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Cation Distributions in Ferrosyinels. Theoretical*
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The statistical thermodynamics underlying the distribution of cations over the tetrahedral and octahedral
sites in ferrospinels is developed. The temperature dependence of the distribution law is analyzed by in-
voking the Debye approximation for the vibrational spectrum. The resultant equations permit the internal
energy terms of interest to be deduced from measurements of magnetic moment and speciic heats of various
quenched samples.

l. INTRODUCTION

'HE distribution of cations withi'n a ferrospinel
lattice is related to the functional dependence of

the thermodynamic internal energy on ionic con6gura-
tion. Study of this internal en'ergy function, theoreti-
cally and experimentally, is signi6cant for the following
reasons.

First, the parameters which are computed in the
fundamental theories of magnetic oxides are exchange
interaction energies, covalent bonding energies, and
other such contributions to the internal energy func-
tion. In order to confront such theories with experi-
mental data, one must develop the theory of the rela-
tionship between the energy function and the observed
macroscopic properties.

Second, empirical evaluation of the internal energy
for a variety of different cations in the spinel structure
would permit us to replace certain qualitative rules of
ferrite synthesis by quantitative data. ChieQy useful

among such qualitative rules are the lists of relative
preferences of various cations for octahedral or tetra-
hedral sites, as given by Verwey and Heilman, ' Gorter, '
and Greenwald, Pickart, and Grannis. '

Third, the practical. problem of understanding the
role of heat treatment and quench temperature in the
preparation of ferrites with desired magnetic char-
acteristics depends upon the thermodynamics of the
ionic distribution.

A highly simpli6ed treatment of the thermodynamics
of cation distributions in spinels has been given by
Neel4 and by Smart. ' These authors treat only the
permutational contribution to the entropy explicitly,
representing all other contributions to the free energy
in a single term of unspeci6ed temperature dependence.
The resulting equation can be used for the interpretation
of experimental data only by the arbitrary assignment

*This work was supported in part by the Once of Naval
Research.' E. J. W. Verwey and E. L. Heilman, J. Chem. Phys. 15, 175
(1947').

2 E. W. Gorter, Phillips Research Repts. 9, 295 (1954).
'Greenwald, Pickart, and Grannis, J. Chem. Phys. 22, 1597

(1954).
4 L. ¹el,Compt. rend. 230, 190 (1950).
~ J. S. Smart, Phys. Rev. 94, 847 (1954).
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of some speci6c temperature dependence to this term.
Nevertheless the Neel-Smart work has been of great
heuristic value in guiding preliminary investigations,
and it has been used in correlation of experimental data
by Pauthenet and Sochirol, ' by Sakamoto, Asahi, and
Miyahara, and by Callen, Harrison, and Kriessman.
In order to permit interpretation of the more detailed
recent experimental investigations, we attempt, in this
paper, to develop a fully explicit thermodynamic
analysis of the distribution of cations in ferrospinels.

In the second portion of this paper we introduce the
Debye model for the lattice vibrations and the Ma-
delung model for the ionic binding in order to evaluate
particular terms in the general thermodynamic formula.
Other terms remain, as yet, unevaluated. A complete
treatment in terms of adequate models presumably
awaits the insight to be gained from a series of experi-
mental investigations such as that described in the
following paper.

2. FORMAL THERMODYNAMIC SOLUTIOB

We consider the case of a mixed ferrite, of com-
position X,F„Fe204, where

g+y=i
and where X and Y denote appropriate divalent cations.
Let $ be the fraction of X ions on tetrahedral sites and
let q be the fraction of I' ions on tetrahedral sites. Then,
denoting tetrahedrally situated. ions by enclosure in
parentheses, and octahedrally situated ions by enclosure
in square brackets, a distribution may be characterized
by the formula

(Xt,I »Fer s. »)LXit t~~ tt „~vFeI+tw»$04.

%e assume throughout that the distribution of the ions
within the tetrahedral sites is completely random, and
similarly within the octahedral sites. We thereby ex-

e R. Pauthenet and L. Bochirol, J.phys. radium 12, 249 (1951).' Sakamoto, Asahi, and Miyahara, J. Phys. Soc. Japan 8, 677
(1953).

Callen, Harrison, and Kriessman, Conference on Magnetism
and Magnetic- Materials, June 14—16, 1955, Pittsburgh, Pennsyl-
vania. Published by the American Institute of Electrical Engi-
neers, October, 1955.
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the remaining three parameters B, $, and t1 are so-called
"quasi-thermodynamic parameters. "That is, the corre-
sponding, formally defined, intensive parameters cannot
take any values other than zero in equilibrium:

elude systems exhibiting such phenomena as the low
temperature ordering in magnetite' or the octahedral
site ordering in Li~Fe;04."

We assume that the ferrite is prepared by a suddeh
quench from some "soak temperature" T, at whicn
temperature it is presumed to be in equilibrium. The
ionic distribution corresponding to equilibrium at tem-
perature T is "frozen" in by the quench, and it is this
distribution which we wish to compute.

The spinel structure is a structure with a crystal-
lographic parameter and is determined by specifying
the lattice constant, a, and the "oxygen parameter, "I,
In place of I it is sometimes the practice to introduce a
parameter 8, dered as I—0.375, and this is the choice
which we shall make. The significance of the parameter
8 may be appreciated by noting that the distance from
a tetrahedral site to the four surrounding oxygen ions is
(V3/8) a(1188), and the distance from an octahedral site
to the six surrounding oxygen ions is ~a(1—88+488')1.

At the soak temperature T the system comes to
equilibrium by simultaneous adjustment of four pa-
rameters; the lattice parameter a, the oxygen parameter
b, and the two parameters $ and g which specify the
ionic distribution. The four parameters are closely
coupled, and all four must be considered in the analysis
of the ionic distribution problem.

To set up the thermodynamics of the problem, we
note that the thermodynamic extensive parameter
corresponding to the lattice constant is the volume.
We have, in fact,

(9)

(10)

(11)

Pg =—Be/M—=0,

Pt =—Be/—8/=0,

P„=—Be/—Br1=0.

As we are interested in the equilibrium values of $
and p, established in an open system, we follow the
standard recipe of introducing a "free energy" or
"thermodynamic potential, " which is the Legendre
transform of Iwith respect to the remaining parameters.
We thus define a function I*as

(12)

(13)=e—Ts+Pv+Prb.

The potential I* is a proper function of the variables T,
P, Pq (=0), $, and t1, that is, of T, P, $, and rt If we.
put P&=0 in Eq. (13), the definition of e~ becomes
similar to that of the common Gibbs function, and u*
may therefore be thought of as the Gibbs function
minimized with respect to 6.

The formal solution of the problem is now that I*
is minimum with respect to $ and t1, at constant T, P,
and Pg(=0).

Be*/B$=0,

Be*/Btl =0.

3. FORM OF THE FUNCTION u*

V= 3/Ega', (2) (14)

(15)where E is the mole number, E~ is Avogadro's number,
and the number 8 enters because there are 8 "molecules"
per unit cell.

Introducing the molar volume

v= V/E= aEza',

the molar internal energy

To proceed further than the formal solutions (14)
(3) and (15), it is necessary to ascertain at least some in-

formation about the explicit form of the potential N~.

We return to the fundamental relation in the form

e= U/E, (4) $=$(e,v,b, p, t1), (16)

and the molar entropy

we can now write the thermodynamic fundamental
relation in the form

e=e(s,v, 5,t,t1). (6)

P=Be/Bv, — — (8)

9Verwey, Haayman, and Romeijn, J. Chem. Phys. 18, j.032
(1947)."P.B. Braun, Nature 170, 1123 (1952).

Whereas s and v are conventional thermodynamic
parameters, with associated intensive parameters de-
fined by

T=Be/Bs, —
$ $0+$1. (17)

The entropy st is a function of $ and t1 only, and arises
from the fact that many diferent permutations of the
ions correspond to a given pair of values of $ and t1.

The entropy sp is analogous to the entropy of any solid
of delnite configuration: it arises essentially from the
possibility of distributing the energy over the vibra-

for which our intuition is most direct. Any information
which may be obtained concerning the form of this
equation can be translated into information relative to
e* by inverting Eq. (16) to the form (6), and then
carrying out the triple Legendre transformation in-
dicated in Eq. (12).

There are two contributions to the entropy of the
ferrite, which we denote by sp and s&.



CATION D I STRI BUTIONS IN FERROSP INELS

tional modes in many diferent ways. Thus sp is the
"normal" entropy, and s& is the "permutational" en-
tropy, which embodies the unique features of our
problem.

The permutational entropy may be computed simply
and directly. The system contains SE~ tetrahedral
sites, , of which PxXE& are occupied by X ions, o!AN&
by F ions, and (1 Px—py)—E1V& by Fe ions. The
number of permutations of these ions is]

(XEg)!
(18)

()xXX&)!(qyXX~)![(1—$x—qy) XÃ~j!
Similarly, the system contains 2/X& octahedral sites,
of which (1 $)xXE—& are occupied by X ions, (1—o!)
XyXN~ by I' ions, and (1+$x+py)XX& by Fe ions.
The number of permutations of these ions is

(2XEg)!

general case. Ke thus write

u =up+ u or+ uo+ us+ u g =up+ u y,

and Eq. (22) becomes

so = sp(u up& 0~) .

(24)

Finally, our fundamental thermodynamic relation is

s=sg+so(u —ug, O~), (26)

and
u= up+up(s —sg, O~)

u= up+up(s —sy, O~) —Ts+Pv+Po5.

(27)

where s& is given explicitly by Eq. (21).
According to the procedure previously outlined, we

must invert this equation so as to solve for I in terms of
s, and we must then perform our Legendre transforma-
tion. Inverting Eq. (26) gives

'~

[(1—$)»&~j '[(1—U)y&&&J [(1+Ix+%'P&&l Inserting Eq. (28) into Eq. (14) and carrying out the
indicated differentiation at constant T, P, Po, and g:

The number of ionic permutations of the whole system gu* gu, g(s s,) gu, & ge
is the product of these numbers, and the permutational = +T +
entropy consequently is 8$ 8$ o!$ 80~) ~o 8$

s~ ——(k/N) ln(EEg)!—(k/N)
Xln( ($xXNg) !(gyX1Vg) ![(1 $x qy) 1V—Ezj—!)
+ (k/Q) ln(2EQ~)!—(k/X) ln([(1—$)xXNg]!

X[(1—0)yA'lV'~]! [(1+0x+Uy) Ã1V~].) (20)

Invoking the Stirling approximation this becomes

s~ ———R in[/*(1 —8) &' t'o!""(1—e) &' "'"

X (1—(x—gy)" o* ""'(1+$x+gy) "+P*+""'x*y"$. (21)

or

8$88 05—T +P +Po —0, —(29)———
8$ 8) o!$

Bsq Buq Duo) 80 Bv M
T =+ —

I +P +Po—
8$ 8$ BO') sp 8$ o!$ 8$

(30)

The fact that Po is zero by Eq. (9), and the explicit
value for s~ given in Eq. (21), now permit us to write
this equation in the form

—1 o!ux Duo) o!D~ Bv
=exp|- - +

~
+P—~, (31)

lxiT aP ae) „aP aP. I'
and similarly

&(1+Px+~y)
(22)

(1—o!)(1—Px—gy)
so= so(up, O),

and

The "normal" entropy sp depends upon the spectrum
of the vibrational energy eigenvalues and upon the
amount of energy Np available for distribution among
those modes. We shall assume that the spectrum is
characterized by one or more parameters analogous to
the Debye temperature, and we denote these parameters
collectively by the symbol e. Then we have some de6-
nite functional relation of the form.

0= O(v, r, p,~). (23)

Now the energy Np Is only the vibrational energy
and is but one of a number of contributions to the total
internal energy N. Other contributions are the Madelung
energy N~, the covalent bonding energy I„ the Born
repulsive energy I&, and the magnetic exchange energy
N~. In those particular cases in which the quench tem-
peratures of interest are far above the magnetic Curie
temperature, the contribution of the magnetic exchange
energy Nz vanishes, but u& must be included in the

1 Buy Duo) 80~ o!v

+ I .+P— . (32)
AT'- Bt/ 80~) so BYE Bf/

In these equations the partial differentiations are to
be carried out at constant T, P, Po, and either $ or g.
The right-hand members of Eqs. (31) and (32) are to
be considered as functions of T, P, P, and g. Elimination
of the variables s, v, and 8 in favor of T, P, and Po (=0)
Is to be done by solution of the following three equa-
tions [obtained by substituting (27) into (7), (8) and
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(9)l:
BNT=-

-gp, $, $, g BS -v, 8, $, y

(33)

BQ, BBi BQo 80—P——
Bo s, ooo Bv-ooo 80 so Bv

(34)

BQ—Pg=—— =0=
85 ... g, „

8so 80"
+ . (35)

86 p$ o Be so IM

Our solutions (31) and (32) can be written in another
form of interest. Consider the quantity BNi/8)) r,r,p, ,&

which appears in Eq. (31). We may expand this
derivative as follows, noting that I& is a function only
of v, 8, $, andy:

Expanding the deriva, 'tive 80/8$]&,&,»,& in Eq. (31)
in precisely the same fashion, and employing Eqs.
(33)—(35), finally permits us to write Eq. (31) in the
alternative form

8$ rz, », o Bv o, s„8$ r, i', i'o, o

M BNy

+ . (36)
88 ~ o ~8) T,p, po, o 8$ p, o o

this degree of approximation the solutions (31)—(32)
and (37)—(38) become identical in form, and it is
immaterial which set of variables is held constant in
the indicated diGerentiations.

We note in passing that the derivative (Buo/80)8o,
which appears in the solutions, may be interpreted as
the work absorbed in an adiabatic quasistatic process
which alters the vibrational spectrum by a unit change
in 0.

We have now carried the solution as far as possible
without the introduction of specific models. In the
second part of this paper we introduce certain simple
models in order to evaluate the quantities appearing in
the right-hand members of our general distribution laws.

4. DEBYE SPECTRUM

Equations (37) and. (38) are quite general and, being
thermodynamic in nature, are independent of any
model. In order to apply the solutions to particular
cases one must either evaluate the partial derivatives in
the right-hand members from some independent experi-
ments, or one must compute them from specific models.
We therefore turn our attention to a simple model.

An immediate simplification of Kqs. (37) and (38)
follows if we assume that the entropy is, in particular,
a function only of the ratio eo/0", rather than a function
of both No and 0" separately as in Eq. (22).

so ——f(No/0). (39)

t

—1 (B~i- Booo 80-
= exp') I +

AT ( 8$ „,o &
80~ so 8$ „,o&)

and similarly for Eq. (32):

n(1+(*+v)
(1—q) (1—Px—qy)

t
—1 (Bni Boio

=e~,t
I +

[yRT k Bg ., o, o 80 o Bn-., o, o~

If the vibrational spectrum of the crystal is approxi-
mated by a Debye spectrum, Eq. (39) is true. This
may be shown by taking the conventional Debye equa-

(37) tion for No as a function of 2', computing so as a function
of T by integration of dso dlo/T, and e——limination of T
between the two equations. Although the algebra
cannot easily be carried out explicitly, it is a simple
matter at least to show that Kq. (39) is valid. The
only feature of the Debye model which we shall actually
employ is Eq. (39), so that our result may reasonably
be expected to be valid independently of the more

(38) detailed and precise aspects of the Debye theory.
Differentiating Kq. (39) with respect to 0~ at con-

stant so gives
Although the partial derivatives in the right-hand

members are now carried out at constant e and 8 instead
of T, P, and P~, the resultant quantities are still to be
considered as functions of T, P, $, and g. As before, the
variables s, v, and 5 are to be eliminated by solution of
Eqs. (33)—(35).

The forms of the distribution laws (31)-(32) and
(3'7)—(38) differ in the variables to be held constant
during diGerentiation and in the appearance in the
former equations of an additional term PBv/8$. A
frequent approximation adopted in solid-state theories
is to put the pressure equal to zero; few solid properties
are particularly sensitive to the magnitude of the pres-
sure in the low-pressure range. We therefore see that to

8Q~, o 0~

(40)

N0~21E.T. (41)

Thus, in Kqs. (37) and (38) the derivative may be
replaced, to a reasonable approximation, by

1 BQO 21

RT 80~ so 0~

(42)

At the high temperatures of interest to us T is generally
greater than 0'/k, and mo may be approximated suffi-

ciently accurately by its equipartition value
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(47)

DiGerentiating with respect to T

This approximation has signiacant consequences with square brackets in Eq. (43); that is, of the quantity
respect to the form of the distribution law, and with
respect to its temperature dependence. We first con-

21RTsider the form of the solution. From (37)—(38) and
(42) we have

—1 BNg 8 lnO-
=exp +21RT

ppRT BP 8$,
g (1+$x+gy)

(1—n) (1—~*—e)

Bf 8 8Qy 8 ln0~
+21R

8T p, , BT t, p8$ r, , 8$
43

8 8 lnO.
+21RT

BT ( p l9$
(48)

—1 BNi pj lnO
+21RT= exp

yRT Bn

Interchanging the order of differentiation, we may write
(44) this equation as

an

8 lnO
+21RT

8'v
7

88
(45)

and, by (34)—(35), the variables v and 8 are to be
eliminated in favor of T and P by solution of the two
equations

8 inO.
+21R

r, p

8
+21RT—

pl( r, p

Bf 8 Bgy 8'v

~$- T, p ~& - p, p, p ~T- p, p

8 lnO
+21RT (46)

8 lnO' pj lnO
(w)

M ... p, „BTJ~„

Inspection of the above set of equations indicates that a
considerable simplification has been achieved in that
only two auxiliary equations L(45) and (46)) rather
than three are necessary. This simplification arose as
follows. The right-hand members of Eqs. (37)—(38)
were functions initially of s, e, and 8, for which variables
the alternate set, T, P, and I'p (=0) were to be replaced
via the three auxiliary Eqs. (33)—(35). However, the
variable s could appear only through the derivative
&Up/80]8p. Our approximation (42) based on the Debye
spectrum, was such that Bppp/80~). p did not, in fact,
involve s. The right-hand members of (37)—(38) thereby
became functions of e and 5 only, rather than of s, e,
and b. To eliminate the two variables ~ and 8 requires
only the two auxiliary equations (45) and (46).

Bf 8 lnO-
=21R

The second derivative of f is

apf 8 - 8 lnO)
=21R——

BT p, p BT p, p 8$ T, p

and again inverting the order of differentiation,

jlf (j Q ln 0~

=21R— (52)

We now introduce Eqs. (45) and (46), with I'=0.
These equations lead to the cancellation of the first and
third terms above, leaving simply

5. TEMPERATURE DEPENDENCE OF THE
DISTRIBUTION

As mentioned previously, the Debye approximation
simplifies both the form of the distribution law, as in
Eqs. (43)—(46), and the temperature dependence. We
now consider the latter problem. For simplicity we shall
invoke the additional approximation that the pressure
vanishes. In this case the partial derivatives in Kqs.
(43)—(44) may be interpreted as being at constant T
rather than at constant e and 8, as noted at the end of
Sec. 3.

We consider the temperature dependence of the
f(T)=f(Tp)+ f'(T')dT', (53)

Now the very essence of the Debye theory depends
upon the insensitivity of the dependence of 0 on T.
Although in principle 0 may depend upon T, the usual
treatment of specific heat and many other properties
is based upon the assumption that 0~ is independent of
T. The success of such theories encourages us to
believe at least that the quantity (52) is very small.
In order to exhibit the temperature dependence of f
directly we utilize the evident identity
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which, with Eqs. (47) and (50) can be put in the form

8 lnO-
+21RTf(T)-

8$ rp, e 8$ rp, e

8 lnO~-

BP

8 inO.
i dT', (54)

BP

where

f(T) = 8 lnO
+21RT

86
+—,(55)

8$ rp, e 8$ r, „8$ rp, p

e(T $ ri' Tp)—:21R t [lnO(T )—lnO(Tp)fdT . (56)
rp

&(1+$x+gy) —1 (Bug=exp
(1—$)(1—$x—gy) xRT E 8$ rp, &

8 lnO
+21RT

86
+—

I (57)
8$ . rp, p 8$ r, p)

p(1+&x+py) —1 t BN&=exp
(1—g)(1—gx —gy) yRT E Bg rp, s

8 lne-
+21RT

Bc+-
By rpg Bg pg

(58)

In order to relate the distribution equations as
directly as possible to experimentally observable quan-
tities we note that the lattice contribution to the
specific heat, in the vicinity of Tp—0, is of the form

whence

c„&'&=const (Tp/0')', (59)

8 lnO

Bg Tp, g

S a ln~„"&

3 8'g .Tp, ]
(60)

and we thus obtain

—1

/BING'

=exp
xRT & 8$ rp, e

8 Inc. &'& Be
7RT — +——

) (61)
8$ rp, e 8$ r, p)

The quantity e is very small in accordance with our
discussion of the temperature insensitivity of 0. By
choosing the reference temperature Tp close to the
temperatures of interest, e(T, f,p; Tp) may be made
even smaller. We believe, however, that even with the
very convenient choice of Tp=0, the quantity e will be
negligibly small.

We may now rewrite Eqs. (43) and (44) as

g (1+Px+qy)
t

—1
p=exp

~

(1—z) (1—Px —
py) I yRT ( Bg rp, e

8 inc„&P& Be
7R—T +—

i
. (62)

8'g . rp, $ Bg r, ~) I

These equations are to be coupled with Eqs. (45) and
(46) with I' put equal to zero, to predict the ionic
distribution.

6. MADELUNG ENERGY

CONCLUSION

In Eqs. (61)—(62), (45)—(46) we have derived the
distribution law for the cations in a ferrospinel. The
temperature dependence of the distribution law has
been evaluated by means of the Debye approximation
for the vibrational spectrum. The only portion of the
temperature dependence which cannot be explicitly
evaluated has been isolated, in Eqs. (61)—(62), in a
small and presumably negligible quantity. The dis-
tribution law thereby is put in a form which permits
interpretation of experimental data.

The distribution law contains the nonthermal por-
tion of the thermodynamic internal energy. Although
the dominant contribution (the Madelung energy) may
be treated theoretically, the remaining terms are, as
yet, unanalyzed. The distribution law which we have
derived consequently provides a method of experi-
mental study of these contributions to the internal
energy.

~ Verwey, de Boer, and van Santen, J. Chem. Phys. 16, 1091
(1948); 18, 1032 (1950).

The distribution law as expressed in Eqs. (61)—(62)
and (45)—(46) is as explicit as it can be made without
entering into the detailed atomistic theory of the various
contributions to the energy. However, one of these
contributions, and very probably the most important
of them has been treated by Uerwey, de Boer, and
van Santen. "This contribution is the Madelung energy,
or the Coulomb interaction energy of the ionic charges.
Verwey, de Boer, and van Santen have computed
arithmetically the Madelung energy for a range of
values of 8 and of the ionic charges. Their numerical
results can be fitted by the following analytic expression:

V~ ———(Xge'ja)
X ([139.8—10.84(3—$x—py)+2. 61(3—Px—zy)']
+[1463.2—461.4 (3—$x—py)

—3.6(3—$x—gy)'jB}. (63)

The quantity (3—$x—gy) which enters this expression
has the significance of the average charge of a tetra-
hedrally situated ion, as can be checked easily if we
recall that both X and V are assumed to be doubly
charged, and Fe triply charged.

Evaluation of the other energy contributions to I&
and of the functional dependence of the specific
heat c, & & require further theoretical or experimental
investigations.


