms of this
order. Accordingly, if the energy of I+ is chosen such
that 'A~ = 1, and of I such that X~ =1, the well-depth
eigenfunctions I+ and I differ from energy eigen-
functions by terms involving the square'of V& . The
quantity X2 —X&„may be related to the energy dif-
ference of the levels of the isolated nuclei using Kq.
(12) of B. There results

X2„—) 1„——(2M/j12) L(ui„,gi„)(u2, u2„))-'*(Ei—E2), (2.2)

and thus

A = (&2/2~)
)
Vi..[&i./

{(&1—&2)L (Nl-, gi-) (~2m&212-) 3'} (2 3)

With this choice of the energies of the two states, N2

in I+ and N~ in I are not identical with the energy
eigenfunctions. For the particular transfer considered
here, these differences are however small and, since they
a6ect only terms which already have small coeKcients,
they may be neglected. The adiabatic functions may be
rewritten in terms of the single-well energy eigen-
functions q ~, q2 as

bl„/X=(bl./Xl.)—P Vl. b2 /X2,

b2m/~ (b2m/~2m) g»V2m»bl»/~l»&
(1 5)

'p + 5'pl (r) A(R)'p2 (r)J

2,=X,LA (R)~,„(r)+~,.(r)]. (2.4)

with the matrix elements

V1»m= (2ll»& V1212m) &

V2m»= (02m&V2211») ~l»(Vl&&m/~2m)
(1.6)

in the usual notation. The normalization of the m's has
been taken to be

(Sl&&&VIS1&) B&»
& (Q2m& U2Q2&&) 8m&& (1.7)

These matrix elements are a measure of the ability of—

The functions of Eq. (2.4) are normalized such that

(2., V~) =O; (V.,2.)= (2», V~) =1. (2.5)

These relations, together with the similar normalization
of q» and p2, imply that E, and E& are unity in this
approximation. The wave functions given in Eq. (2.4)
are nearly the same as those which would be obtained
by taking 8 as small in Eqs. (6.5) and (6.5') of BE, the
diGerence consisting in the presence of additional cor-
rections to A resulting from the fact that E~/Z2.
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III. PROBABILITY OF TRANSFER

The adiabatic wave functions of Eq. (2.4) may now
be used to obtain the probability of transfer of a nucleon
from nucleus 1 to nucleus 2. Setting A =0 in Eq. (2.4),
it is seen that q, describes a state which for large
separation of the nuclei has the nucleon in nucleus 1,
while p& corresponds to the nucleon being asymptoti-
cally in 2. Thus it is sufFicient to calculate the transition
probability from state p, to p&.

The wave function %(t) for the system is written as

4'(t) a(t) y, (r,R) exp( iEo—t/h)

+b(t) 22b(r, R) exp( —iEbt/It), (3)

t b(+ ~)
i

2= (5/2M)2

(~le
~

Vlnm
~
/$(ulnyuln) (u2myu2m)]'*)«(3. g)

The exponential factor in the integrand has been
dropped, since according to the estimates in BE, this
changes the value of the cross section by at most 2%.

All that remains in establishing the connection be-
tween this treatment and that of the energy matrix
method is to relate the matrix element 1/~„ to the
value of P occurring if the nucleon-nucleus interaction
is described by a potential. The quantity entering is

Xl Vl„——Xl. ul *(r)Vl(r)u2„(r)dr.indicating explicitly the dependence of p and yq upon (4)
the nuclear separation R, which is in turn a function U

of time. Substitution of this wave function in the time-
dependent Schrodinger equation leads in the usual way Vsing the differential equation satisfied by ul~ (r), Eq.
to the coupled equations (4) becomes

with

da/dt+b(22. ,d pb/dt) exp(icvt) =0,

db/dt a(q. ,de—b/dt) exp( —i(ot) =0,

a) = (E. Eb)/fs = (El——E2)/k.

(3 1)
Vl —— ((6—«') ul„*(r)]u2„(r)dr, (4.1)

Bl

the integral being extended over the region E~ in which
(3.2) Vl/0. If Green's theorem is applied to this integral,

there results
The quantity (q„dq»/dt) entering here may be calcu-
lated from Eq. (2.4), since

(lt.,d Pb/dt) = (dR/dt) (P„Vlb', ). (3 3)

(Ps~V2294) = (gl —A %2, V12Agl) = V12A (3.4)

(y„dPb/dt) =dA/dt, (3.5)

with A given by Eq. (2.3). The initial conditions for a,

and b which apply in the solution of Eq. (3.1) are

a(—~)=1; b( ~)=0. —(3 6)

Since it is assumed that A remains small over all the
orbit, Eq. (3.1) may be solved subject to the assumption
that

~
a(t)

~

= 1. There results

The variation of qb with R will be due to two effects,
6rst, the dependence of A upon the barrier penetration,
and second, the variations of p~„and q2 themselves.
These latter variations are small, and will be neglected
as is done in BE.The consideration of the former gives

(42)
J„g,

since N2 satisfies the free-field equation with energy ~'

in the region E&.
If the potential I/ & is spherically symmetric, as will

be assumed, the surface integral serves to select out of
all parts of u2„(r)that part which has the same angular
dependence as ul„(r).The quantity which enters in the
transition probability is homogeneous in the wave
functions N~„,N2, normalization factors will therefore
be dropped. For the case in which a p-nucleon is trans-
ferred, the wave function ul„(r) and the p part of an
analysis of N~ in spherical harmonics about nucleus 1

are given in Eq. (1) and Eq. (1.2) of BE.The effect of
transfer from various p-sublevels is included by using
Eq. (24) of BE as the radial part of u2„.Substitution
of these wave functions in Eq. (4.2), and performing the
indicated diGerentiations, gives

Xl.Vl„„——Lail„(a)]'
X)K /(1a+ ))Ka(1/2R) expL —«(R—2a)], (4.3)

p' dA
~
b(t) (

~ exp( ildt')dt'—
~ „dt'

t

A (t')(o exp( —i(ot')dt' .

(3.7)

where Zl„(a)is the radial part of ul„evaluated at the
nuclear radius a. By virtue of the Hermitian property
of Vl„expressed in Eq. (1.6), the factor occurring in

Eq. (3.8) becomes

Finally, the use of Eq. (2.3) for A gives for the proba-
bility of transfer

~
~le Vlnm t /L(uln jul ) (u2mqu2m)]

= (1/X1X2)&LKa/(1+Ka)]'(1/E)
Xexpt —K(Z —2a)], (4.4)
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where Eq. (27.1) of BE, vis. ,

1()ty=
~
ttZt„(a)

~
/(ttt, lt ), (4.5)

has been applied. Equation (4.4) is in fact just the
expression for P given in Eq. (24.1) of BE. The same
result for the transition probability is thus obtained if
the condition of resonance between the states of the
two nuclei may be ignored. The results for cross sec-
tions and angular distributions quoted in the previous
work may therefore be carried over directly to this
treatment in the absence of resonance. If Eq. (2) were
written in terms of a transformation angle —,'tan '(2A),
the integral for the transition probability would involve
J's(tan '2A)dt, instead of J'Adt The . difference be-
tween the two results would only be less than 2/o at
10 Mev and less than 30% at 15 Mev.

It may be remarked that, by employing exact adia-
batic functions but omitting the process of linearly
combining them to improve convergence as done by
BK, a slightly incorrect answer is obtained. On the
other hand, if the inexact form listed in Eq. (2) is
employed and the linear combinations are not taken, the
energy matrix answer of BE is reproduced, the errors
of the two approximations being of a compensating
nature.
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Barium-chloride targets have been bombarded with protons accelerated by an electrostatic generator to
an energy of 7.04 Mev. Charged reaction products (alpha particles and elastically and inelastically scattered
protons) were observed at 90 and 130 degrees to the proton beam with a high-resolution magnetic analyzer.

The following ground state Q values have been measured: CP'(p, 44) S",Q= 1 863+0.008 Mev; CP'(p, a)Su,
Q=3.026~0.008 Mev. Levels were observed in S" at 2.237, 3.780, 4.287, 4.465, and 4.698 Mev; in S"at
2.127, 3.302, 3.915, 4.073, 4.114, 4.621, 4.685, and 4.876 Mev; in Cl3' at 1.221, 1.763, 2.645, 2.695, 3.006,
(3.165), 4.058, 4.113, and 4.174 Mev; in CP' at 0.838, 1.728, (3.087), and (3.105) Mev.

I. INTRODUCTION

' 'N a previous paper, ' investigations were described of
~ ~ the level schemes of the nuclei S",S", Cl", and CP'.
Barium-chloride targets were bombarded with deu-

terons, and the alpha particles and protons from the
(d,cr) and (d,p) reactions on chlorine were magnetically
analyzed.

The same technique has been applied to the charged
reaction products from the proton bombardment of
these targets. This provides the level schemes of the
nuclei S", S'4, CP', and CPr through the (p,n) and

(p,p') reactions on the chlorine isotopes CP' and CP'.
Very little was known of the CP' and the C13~ level

schemes; only three levels were known in S", while
seven levels' had been found in S".

t This work has been supported in part by the joint program of
the 0%ce of Naval Research and the U. S. Atomic Energy
Commission.*Now at Massachusetts Institute of Technology, Cambridge,
Massachusetts.

Paris, Buechner, and Endt, Phys. Rev. 100, 1317 (1955).
s P. M. Kndt and J. C. Kluyver, Revs, Modern Phys. 26, 95

(1954),

II. EXPERIMENTAL PROCEDURE

Protons were accelerated to an energy of 7.037 Mev
with the MIT—ONR electrostatic generator. ' Energies
of charged reaction products emitted from the target
at angles of 90 or 130 degrees to the proton beam were
determined with a broad-range magnetic spectrograph. 4

The preparation of BaC12 targets has been described in
the Cl+d paper. '

Four different bombardments were performed; one
on a thick target at 8=130; one on a thin target at
0=130', and two on a thin target at |)I=90' with dif-
ferent spectrograph 6eld settings so as to focus either
the high-energy (3.8 to 9.0 Mev) or the low-energy
part (2.5 to 5.8 Mev) of the secondary particles on the
nuclear emulsion serving for particle detection.

The assignment of particle groups to the responsible
isotope was made by observing the energy difference

3 Buechner, Sperduto, Browne, and Bockelman, Phys. Rev. 81,
1502 (1953).

4 Buechner, Browne, Enge, Mazari, and Buntschuh, Phys. Rev.
95, 609(A) (1954); Buechner, Mazari, and Sperduto, Phys. Rev.
101, 188 (1956).


