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is slightly ionic is discussed in reference 5; thus the
degeneracy of the optical modes is partly removed. We
estimated the longitudinal optical mode to be 290'K by
using an expression due to Mott and Frohlich. ' lt has
been assumed that the optical modes do not change
with g over the small portion of the zone shown. It is the
low-energy acoustical phonons which determine the
value of q(k8) to be used in the optical selection rule.
The acoustical spectrum was determined from elastic
constants of InSb. s

In Fig. 2(b) are shown two possible valence band
structures, one with the maximum along the (1,0,0) axis

assuming 21' and 16' phonons giving q(k8)=0.05q,
the other with its maximum along the (1,1,1) axis

assuming 24' and 12' phonons giving q(k8)=0.09q„.
It is assumed that the minimum of the conduction band
is at the center of the zone (0,0,0), i.e., kr ——0; thus

r H. Frohlich and N. F. Mott, Proc. Roy. Soc. (London) A171,
496 (1936).

s R. F. Potter, Bull. Am. Phys. Soc. Ser. II, 1, 53 (1956).

lt;= tl(k8). As discussed in CML and by Parmenter' and
Dresselhaus, "other alternatives are permitted by sym-
metry considerations.

The valence band energy profiles are shown as
parabolas. If this is a valid assumption, and the maxi-
mum lies on the (1,1,1) axis, the effective mass for holes
is 1.35m, . This is not inconsistent with the value
m*&1.2m, determined from the cyclotron resonance
experiment. "

This suggested band structure is also consistent with
two other experimental facts. Fan and Gobeli" recently
rearmed in a thin sample of InSb that the optical gap
is 0.175 ev. The thermal gap at 300'K is 0.160 ev as
determined by Breckenridge et al."

s R. H. Parmenter, Phys. Rev. 100, 573 (1955).
"G.Dresselhaus, Phys. Rev. 100, 580 (1955).
"Dresselhaus, Kip, Kittel, and Wagoner, Phys. Rev. 98, 556

(1955).
"H. Y. Fan and G. W. Gobeli, Bull. Am. Phys. Soc. Ser. II, 1,

111 (March, 1955)."Breckenridge, Blunt, Hosier, Frederikse, Becker, and
Oshinsky, Phys. Rev. 96, 571 (1954).
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The number of displacements D(E) and the number of vacancies U(E) produced in a monatomic solid
as a result of collisions due to an incident ion of initial energy 8, are obtained as solutions of the equation

f(E) =f, dy&(E, y) (P(y) Lf(y o)+1 Sq(E y)—j+L& —P(E —y)q(y) jfb—)), —

where f(E) =D(E) or U(E), P(y) denotes the probability that a struck atom is displaced when it has received
energy y, q(E—y) is the probability that the striking atom replaces it if displacement has occurred, IC(E,y)
is the scattering kernel, and a. is the minimum amount of energy that is assumed to be necessary to displace
an atom (it is assumed that the struck atom loses energy n in breaking away from its lattice site). In the
equation, f(E) =0 for E&0., with tI =0 for displacements and 0=1 for vacancies.

This equation is solved for some representative cases of P(y) and q(y). The functions P(y) and q(y) can
be chosen to 6t experimental estimates of either D(E) or U(E) singly but indicate a fundamental discrepancy
of the joint estimates. The discrepancy, if not due to inaccuracy in the interpretation of experimental
results, suggests that a mathematical model based on individual collisions is inadequate.

I. INTRODUCTION

' 'N previous investigations" the authors have deter-
s ~ mined the number of displacements D(E) and the
number of vacancies U(Z) in a monatomic solid

produced as a result of collisions due to an incident
atom of initial energy K These calculations were based
on a simple mathematical model characterized by a
displacement energy e of the lattice'atoms and the

& Vq. S. Snyder and J. Neufeld, Phys. Rev. 97, 1637 (1955).
~ J. Neufeld and W. S. Snyder, Phys. Rev. 99, 1326 {1955).

energy distribution of the struck atoms was determined
by using the cross sections for collisions with free atoms.
Taking y as the energy of the struck atom after the
collision, we made the following assumptions:

(A) A disp1acement is produced whenever y) tr.
(B) A replacement is produced whenever y)& and

8—y (n.
Thus, a vacancy is produced whenever y)n and
E—y&cz. The displacement energy 0. is often taken as
about 25 ev.
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The occurrence of replacements while a collision
takes place has been suggested by Kinchin and Pease'
who also calculated the number of replacements and
displacements resulting from heavy particle bombard-
ment. The assumption (8) regarding the occurrence of
replacements is di6erent from that of Kinchin and Pease
who considered a second and smaller threshold energy
to permit replacement collisions to occur.

With the above assumptions, the number of displace-
ments and vacancies are roughly determined as follows:

D(E) E/2u.

V (E)~E/3n. (2)

V (E)~E/10rr,

and, therefore, the calculated values as given by
Kq. (2) is too large.

On the other hand, Aronin's' experiments indicate
that the number of displacements is

D(E) 2.5E/o. (4)

and, therefore, the calculated value as given by Eq.
(1) is too small to explain the disordering phenomena.
The calculations of Kinchin and Pease agree with
Aronin's results but their model does not bring the
number of vacancies into line with the results of
Harrison and Seitz.

The above values for D(E) and V(E) do not agree
with those experimentally obtained. Unfortunately
very few experiments give reliable estimates of D(E)
and V(E) and therefore it is diKcult4 to estimate the
extent of the discrepancy between the calculated
values and the actual values of D(E) and V (E).

Harrison and Seitz' using the experimental data of
Cooper, Koehler, and Marx' estimate that the number
of vacancies is

(3)

—I(s/n), where I(x) is the Heavyside unit step function
de6ned by putting I(x)=1 for x&1 and I(x)=0 for
x(1.The modified form of the function p(y) suggested
by Sampson, Hurwitz, and Clancy' replaced the abrupt
threshold energy for displacement to occur by a gradual
transition from a low-energy region where displacement
is unlikely or impossible of occurrence to a high-energy
region where displacement is certain to occur. They
argue that a struck atom having httle energy is more
likely to be deflected back and trapped in the original
lattice site than a struck atom receiving more energy.
The modified model thus suggests a second parameter
k such that if y&kn, displacement is certain to occur.
Then p(y) is defined by p(y) =0 for y(n, p(y) = 1 for
y&&rr, and p(y)=(y —rr)/()'s —o) for n(y(k, so that
the probability for displacement increases gradually
from zero to one as the energy transmitted to the
struck atom increases from a to kn. -

In the present model, we take q(s)=1—p(s). This
amounts to assuming that after the struck atom is
displaced, the striking atom with residual energy s
has the same probability of remaining at the site as
would a struck atom of energy s. This probability is
one for y(0. and decreases linearly to zero in the range
n(y&kn.

I et an atom of energy E make a first collision and
let K(E,E')dE' be the probability that it loses energy
E' in dE'. There are three possible cases:

(a) No displacement occurs, the probability for this
be'ing dE'K(E,E')[1 p(E') j. —

(b) Displacement occurs but the striking atom
replaces the displaced atom. The probability for this
to occur is dE'K(E, E')p(E') q(E E'). —

(c) Displacement occurs without replacement, the
probability for this to occur being

dE'K (E,E')p (E')L1—q(E—E')j.
II. FORMULATION OF THE PROBLEM

In an eGort to reduce the discrepancy between the
calculated values and the values obtained experi-
mentally, the model characterizing the collisions has
been modified.

I.et p(y) be the probability that the struck atom
having energy y after collision escapes from its lattice
site. Also, let q(s) be the conditional probability for the
striking atom to replace the struck atom assuming a
displacement has occurred and that the striking atom
has energy z after the collision. The assumptions (A)
and (3) amount to taking p(y) =I(y/a) and q(z) =1

3 G. H. Kinchin and R. S. Pease, J. Nuclear Energy 1, No. 3,
200 (i.955).

4 See in that connection, J. W. Glen, Advances in Phys.
(Phil. Mag. Suppl. ) 4, 381 (1955).' W. A. Harrison and F,. Seitz, Phys. Rev. 98, 1530 (1955).

'Cooper, Koehler, and Marx, Phys. Rev. 94, 496 (1954);
97, 599 (1955).' L. R. Aronin, J. Appl. Phys. 25, 344 (1954).

In case (a), no displacement occurred on the first
collision and the atom has energy E—E' after the
collision so that the expected number of displaced
atoms produced in this way is dE'K(E,E')$1 p(E')j—
XD(E E'). In case (b), a—displacement has occurred
on the first collision and a single atom of energy E'—n
is free after the collision. The expected number of
displacements resulting from this case is thus dE'
XK(E,E')p(E')q(E — 'E)t 1+ (D

'E—n)$. In case (c),
a displacement has occurred and two atoms are free
with energies of E—E' and E'—n. The expected
number of displacements in this case is thus

dE'K(E,E')p(E') [1 q(E E')j——
[S+D(E E')+D(E' ~)]. —

Since these three cases are mutually exclusive and
exhaustive, we may sum them and also sum on dE'

s Sampson, Hurtvitz, and Clancy, Phys. Rev. 99, 1657 (1955).
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TABLE I. Variation of vacancies and displacements
@faith the probability of replacement.

equations

ED'(E) =D(E a—), EV'(E) = V (E—n). (7)

1
2
3
4
5
6

10
15
20
30
40
50

a(z)
0.5 (E+a)/u
0.438(E+n)/u
0.365 (E+n) /u
0314(E+n) /u
0.276(E+a)/a
0.247 (E+a)/a
0.173(E+n)/a
0.127(E+n)/a
0.100(E+n)/u
0 0705(E.+a)/n
0.0544(E+a) /a
0.0443 (E+a)/n

V (B)

0 333.(E+n)/n
0.262 (E+a)/n
0.211(E+n)/n
0 178.(E+a)/a
0.154(E+a)/a
0.136(E+n)/a
0.0935(E+a)/a
0.0674(E+a)/n
0.0527 (E+u) /a
0 0367(.E+n)/a
0.0282 (E+u)/a
0.0229 (E+n) /n

D(E) =
) dE'K(E,E')(p(E')$1+q(E—E')

0

and thus get the integral equation for D(E):

D (&)/~(&)

1.5
1.67
1.73
1.76
1.79
1.82
1.855
1.881
1.897
1.921
1.930
1.934

An exact solution of these equations is given by
D(E)=a(E+n), V(E+a)=b(E+a) for any choice of
the constants u and b. The constants u and b were
chosen to match these solutions to the curves computed
for E&2kn. In fact, it is easy to prove that if u& and u2

are chosen so that aq(E+a) &D(E)&a2(E+n) in the
range (2k —1) n&E&2k

n, then the inequality remains
valid for E&2kn. In all cases considered, the values of
u& and u2 could be chosen to be quite close and still
verify the desired inequality so that the extension of
the solution by this linear function is sufficiently
accurate for our purpose. The formula for D(E) is
given in Column II of Table I for various values of k.
The slopes obtained for V(E) were computed in similar
fashion, and the formula for V(E) is given in Column
III of the table for the same values of k.

XD(E'—n)+(1—q(E—E'))(D(E'—n)

+D(E—E'))1+F1—P(E')1D(E—E')) (5)

IV. CONCLUSIONS

We wish to emphasize the lack of reliable experi-
mental data on D(E) and V(E). Assuming that the
experimental estimates given by Harrison and Seitz'
and by Aronin~ are correct, the ratio D(E)/V(E)
would have the value 25. On the other hand, the ratio
D(E)/V(E) obtained from Eqs. (5) and (6) and shown
in Column IV of the foregoing table is considerably
smaller, and for k varying from 1 to 50 it increases
slowly from 1.5 to 1.934. This discrepancy leads to the
conclusion that the above calculations do not agree
with the results of Harrison and Seitz and those of
Aronin. It is easily seen that values of k and n can be
chosen to 6t the results of either of the above two
experimental estimates and, in fact, in a variety of ways.

Although the experimental results are rough, it may
be doubted whether the experimental errors are entirely
responsible for the discrepancy noted. Rather, it may be
possible that a mathematical model not solely concerned
with individual and separate collisions is necessary for
a satisfactory theory.

D(E)=0 for E&n.

A similar analysis of cases yields the following
equation for V(E):

+I 1—P(E )3V(E—E )) (6)
V(E) =0 for E&n.

III. CALCULATIONS

Equations (5) and (6) are valid for any choice of
the kernel E(E,E'). The calculations discussed below
assume isotropic scattering so that E(E,E') = 1/E.
With the above choices of E(E,E'), p(E), and q(E) = 1
—p(E), the equations were solved numerically on the
Oak Ridge digital computer for the range 0.&E~2kn.
For E&2kn, the equations simplify considerably. In
fact, multiplying both members by E and diGerentiat-
ing, we obtain the very simple differential difference
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r~
V (E)= )' dE'E(E)E') (p(E') fq(E —E') V (E' n)—

0

+(1—q(E—E'))(1+V(E' —a)+ V(E—E'))j


