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For polar or electronically excited molecules the concept of intermolecular forces requires clarification.
To calculate the equation of state or equilibrium properties, it suffices to use intermolecular forces which are
averaged over the magnetic quantum numbers, but for nonequilibrium or transport properties it is necessary
toknow the intermolecular energy for each separate quantum state. There are many different representations
of intermolecular forces, depending on which degrees of freedom are treated quantum mechanically and
which classically. The whole concept of intermolecular force becomes nebulous when a large fraction of the

collisions are not adiabatic.

A semiclassical treatment is developed for describing the trajectories of nonadiabatic collisions in which
transitions occur infrequently. For grazing collisions, the colliding molecules are loosely coupled and best
represented in terms of space fixed coordinates, but when the molecules approach each other more closely
the internal degrees of freedom become tightly coupled, and then the intermolecular forces are best calcu-
lated in terms of a body fixed representation. The collisions with tight coupling are especially important for

determining the kinetic theory properties of gases.

I. INTRODUCTION

FOR atoms in their ground states colliding with
thermal velocities, the concept of intermolecular
forces is clear. Using quantum mechanics to predict the
functional form and experimental data to evaluate
constants, one can obtain expressions for the inter-
action energy of two such systems which are correct to
a high degree of accuracy.'? For polyatomic molecules
or molecules in excited electronic states, the concept of
intermolecular forces is not entirely clear. As long as
the large proportion of collisions are adiabatic in the
sense that the quantum numbers defining the state of
internal coordinates remain unchanged during a colli-
sion, the concept of intermolecular force is meaningful;
when this is no longer the case, the concept becomes
nebulous. The present paper is a discussion of the con-
ceptual difficulties of describing molecular collisions,
and our attempts to overcome them.

To characterize a molecular collision completely, one
must give the simultaneous behavior of the four groups
of coordinates which describe the translations, rotations,
vibrations, and electronic motions of the two molecules
during the encounter. The quantized nature of these
degrees of freedom varies widely, ranging from the
translational motion which is very nearly classical, to
the electronic motions which are quantized with energy
spacings which are generally much larger than k7.
Pure vibrations are usually strongly quantized, and
pure rotations are very frequently almost classical.
Twisting and bending vibrations, as well as rotations
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1 Hirschfelder, Curtiss, and Bird, Molecular Theory of Gases and
Liguids (John Wiley and Sons, Inc., New York, 1954).

2 The nonadditivity of pair potentials is being investigated
both theoretically and experimentally. A comparison between the
potentials determined from crystal structure and those determined
from the properties of a dilute gas would, for example, provide an
empirical determination of the nonadditive forces.
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of hydrogen containing diatomic molecules represent a
critical intermediate case, since they frequently have
energy spacings which are just of the order of k7.

When nonadiabatic collisions are frequent, so that
the concept of intermolecular forces is not useful, it is
always possible to treat the collision process from a
purely quantum mechanical standpoint. In this treat-
ment each collision process is characterized by a set of
differential scattering cross sections® which are a meas-
ure of the composite probability that the collision
results in a particular angular deflection and that this
is accompanied by a particular set of initial and final
quantum numbers defining the internal state of the
molecules. All of the macroscopic properties of a gas
can be expressed in terms of these differential scattering
cross sections? and thus, from a formal standpoint, a
knowledge of them would be equally as satisfactory as a
knowledge of the intermolecular forces. In point of fact,
the differential scattering cross sections are very diffi-
cult to calculate, so that to date a full set of them
has not been obtained for even a single case. Further-
more, it is difficult to develop the sort of intuitive
feeling for the cross sections which would make it
possible to estimate their behavior under a wide variety
of conditions. It is on these accounts that we shall try
to push the intermolecular force concept until we are
forced from practical considerations to abandon it.

A semiclassical treatment implies that the coordi-
nates be separated into two groups, those which are
treated classically and those which are treated quantum
mechanically. The approximate methods necessary for
such a procedure are similar to those of the Born-
Oppenheimer separation of electronic and nuclear
coordinates. One first regards the group of classical
coordinates as fixed, thus obtaining a set of clamped
energy levels which represent the motion of the quan-

3 Reference 1, p. 672.
* deBoer, Uhlenbeck, and Wang Chang, Physica (to be pub-
lished).

908



INTERMOLECULAR FORCES IN COLLISIONS

tized coordinates. It is these clamped energy levels
which give rise to the notions of intermolecular forces
between polyatomic molecules. Since a complete semi-
classical theory provides trajectories for both elastic
and inelastic collisions and assigns a relative probability
to each such trajectory, it is clear that, when this is
desirable, one can always use the semiclassical results to
evaluate the differential scattering cross sections.

There seem to be three sorts of semiclassical descrip-
tions which we might consider, each leading to a
different concept of intermolecular force:

(a) Only the electronic states are treated quantum
mechanically. In this case we obtain a set of Eyring-
type potential energy surfaces in a space of a large
number of variables. A point in this space corresponds
to a value of the energy for a particular instantaneous
configuration of all of the nuclei of the molecules partici-
pating in the collision. There are an infinite number of
these potential energy surfaces stacked as sheets one
above the other, corresponding to all of the possible
electronic states of the system thought of as a super-
molecule. The motion of all except the electronic coordi-
nates may be interpreted in terms of the motion of a
particle on one of these potential energy surfaces,
providing the coordinate axes are skewed in order that
the kinetic energy appear in diagonal form and in order
that the same effective mass be associated with each
coordinate.?

(b) Electronic and vibrational degrees of freedom are
treated quantum mechanically while translations and
rotations are treated classically. This leads to a set of
potential energy surfaces with somewhat fewer degrees
of freedom. Such a treatment has considerable merit.

(c) Only translations are treated classically, while all
other degrees of freedom are quantum mechanical.
This leads to a set of potential energy curves. Let us
examine the separation and the meaning of intermolecu-
lar force in considerable detail for this case.

First, regard the colliding molecules ¢ and & as a
single quantum mechanical system. Let r, represent all
coordinates necessary for specifying the configuration

5J. O. Hirschfelder and J. S. Dahler, Proc. Natl. Acad. Sci.
U. S. 42, 363 (1956). The kinetic energy of the nuclei in the »
direction, minus the kinetic energy of the center of gravity of the
system (neglecting the masses of the electrons relative to the
masses of the nuclei) is

(1/2M)[Z; maitait-Z; muiie; Py (a)

where m,; and x,; are the mass and x coordinate of the 7th nucleus
in molecule ¢, measured in a space-fixed coordinate system. Now
in order for the classical trajectory to correspond to the motion
of a single particle moving on a potential energy surface, it is
it is necessary to find a set of relative coordinates gx such that the
kinetic energy of Eq. (a) can be transformed into the form
$uZ1, 442, where u is some effective mass. It is easy to show that
the g can always be taken as linear combinations of x4;— 41 and
xp;—xp1. This is the generalization of the skewing of Eyring
potential energy surfaces for the case of an atom A colliding with
a molecule BC. See J. O. Hirschfelder, dissertation, Princeton
University, 1935 (unpublished), Appendix II, and Glasstone,
Laidler, and Eyring, The Theory of Rate Processes (McGraw-Hill
Book Company, Inc., New York, 1941).

Z; dmaitat+2; mpiiel—
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of molecule a relative to its mass center, and r; all
coordinates for specifying the configuration of molecule
b relative to its mass center. The location of molecule b
relative to molecule ¢ is given by R. The motion of the
center of mass of the whole system may always be
separated out, and the Schrodinger equation in the
relative coordinates may be written®

h?
[Ha(ra) +Hb(rb) _E_VR2+‘I)(rayrb;R) ]@k(f,;,rb,R)
m

= Ekt°t®k (ra,rb,R). (1)

Here H, and Hj represent the Hamiltonian operators of
the isolated molecules, ®(r,ry,R) is the potential
energy of interaction, Et°t is the total energy of the
system relative to its mass center, and u=mms/
(mqo+ms). As far as the translational degrees of freedom
are concerned, Eq. (1) corresponds to holding molecule
a fixed at the origin of the relative coordinate axes and
letting molecule b move relative to it, except that the
mass of molecule b is replaced by the reduced mass pu.
It is important to note that in Eq. (1) the orientation
of each of the internal and relative coordinate axes
remains fixed with respect to a coordinate system fixed
in space.

Exact solutions of Eq. (1) may be written in the form

®k=Zj ij(R)Ebi(ra,rb;R), (2)

where the ¢, are called “adiabatic clamped’ wave func-
tions since they are solutions of the following Schrod-
inger equation in which the relative coordinates are
held calmped or fixed

[Ha(ra)+Hb(rb)+q)(ra)rb’R)]‘l/k=Ek(R)"I/k« (3)

In the limit that the translational motion is slow com-
pared to the motion of the internal coordinates, we may
carry out a Born-Oppenheimer type separation which
is equivalent to dropping all but a single term from the
right hand side of Eq. (2). Deviations from the separa-
tion appear as the probability of transition to states
described by other terms in the series of Eq. (2). In
the absence of such transitions, the motion of the rela-
tive coordinates R is governed by the adiabatic
clamped energies obtained from solutions of Eq. (3).
That is, the E;(R) act as an intermolecular potential
and the relative translational motion of the system
may be described in terms of the frictionless motion of
a point of mass u on the potential energy surface E;(R).”

Any of these three separations of coordinates, and
the associated concept of intermolecular force, is

6 N. F. Mott and H. S. W. Massey, Tke Theory of Atomic Col-
hsums (Oxford University Press, Oxford, 1950), p
7T. Y. Wu and A. B. Bhatla, J. Chem. Phys 24 48 (1956).
Wu and Bhatia have pointed out that there is an additional
small correction to the clamped energies which appears even in
the limit of zero relative velocity, and which is due to the nuclear
kinetic energy implied by the R dependence of y;(rs,rs,R). The
term is important, however, only for very slight molecules.
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meaningful only as long as the coupling between the
coordinates is small enough so that quantum transitions
are rare. When two potential energy surfaces come close
together, from a quantum mechanical standpoint there
is a probability of the system crossing from one energy
surface to the other. Clearly a high probability of such
a crossing would make the application of the semi-
classical approach difficult. The probability of such a
crossing is greatest when the relative kinetic energy in
the particular degree of freedom is comparable to the
energy difference between the two potential surfaces.
Thus at very low velocities there are no crossings and
at very high velocities there are few crossings. As a
result, the concept of an intermolecular force might be
restricted to apply to certain ranges of velocity away
from these conditions of resonance.

From the oscillator strengths of the separated mole-
cules, one can often tell a great deal about the coupling
of the various degrees of freedom and determine what is
the logical form of representation of the intermolecular
forces. Consider, for example, the dispersion forces at
large separations. The energy of interaction of two
molecules at large separations is given in terms of the
oscillator strengths for all the quantum transitions.
Let us suppose that we are considering a collision be-
tween two diatomic molecules where there may be
electronic, vibrational, and rotational transitions.
Because of the Franck-Condon principle, there is
usually a strong coupling between the electronic and
vibrational transitions. Thus, if we tried to represent
the intermolecular forces by treating vibrations classi-
cally, we would obtain oscillator strengths which were
far too small, and the intermolecular forces calculated
would also be too small. The Eyring type of potential
energy surfaces (a) will thus not lead to satisfactory
calculations of long-range dispersion forces. As far as
short-range first order perturbation valence forces are
concerned, the Eyring type of representation might
still be useful.

In a semiclassical treatment, there will always be
separate interaction potentials corresponding to all the
possible internal quantum states, and when resonance
degeneracy exists there will be a splitting into families
of energy surfaces. For equilibrium or equation-of-state
properties, there is a strong averaging tendency and it
is frequently permissable to replace a family of energy
surfaces by a single averaged potential energy. This is
because the equilibrium properties are expressed in
terms of the partition function which is the Boltzmann
average of a point in the phase space of the system.
For small energies, the difference between a Boltzmann
average and an arithmetic average is small. Thus for
equation-of-state calculations it is often satisfactory
to use as a potential energy surface the intermolecular
potential obtained by the arithmetic average over
some of the quantum numbers which lead to splitting
of the energy surface. Such average potentials are easy
to calculate because they make use of quantum me-
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chanical sum rules. Usually the averaged potentials
correspond to forces which are of shorter range than
those for the nonaveraged potentials. Often the concept
of intermolecular force is clear from the standpoint of
the averaged potentials even where it is no longer
useful for the nonaveraged potentials because of fre-
quent transitions.

However, if the theory is to be applied to nonequi-
librium or transport properties, such averaging is not
possible. In this case it is important that the dynamics
corresponding to each potential energy surface be
treated independently. This can be seen by considering
the interaction between two dipoles. If the dipoles are
pointed in one direction the molecules repel each other,
and if pointed in the opposite direction they attract
each other. In the first case the angle of deflection in the
collision is positive, whereas in the second case it is
negative. As far as the transport properties are con-
cerned it is the cosine of the angle of deflection which
matters, so that both the attractive and repulsive
collisions would contribute in the same sense. This be-
havior is in contrast to that of the second virial coeffi-
cient, where the angle of deflection itself occurs to the
first power so that the effect of the attractive collision
would tend to counteract the effect of the repulsive
collision.8 Thus we see why the equation of state for
polar molecules is not very different from the equation
of state for nonpolar molecules, but why the viscosity,
heat conductivity, and diffusion for polar species are
very significantly different. For molecules in excited
states where resonance splittings are truly large, this
can be expected to be a large effect.

In the following sections we will consider in detail
the possibility of developing the semiclassical theory of
thermal energy collisions between polyatomic molecules
in which only the relative translational motion of the
molecules is handled classically. To preserve generality
of the treatment, we will avoid introducing any aver-
aged potential energy surfaces. From our meaning of
semiclassical, it is clear that our conclusions will not
necessarily apply to the classical-type approximations
used by some authors for obtaining limiting values of
integrals arising in purely quantum mechanical
treatments.

II. LOW-VELOCITY LIMIT
(a) Clamped Energies

Solutions of Eq. (3) give the adiabatic clamped wave
functions and the potential energy surfaces which are
8 The coefficient of viscosity »(7) and the second virial coeffi-

cient B(T) for monotonically varying intermolecular potentials
are given by the expressions

RT 8 o ©
—— = ] —
20 StV‘n' 'f; exp(—v)Y7 ‘f; (1—cos?x)bdbdyy,

B(T)=132-N7rb ﬁ * exp(—1)7t fo " xbdbd,

where x is the angle of deflection, b is the collision parameter, and
v is a reduced energy variable.



INTERMOLECULAR FORCES IN COLLISIONS

appropriate when the relative translational motion is
to be treated classically. It is interesting to consider
exact and approximate solutions of Eq. (3) in both
space-fixed and body-fixed coordinate systems. Let xyz
be a set of body-fixed coordinates oriented so that the 2
axis coincides with the line joining the mass centers, R,
and let the exact wave functions and energies in this
representation be ¢, and E;. Let successive approximate
solutions be labeled ¢ @, ¢ @, - - - and E; @, E, @, - -,
Let the primed symbols ¥;@’, ¢, @) ---¢4/ and
E,©") E,W’') -..E;’ have a corresponding significance
in a space coordinate system x'y’z’ and let 8 and « be
the polar coordinates of R in x'y’7’.

In the absence of external fields, the energy of inter-
action depends only on the relative orientation of the
molecules and not on their location in space, so that the
total Hamiltonian of the system is invariant under a
rotation of the coordinates. Thus the exact eigenvalues
of Eq. (3) can depend only on the magnitude of the
intermolecular separation R, and the potential energy
surfaces may be represented in terms of the kind of one
dimensional energy curves used to describe atomic
interactions. The energies E;(R) and E,/(R) are of
course identical. The wave functions ¢, and ¥’ are
also identical under the change of variables relating
xyz and x’y'z’.

It will usually be necessary to use approximate
methods of solution, however, and in this case the two
representations can lead to different results. Suppose
the zero-order solutions are obtained by solving Eq. (3)
for larger R, where the interaction is zero. Then the
first-order perturbation energies in the body-fixed
coordinates,

B0 = (105 ]9, ), @

depend only on R because 3C is invariant under a rota-
tion and the y;© are not explicit functions of 8 or a.
In the space-fixed representation, on the other hand,

B0 = (45294 ") (5)

may depend on B8 and a. The ¥, are a complete set,
SO we may write

V@' =3"; ari(B,a)¥s, (6)
where the a; depend on 8 and «. Thus

E, W= (3 arli| 3| 25 ar ;)
=il ar(B) 2Es(R).  (7)

Thus if the approximate solutions are to have the same
symmetry as the exact solutions, it is important that
trial functions be chosen which have the proper sym-
metry with respect to the intermolecular axis. Accord-
ing to Eq. (4), this may be accomplished by working
entirely in the body-fixed coordinate system. However,
if one wishes to use trial functions defined in the space-
fixed coordinates and first-order perturbation, then it is
necessary to use a full set of first-order functions and to
solve the resulting secular equation. Some authors
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have used only single terms in the space-fixed coordi-
nate system for their approximate wave functions, and
they have been led to thé erroneous notion that the
intermolecular forces depend on the angles 8 and «
which give the orientation of R.

(b) Sample Calculation of Clamped Energies

As an example of the sort of problems which arise and
of the approximations which may be made in order to
obtain usable clamped energy functions, consider the
problem of studying collisions between polar diatomic
molecules. For this case, we assume a pure dipole-
dipole energy of interaction between the molecules, so
as to fix our attention on the interaction between the
rotational motions of the molecules and the transla-
tional motion of the trajectory.

We may idealize the molecules as linear rigid rotators
with moments of inertia I, and I and with ideal electric
dipoles u, and w, located at the mass centers and
oriented along the molecular axis. The energy levels
E.(R) are now given by solutions of Eq. (3) where
H, and H; are the Hamiltonians of the isolated rigid
rotators, and ®(r,r;,R) is the energy of interaction
between two ideal electric dipoles,

. +R(us-R
st ¥ 3(9 ) (us )' ®
R3 RS

In the body-fixed coordinates, this takes the simple
form

Malkb
o [—2 cosf, cosfy+-sind, sinfy cos(pa—¢5)], (9)

where the angles 6., ¢, and 64, ¢, are the polar angles
giving the orientation of the dipoles y, and u,. Clearly
the operator for the component of the angular momen-
tum in the z direction,

] a
)
ildps Ops

(10)

commutes with & so that the solutions ¢, may be
chosen to be eigenfunctions of £,.

First, let us consider the nondegenerate case in which
I.7#1I,. The wave function of each isolated molecule is
simply a normalized spherical harmonic,® ¥;*(6,¢), so
that at large separations the wave function for the
system representing a collision between molecules e
and b may be written (in body-fixed coordinates)

Ui =Y (a) Y \*(d). (11)

If we take the ¥, @ as the basis for a perturbation calcu-
lation, the matrix elements of the perturbing potential,

Tr™ (@)Y (B)| 2| Vi (a) Va# (D)), (12)
9 Reference 1, p. 906.
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may conveniently be evaluated from the recursion
relations of the spherical harmonics,® and it is easily
shown that the elements are zero unless all of the
following conditions are satisfied :

U=l+1, N=A=%1,
m'=m, m*l, u'=u,pkl, (13)
m'u’' =m+p.

Clearly, all the diagonal matrix elements of the per-
turbing potential vanish, so that when the two molecules
are different species and hence possess different mo-
ments of inertia, the first-order perturbation is neces-
sarily zero.

In collisions between two identical molecules (whose
moments of inertia are equal), the first-order perturba-
tion energy is also zero except when the rotational quan-
tub numbers bear certain resonance relations. If the
molecules are identical then the spatial part of the wave
function must be either symmetric or antisymmetric
with respect to an interchange of the labels ¢ and &
Thus the single product of spherical harmonics,
Eq. (11), no longer represents a suitable unperturbed
wave function. Rather, the correct unperturbed
wave function is formed from linear combinations of
the 2(2l4+1)(2A+1) such terms corresponding to all
allowed values of m and u. Under such conditions a
nonvanishing first-order perturbation energy results
when A=I4-1 and in this case the two rotators are
said to be in resonance. If A%/24-1 the first-order per-
turbation energy vanishes just as in the case of the
two unlike rotators.

Consider the simplest resonance case, =0, A=1.
The secular determinant is then formed from matrix
elements of the six functions

NO=Y(Yi (), ¥O=Yr (@)Y ®),

LO=Y@)Y0?), ¥"O=Y )Y 0),

LO=Y (Y (), =Y (@)Y 0).
It is easily verified that the first-order perturbation

energies obtained from solutions of the secular equa-
tion are

(14)

Ey® (R) = awpaps/R?,
ar=a;=1%, (15)
and that the wave functions belonging to these energies
are
D= O YO =TV @V 00) ~TH@T ),
YO = OO = V@V O+ V(@) V),
¢3(1) =¢3(0)+¢6(0) o yoo(a) Yll(b) _I_ Yll(a) Y&)(b))
YO= O =0 =Y (@) Vi (0) - Vi () Y (D),
VO =g OO = V@V 1(B) — VDY),
Y Q=920+ O =Y () V:°(0) +V:*(a)Y(D).

10 Reference 1, p. 907.

—_2 _ i 1 —__2
a=73, AG=0a=—3, G4= "3

(16)
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For resonant interactions with higher values of I,
the solution of the secular equation may be difficult.
For approximating the energy in such cases, as well as
for calculating the first nonvanish terms arising from
nonresonant interactions, the method of ‘“unsharp
resonance” developed and applied to this problem by
London may be used. The method is essentially a
variation procedure in which a given unperturbed func-
tion ¢,©@ is replaced by a linear combination com-
posed of ¥, and the twelve (at most) ;@ with which
it forms nonvanishing matrix elements of ®. The
secular equation can be solved, and for the nonresonance
case yields energies which for large R have the form

#2ril+1) AA+1) pus
2L I, I, 6

E,®

The constants B, depend on the quantum numbers /, m,
A, and u, and can be calculated easily.’? London con-
cludes that these forces are smaller than the dispersion
forces, even for such strongly polar molecules as HCI.

For resonance cases the energies have the form, for
large R,

# Malb
E W =—T104+1)+NA+1)Jd,—)  (18)
21 R

where again the A4, are easily calculated.’? Energies
obtained from Eq. (18) will in general not be as good as
those obtained from a solution of the secular equation
because the variation function does not include the
entire degenerate set. It is to be noted, however, that
Eq. (18) will give the proper number of energies for a
given degenerate set, and that the variation functions
are eigenfunctions of £, in the body-fixed coordinates.

III. REGION OF MODERATE RELATIVE VELOCITY

The relative motion of the two molecules introduces
new terms in the Hamiltonian of the system, corre-
sponding to the kinetic energy of the relative motion
and resulting in coupling and transitions among the
clamped internal wave functions. In the equation for
the radial motion, the centrifugal potential $ug?(b/R)*
must be added to the potential energy for the clamped
molecules. Here & is the collision parameter and jug?
is the relative kinetic energy of the molecules at the
beginning of the collision. In the equations for the
angular motion of the trajectory, there are velocity-
dependent terms which correspond to torques. These
additional terms in the Hamiltonian can be treated as
perturbations which result in transitions between our
previously calculated clamped potential energy sur-
faces. We shall define the region of moderate relative
velocity as the region where such quantum mechanical

1 F. London, Z. Physik 63, 245 (1930) ; see also H. Margenau,
Revs. Modern Phys. 11, 1 (1939).

2 Explicit formulas and some tabulated values may be found in
reference 1, p. 997.
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transitions are rare enough so that they may be treated
by perturbation theory. When the quantum numbers
describing the internal motion do not change during a
collision, the entire motion lies on a single potential
energy surface and the relative motion is called an
adiabatic trajectory. When such transitions do occur,
the semiclassical theory must give both the probability
of transition and the effect of the transition on the
trajectory.

(a) Adiabatic Trajectories

In the classical mechanical solution of the two-
particle problem, the trajectory of relative motion is
characterized by the fact that both the total energy
and the total angular momentum of the system are
conserved at every point of the trajectory. In the semi-
classical formulation the energy is always a well defined
quantity, so that it is conserved along the trajectory.
If g(R) is the relative translational velocity, the con-
servation of energy becomes

Eyt=3ug (R)+ Ex(R). (19)

In general, only the magnitude and one component of
the angular momentum associated with the internal
motions are specified in the semiclassical description,
so that it is not possible to carry over the conservation
law of angular momentum directly. An interpretation
of the angular momentum consistent with the semi-
classical approximation would be the requirement
that the trajectory be characterized by conservation
of the known angular momentum, so that the quantity

L=p(RXg(R))+Mir (20)

remain constant along the trajectory.®

The characteristics of a semiclassical trajectory for
which the energy is given by Eq. (19) and the angular
momentum by Eq. (20) may be deduced from a
mechanical analog. In place of the two rotating mole-
cules moving with respect to each other, we have a
flywheel constrained to rotate about a radial axis and
bound to the origin by the intermolecular forces which
we calculated for the clamped molecules. This mechani-
cal analog is shown in Fig. 1. The flywheel 4 has a
mass u and angular momentum %M in the direction
of its axis of rotation. The flywheel slides and rotates
without friction on the massless rod B and it has a
potential energy Ej(R). The moments of inertia of the

130n the other hand, one might interpret the internal angular
momentum in the correspondence limit as a definite vector of
length %[ J (J4-1) J* which lies on a cone about the z axis such that
its component in the z direction is M . For each particular orienta-
tion on the cone, one could assign a precise angular momentum
to the internal coordinates and construct a classical trajectory
which conserved energy and angular momentum. Letting all
orientations on the cone appear with equal @ priori probability
would yield an infinite family of classical trajectories for each
solution of the clamped equation. Using such families of trajec-
tories, it would be very difficult to evaluate the differential scatter-
ing cross sections.
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Fi16. 1. A mechanical analog which illustrates the dynamics of
a collision in which the internal angular momentum is constant
relative to body-fixed coordinates.

flywheel about any axis perpendicular to B, as well
as the moment of inertia about the z axis, are vanish-
ingly small, but the initial speed of rotation about the z
axis, , is large such that the product I,y is equal to the
desired angular momentum, %M.

Subject to these restrictions, the solution of the
mechanical problem may be written

Ly=hM, (21)
pd?R/d— uR[B~+sin?8 6> ]= — 0E(R) /R,
(22)
p[2RB+R d&28/df:— R sing cosB a>]= — I ja sinB/R,
(23)
u[2 sing Ra+2R cosB af
+R sing do/dF]=T48/R.  (24)

Equation (21) indicates that the internal angular
momentum does remain constant, so that the mechani-
cal system is indeed the desired analog of the semi-
classical problem. The left-hand sides of Egs. (22),
(23), and (24) are the components of the vector quan-
tity ud’R/df? in R, 8, and « directions, and the right-
hand sides are force-like terms. The force in the radial
direction is the true force —(9/dR)[E;(R)]. In addi-
tion there is a virtual force in the 8 direction propor-
tional to (& sinB)/R, and a virtual force in the « direc-
tion proportional to B/R. Considered together, these
comprise a virtual force which is perpendicular to the
plane containing the instantaneous motion, and which
is proportional to the component of the velocity
perpendicular to R.

Thus the correct semiclassical trajectories may be
obtained as solutions of the classical equations of
motion

ud?R/df=—VE,(R)+hMRXg/R3, (25)

with the usual boundary conditions of initial relative
velocity and collision parameter.

At first sight it might seem that this virtual force
proportional to R~? is energetically inconsistent with
the fact that the true intermolecular forces will gener-
ally fall off much more rapidly. Since the deflection
due to the virtual force is always perpendicular to the
force, as in gyroscopic motion, the virtual force does
no work, and the skewing of the trajectory out of the
plane is consistent with the conservation laws.
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Fi16. 2. The probability of transition during a collision. The
broken curve is calculated from the quantum mechanical expres-
sion, Eq. (26) ; the solid curve is calculated from the approximate
expression, Eq (27), which is more suitable for a semiclassical
interpretation.

(b) Probability of Transition

The adiabatic trajectories obtained from solutions
of Eq. (25) give the relative separation R of the two
molecules as a function of time, so that the method of
time-dependent perturbations as an unperturbed set is
indicated for an investigation of the probability of
transition. Usually one takes the wave functions de-
scribing the system when R is very large. In our
formulation of the collision problem, beginning from
the Born-Oppenheimer type separation, the relative
motion of the molecules is the perturbation, and the
correct unperturbed functions are the adiabatic clamped
functions y¥; obtained as solutions of Eq. (3). Using
this basis, it may be shown' that the probability that a
system which at time ¢=—c was in the pure initial
state ¢, is found in the final state y, at time ¢, is given by

f_w Eq(t)—E;(t))

( ad o
X ‘h‘ dt"%)

It is characteristic that in this nearly adiabatic form of
time-dependent perturbation theory the matrix ele-
ments of d®/dt rather than those of the potential itself
appear in the integrand. As Bohm points out, this use
of adiabatic functions as a basis for the perturbation
allows one to consider systems in which the interaction
is large, as long as the rate of change of the interaction

Pii()=

2 (26)

14 D. Bohm, Quantum Theory (Prentice-Hall, Inc., New York,
1951), p. 496.
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is small. Unfortunately, the probability that a transi-
tion occurs between time ¢ and #+Af as given by
Eq. (26), is not satisfactory for the semiclassical theory,
as may be seen from Fig. 2 where the function P;_;(z)
is pictured for the case:

Initial quantum numbers: /=2, m=0; A=5, u=0,
'=3, m'=0; N=6, u'=0,
g=3.19X10% cm/sec,

6=4.89X10"% cm.

Final quantum numbers: /
Initial relative velocity :

Impact parameter:

These constants correspond to a typical encounter for
HCI molecules at room temperature. The calculation
was made assuming that the trajectory was a straight
line traversed at constant velocity, and that E;(R)
—E;(R) was constant and equal to (%/2I)[I(l+1)
FAN+D) =T 41)—=N(\+1)]. Although these ap-
proximations would not in general be valid if we were
seeking precise numerical results, they are adequate
for illustrating the general behavior of the function.

The probability that the transition occurs between ¢
and At is given by (d/di)[ P;-s(t)] At. Because of the
oscillating behavior of P;,;(¢), there are regions where
such a procedure would give negative probabilities
which would be difficult to interpret in a semiclassical
theory. Such oscillations are caused by diffraction
effects, and the apparent ambiguity of a negative
transition probability arises from the fact that the
semiclassical theory violates the uncertainty principle
in asking about the simultaneous values of the energy
and the time. The relatively long period and large
amplitude of the oscillations make it impossible to
construct a satisfactory curve by connecting corre-
sponding points on the curve separated by one period.
In the absence of a satisfactory derivation of the
classical analog of the transition probability, we sug-
gest that the following function may serve as a satis-
factory approximation:

t d¢ 2 dR -1
f (ll/f — llli) —| dr
o ar dar
Pisetess(f)=—— 2o AR Pisi(=). (27)
f (Eb/ - \bz) —| ar
—w ar dar

This function has the following desirable properties:

1. It is zero at {=-—o and equal to P;,s() at
¢= », in agreement with the exact quantum mechamcal
expressmn

2. It is a nondecreasing function of the time, corre-
sponding to the classical picture that if transitions are
rare, there is negligible chance of multiple or reverse
transitions, so that there should be a steadily increasing
probability of finding the system in the final state.

3. The probability that a transition occurs during the
approaching half of a symmetric trajectory is equal to
the probability that it occurs during the receding hallf,
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corresponding to the fact that as a first approximation
the quantum mechanical expression does not dis-
tinguish between d®/dt and —d®/dt.

4. The transition probability increases most rapidly
in regions where the perturbation potential is changing
most rapidly in time, consistent with the adiabatic
theorem.

5. Piss1255(f) agrees with the general form of
P;,4(?) if both are considered as functions of R, in that
both indicate that the region about the distance of
closest approach is a likely region for the transition.

The function P;z°2*5(f), applied to the special case
already calculated, is given as the dotted line in Fig. 2.

In the semiclassical approximation, then, the prob-
ability that a particular quantum transition of the
internal coordinates occurs on some element As of a
collision trajectory is given by the function

L p, (]
[P — i_}casst s
gy a7

evaluated along an adiabatic trajectory.

(28)

(c) Nonadiabatic Trajectories

If at some point R* along an adiabatic trajectory, a
transition does occur such that the wave function
describing the internal motions changes from y; to ¥y,
then the remainder of the motion is a segment of an
adiabatic trajectory on the new potential energy surface
E;(R), calculated according to Eq. (25). This trajectory
is uniquely specified by the speed and direction of
motion immediately after the transition. To be con-
sistent with the semiclassical development so far, these
boundary conditions must be determined from the con-
servation laws Egs. (19) and (20). Letting the sub-
script ¢ denote quantities before the transition and f
those after, the conservation laws may be written

Etot=13ug? (R*)+Ei(R¥) = JugA(R)+E,(R¥), (29)
=u[R*X g:(R*) ]+AM igs
=u[R*X g (R*) 1+ M igs. (30)

The energy equation may be solved immediately to
give the new relative speed

Ei(R*) — E;(R*)+3ug2 (R
(R*)— E;(R*)+3ug( )]_ 31)

10

o (R)=|

If the increase in internal energy is larger than the
initial relative kinetic energy, Eq. (31) yields an imagi-
nary value of the final relative velocity, and this is to be
regarded as a sort of ‘“selection rule” peculiar to the
semiclassical theory. Actually, the quantum mechanical
probability of transition, Egs. (26) and (27), becomes
small in such a situation, so that this semiclassical
selection rule would not be expected to rule out any
important fraction of the possible transitions.
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In the angular momentum equation we note that the
angular momentum due to the relative motion is always
perpendicular to the known component of the internal
angular momentum, so that Eq. (30) may immediately
be written as the two equations

AWM =hM; (30a)
p[R*X g,(R¥) J=u[R*X g/(R¥)]. (30b)

Equation (30a) contains the second semiclassical
selection rule, namely that the total magnetic quantum
number of the two molecule system does not change in a
transition. To understand this selection rule and its
limitations, it is instructive to review the assumptions
of our development. Proceeding from the Born-Oppen-
heimer type separation of coordinates, we have sup-
posed that the best instantaneous wave functions were
those obtained from solutions of the clamped system,
Eq. (3). This led us to a meaning of “adiabatic’” which
was defined in terms of quantum numbers referring to
the body-fixed coordinate system, so that an adiabatic
function was one for which the component of angular
momentum in the radial direction remained constant
during an encounter. This meaning of adiabatic is
illustrated by the trajectory of Fig. 3(a) where the
motion of molecule 4 is pictured relative to molecule a.
The body-fixed wave function ¥ remains unchanged
during the collision and is an eigenfunction of £,. The
vector representing the expectation value of £, is
indicated at several points of the trajectory.

Clearly, from the point of view of a space fixed coordi-
nate system this does not represent an adiabatic trajec-
tory, for the direction of the known component of the
angular momentum has changed continuously during
the encounter. To differentiate between these two
points of view, one must distinguish between “elastic

A
/) //

b

Fic. 3(a). Inter- .pr r
nal angular momentum # M - -
specified relative to -
body-fixed coordinates START OF COLLISION

throughout an en- @)

counter. (b) Internal
angular momentum
specified relative to
space-fixed coordinates [
throughout an  en-
counter. /
ag /
N
M ,%’
llbll — /
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(b)
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F16. 4. Tllustration of the two possible trajectories which conserve
angular momentum after a transition.

adiabatic” and “elastic nonadiabatic” wave functions.
From the point of view of the body fixed representation,
Fig. 3(a) depicts an elastic adiabatic trajectory; from
the space fixed point of view it is elastic nonadiabatic.

One could also formulate a semiclassical theory by
defining adiabatic functions with reference to a space
fixed coordinate system. In this case they would be
eigenfunctions of £, and the known component of the
angular momentum during an encounter would be
depicted as in Fig. 3(b). From a space-fixed point of
view we would call this an elastic adiabatic trajectory,
but from the body-fixed coordinate system, we would
call it elastic nonadiabatic.

Each of these representations is useful for particular
kinds of collisions. When the interaction between the
molecules is strong, the representation of Fig. 3(a) will
be the best. Since we are interested in applying our
results to kinetic theory problems, where collisions are
important only when the interaction is strong enough
to produce an angular deflection, we have chosen this
representation.

In a grazing collision, where the trajectory may be
approximated as a straight line, the representation of
Fig. 3(b) will be the best. This is the approximation
made by Anderson!® and by Smith, Lackner, and
Volkov'® in their calculations of the pressure broadening
of microwave spectra. The collision cross sections for
pressure broadening are generally much larger than the
kinetic theory cross sections!” so that it is just the
grazing collisions, represented by straight-line trajec-
tories, which are important. Note, however, that if one
were to attempt to use this representation for describing
collisions with small impact parameters, the interaction
energies calculated from perturbation theory might
no longer be spherically symmetric, as was shown in
Eq. (7).

Thus for collisions with large impact parameters the
intermolecular forces are best expressed in terms of

15 P, W. Anderson, Phys. Rev. 76, 647 (1949).

16 Smith, Lackner, and Volkov, J. Chem. Phys. 23, 389 (1955).

17 Gordy, Smith, and Trambarulo, Microwave Spectroscopy
(John Wiley and Sons, Inc., New York, 1953).
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space-fixed coordinates, whereas for collisions in which
the molecules come close together the body-fixed repre-
sentation is superior. This situation is reminiscent of
the two types of coupling, LS and JJ coupling, in
atomic structure. The essential difference here is that
during the course of a collision the molecules start out
in a region of loose coupling, then as they come close
together the coupling can become tight.

For grazing collisions, the second semiclassical selec-
tion rule, Eq. (30), is no longer valid, for as the coupling
decreases there is an increasing tendency for the type
of adiabatic collisions depicted in Fig. 3(b) to pre-
dominate. It is not clear whether this breakdown of the
selection rule will appear before the angle of deflection
has become so small that the collisions are no longer
important for kinetic theory purposes.

When the magnetic quantum number does not
change, Eq. (30b) may be used to construct a satis-
factory final trajectory. It is clear from Eq. (30b) that
g, must lie in the plane of R* and g;. Call this the plane
P and let n be the angle from R* to g. Then the orienta-
tion of g, relative to R* is given by the relation

2 (R¥)
g:(R*)

Clearly if #; is a solution of Eq. (32), so is #—1y. The
significance of these two solutions may be seen in
Fig. 4 where the final velocities are pictured in the
plane P. The two possible directions of g; are the two
tangents to the circle of radius R* siny;. One of these
represents an encounter in which the molecules are
approaching each other, the other an encounter in
which they are receding. By viewing the discontinuous
change in velocity at the point of transition as a series
of infinitesimal changes which gradually distort the
trajectory, it is clear that the distinction between ap-
proaching and receding paths remains distinct. Thus if
g:(R*) is an approaching trajectory, g;(R*) must also
be chosen as an approaching trajectory and similarly
for receding trajectories.

It is to be noted that if [g:(R¥)/g,(R*)] sing;>1, no
sstisfactory final trajectory exists, and this constitutes
the third semiclassical selection rule. This selection rule
can be operative only when there is a net transfer of
energy from the translational motion to the internal
degrees of freedom, so that g,(R*)>g;(R*), and then
only when the transition occurs near the distance of
closest approach.

sinn,= sin;. (32)

IV. HIGH-VELOCITY REGION

When the relative velocity of the encounter increases
to a point where internal transitions become likely, the
concept of intermolecular force and the semiclassical
description of molecular collisions as developed in this
paper are no longer useful. In this case we must rely
on a strictly quantum mechanical formulation and seek
to determine the differential scattering cross sections
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directly. There are a number of variations of the dis-
torted wave treatment which are being developed at
the present time to handle such cases. It is to be ex-
pected that at extremely high velocities the problem
again becomes tractable by semiclassical methods, as
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in the case for the stopping powers of alpha particles
passing through matter. Unfortunately high-tempera-
ture thermal collisions and collisions resulting in
chemical reactions are usually in the intermediate
velocity range which is most difficult to handle.
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A long-lived radioactive isotope of lanthanum has been produced by neutron bombardment of natural
cerium. It decays with emission of Ba x-rays and has been assigned as La¥". The K-electron capture half-
life is (64:2) X 10¢ yr calculated from the Ba K x-ray intensity and the yield of mass 137 atoms in the bom-
bardment. Approximate measurements of neutron cross sections of Ce!3 gave 6.3 barns for activation of
Ce'¥” and 0.6 barn for activation of Cel®™”, A previously unobserved 10-kev M1 transition has been dis-
covered in the decay of Ce%¥’. A decay scheme is proposed which has a g/ ground-state spin assignment for
La'¥. Electron capture to the ds/2 ground state of Ba'¥? on the basis of this assignment is second-forbidden.

I. INTRODUCTION

HUBBOCK and Perlman! estimated that the half-
life of La®” must be longer than 400 yr. Their
estimate was based on the K x-ray counting rate of a
Ce®" sample, the x-ray detection efhciency of their
counter, and the fact that they found no evidence of
radioactivity which could be attributed to a lanthanum
daughter. In some recent work on the Ce®7 isomers,
the present authors? estimated that the La®® half-life
must be longer than 108 yr if it decayed by K electron
capture. However, spin assignments consistent with the
experimental data indicated that the transition between
the La®¥” and the Ba'®" ground states should be allowed.
In the present work, La'®" has been identified and
found to decay by K electron capture. Since the half-life
was found to be very long for an allowed transition
with enough energy to permit K capture, further work
was done on the Ce®®” decay scheme in order to under-
stand the apparent anomaly. This work has led to the
discovery of a low-energy transition and to the addition
of a new energy level below the ground state in the
previous Ce®¥” decay scheme. On the basis of the spin
assigned to the new ground state, electron capture
decay of La®®” would be second-forbidden.

II. IDENTIFICATION OF La!¥?

La®" was produced by bombardment of 880 mg of
CeO; in the ORNL graphite reactor with an integrated
flux of 1.3)X10% neutrons/cm? After dissolving the
CeO; in nitric acid, a known amount of La'* tracer
was added. Most of the cerium was removed from the

17J. B. Chubbock and I. Perlman, Phys. Rev. 74, 982 (1948).
2 A. R. Brosi and B. H. Ketelle, Phys. Rev. 100, 169 (1955).

lanthanum by extraction with tributyl phosphate.
Final purification of the lanthanum fraction was accom-
plished by adsorption on a cation exchange column and
elution under conditions which gave essentially com-
plete separation of lanthanum from cerium and other
rare earths.> Measurement of the La'¥ activity in the
final sample showed that it contained 609, of the
original lanthanum.

After the La0 tracer had decayed, scintillation spec-
trometer measurements showed the presence of x-rays
with an energy of about 32 kev and the absence of
gamma rays of higher energy. The intensity of these
x-rays has remained constant for a period of more than
six months, indicating a half-life longer than twenty
years. The proportional counter pulse-height spectra in
Fig. 1 were used to identify the radiation from the long-
lived lanthanum source as barium K x-rays. These
spectra were taken with a xenon filled counter and show
the “escape’™ peaks that result from critical absorption
of x-rays in xenon with escape of Xe, Ka, or KB x-rays
from the counter.

In the upper curve of Fig. 1 taken with a Pm!*
source, which emits Nd K x-rays, both the Ka and the
KB lines are critically absorbed in xenon. In each case
either xenon Ka or K3 x-rays may escape resulting in a
pulse height spectrum with four escape peaks. The most
intense peak at 7.6 kev results from Nd Ka absorption
followed by Xe Ka escape. The peak at 8.6 kev which
results from Nd KB absorption with Xe K3 emission is
not resolved from the peak at 7.6 kev and hence only

31}7. H. Ketelle and G. E. Boyd, J. Am. Chem. Soc. 69, 2800
(1947).

4S. C. Curran, Beta and Gamma Ray Spectroscopy, edited by
K. ?iegbahn (Interscience Publishers, Inc., New York, 1955),
p- 176.



