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In this paper we clarify a number of questions connected with the Lagrangian formulation of canonical
transformations and commutator brackets. We make a distinction between “regular” and “singular”
theories, the latter having such a structure that the Euler equations cannot be solved uniquely with respect
to the accelerations. For “regular” theories we show that the introduction of the Poisson bracket by Peierls,
which is based on a variation of the Lagrangian, and the infinitesimal canonical transformations introduced
by Bergmann and Schiller lead to equivalent results. For ‘“‘singular’” theories we show first that constants
of the motion do not necessarily generate invariant transformations and that, generally speaking, the
relationship between transformations and generators is not unique in either direction. Then we show that by
restricting ourselves to invariant transformations and their generators we can define commutators between
constants of the motion unambiguously. The resulting bracket expressions vanish whenever at least one of
the commuted constants of the motion vanishes (is a secondary constraint). It turns out that these commu-
tator brackets in the Lagrangian formalism are equivalent not to Poisson brackets but to (generalized) Dirac
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brackets. A possible quantization procedure is sketched in the concluding section.

1. INTRODUCTION

T is well known that the quantum theoretical re-
formulation of classical theories frequently meets
with difficulties that arise out of ambiguities in the
proper order of noncommuting factors as well as out of
the cumbersome transformation properties of canonical
momentum components in theories that are to be
relativistically invariant or gauge invariant. A number
of authors have dealt with the possibility of circum-
venting at least some of these difficulties by basing the
quantization procedure on the Lagrangian rather than
the Hamiltonian version of a classical (i.e., nonquantum)
theory.'=* Some of these proposals apply only to linear
or quasi-linear theories or to theories in which the
velocities (i.e., the time derivatives of the configuration
variables) can be expressed as unique functions of the
canonical variables. We consider that such restrictions
are likely to exclude from consideration just those
theories in which the Hamiltonian quantization schemes
present serious difficulties. In this paper we shall develop
those aspects of classical Lagrangian theories that
appear likely to represent the points of departure for
subsequent quantization.

In what follows, we shall first prove (Sec. 2) the
equivalence of Peierls’s definition of canonical trans-
formations and their generators® and ours,* within the
realm in which the Peierls formalism applies. Next,
(Sec. 3) we shall show that in a certain sense zero gener-
ators may give rise to transformations that change the
form of the Lagrangian. Finally (Sec. 4), by restricting
ourselves to invariant transformations (i.e., transfor-
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mations that leave the form of the Lagrangian un-
changed) we shall discover commutation brackets
(“Dirac brackets” rather than Poisson brackets) that
are uniquely determined by the generators of the two
commuting infinitesimal transformations. In all that
follows we shall rely heavily on the notation and results
of our earlier paper.*

2. LAGRANGIAN THEORIES BY PEIERLS AND BY
BERGMANN AND SCHILLER

We begin with a brief resume of the two theories,
assuming, for the sake of simplicity, a finite number of
degrees of freedom. We shall also, with Peierls, consider
in this section only such Lagrangians in which the
original differential equations of motion can be solved
with respect to the accelerations. We shall call such
Lagrangians ‘“regular,” others “singular.”

Peierls’ approach involves the consideration of small
changes in the Lagrangian. If we add to a given
Lagrangian L(gx,qr,t) an infinitesimal change,

8L(q,4,t)=B(g,4,0),

then the solutions of the modified Euler-Lagrange equa-
tions will differ from the original solutions g¢x(f) by
infinitesimal functions of the time, 8¢ (#), which in turn
will bring about a corresponding change in any dy-
namical variable 4 that may be given to us as a specified
function of the coordinates ¢, the velocities ¢, and the
time #,

(2.1)

84 =0%Adq;+ 0% Adqy,

2.2
0*=09/dqr, 0%=9/d¢. (2:2)

These variations will be unique with suitable initial
conditions. Of these, Peierls considers, in particular,
variations that result if we require that for /= — o the
dqx are to vanish:

Dqi(—»)=0, DA(—»)=0, (2.3)
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and variations that vanish for i=-+ 0 :
Aqi(0)=0, TA(x)=0. (2.4)

We can now introduce the difference (DA —{dA), which
depends linearly on the choice of B(?) at all times. With
its help we define an expression Tp[A4(),B(#)], as
follows:

DA(H)—d4 (t)=—f

t/ =—o0

0

Tp(A(),B())dt. (2.5)

This definition is unique provided it is agreed that
Tp(, ) is linear in B and independent of B(#'). Then
Tp( , ) is simply the Poisson bracket.

Bergmann and Schiller consider the change brought
about in the form of a Lagrangian by an infinitesimal
transformation of the coordinates. The change in the
coordinate values of a point in configuration space,
8q1(2), is permitted to depend not only on the coordi-
nates themselves but also on the velocities ¢, provided
the Lagrangian in terms of the new coordinates is still a
function of the coordinates and their first time deriva-
tives only, i.e., independent of all higher derivatives. To
achieve this purpose it is permissible to add to the
Lagrangian an exact time derivative, Q(g,p,?). If one
introduces the “generator” C, defined as

C=0a%L3g—0, (2.6)

it is found that the possible variations of the coordinates
are connected with the generator by the conditions

3% 91 Léq;=L**6q,=0*C. 2.7

As for the Lagrangian, we must distinguish between its
change in value for a given point in configuration space
and for a given set of velocities,

SL=Q, (2.8)
and its change of form, i.e., its change as a function of
its arguments,

8'L=38L— 8 Léqr— 0% Lgs. (2.9)

The latter turns out to be

8'L=—C— L*3qy,
where

d
L"=6’°L—d—(a’°'L). (2.10)
i

For the details, see BS. Equations (2.7) and (2.10)
together establish a connection between the change in
the form of the Lagrangian and an infinitesimal coordi-
nate transformation causing the change.

Peierls produces a change in the actual trajectories by
adding a term to the Lagrangian; Bergmann and
Schiller produce a change in the form of the Lagrangian
and in the form of the trajectories through a coordinate
transformation. Formally the two approaches must be
equivalent, in that in any event the trajectories remain
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solutions of the Euler-Lagrange equations, which in
turn are determined uniquely by the given form of
Lagrangian, We shall now demonstrate this equivalence
by actual computation. Though Peierls’ change of 4,
Eq. (2.5), is determined by the additions to the
Lagrangian throughout the range of the independent
variable #, whereas in the BS approach the change is the
result of the simultaneous coordinate transformation,
the definitions of the Poisson bracket will be the same.
In the BS theory, the variable 4, given as a fixed
function of its arguments (6’4 =0), will change its value

as follows:
§4=0%A5q;+ 0% Ad¢s. (2.11)

We shall now calculate that expression on the assump-
tion that the equations of motion, L¥=0, are satisfied.
Without this assumption the concept of Poisson bracket
for two variables at different times [see Eq. (2.5)]
would be meaningless.

In order to substitute into the expression (2.11) the
value of d¢y as given by Eq. (2.7), we shall introduce, in
addition to the matrix L*[ =% 9! L, see Eq. (2.7)], its
reciprocal matrix, H>(= 0*H/dp*dp'=0:9,H), so that

8qr=H;0V"C=09C/dpt=8,C. (2.12)
In this manner we obtain the expression
- d -
04 = akAc')kC—i-a,A[d—(al'C)——L”“qu]. (2.13)
t

We shall now rewrite part of this expression in such a
form that the independent variables ¢, ¢ are replaced
by gk, p*. For this purpose, we must rewrite the first
term on the right-hand side by means of the formula

(9%A) 3= (0*4) ,+ 0% LA, (2.14)

in which the parentheses around the partial derivatives
are to be understood as in thermodynamic equations.
We obtain

64 =(0%4),0:C
d - .
+a,A[akal-LakC+d—(al-C)—aqukl]. (2.15)
t

Next we use the equality

d ac
__.(alc>=al(__)_alc, (2.16)
dt dt
as well as Eq. (2.14) for 9'C. The result is:
84 = (A;C)‘l'atA[akC(akal'L—ak-alL__Lkl)
+av(dc/dp)]. (2.17)

The first term on the right represents an ordinary
Poisson bracket; the remainder can be simplified but

5 Hi: exists because of the assumed “regularity” of the
Lagrangian.
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does not vanish. We shall substitute in the very last
term from Eq. (2.10). We have:

dt-(dC/dt)= — d[L*d:C+'L]
=— 91 (L¥)9,C— 9+ (o'L),

inasmuch as the undifferentiated L* vanish by assump-
tion. Aside from the last term, 8,C is then a joint factor,
and we may bring Eq. (2.17) into the form

54=(4,0)+01C3:4(9*9"L— 9% d'L— L+
— QU L¥)— 3,49 (5'L). (2.19)

The explicit calculation of 8" L* shows that the paren-
thesis in the second term on the right vanishes identi-
cally. We have, thus,

§4=(4,0)—3,49" (§'L)
=(4,0)—8,48'p'. (2.20)

The last term might appear disconcerting, because it is
well known that in the Hamiltonian formalism the
infinitesimal change in A (considered to be a fixed
function of the canonical variables) merely equals the
Poisson bracket. However, we have performed our
calculation on the assumption that 4 was a fixed
function of the ¢ and the ¢. It is, of course, entirely
possible to express the velocities as functions of the
momentum coordinates, or vice versa, but this algebraic
relationship changes under any transformation that
changes the form of the Lagrangian (or Hamiltonian).
The last term on the right is a “transport term’” which
precisely expresses this change in relationship.

In order to obtain a relationship similar to that of
Peierls, Eq. (2.5), we shall now endeavor to replace the
simultaneous generator C by the changes in the
Lagrangian, §’L, at all times. Assuming that at {=— o
the generator C vanishes, and furthermore that the
equations of motion are satisfied throughout (in other
words, that our path of integration is a trajectory), we
see from Eq. (2.10) that

(2.18)

t

ca)_—.—fy~

=—00

§'L(¢dr. (2.21)

If we are to substitute this integral into Eq. (6.20), we
must first agree that we shall define the Poisson bracket
of two variables at different times in such a manner that
it will continue to satisfy the principle of linear super-
position for either of its two factors, that the Poisson
bracket with a numeric (such as a function of ¢ only)
vanish, and that if either factor contains higher than
first time derivatives, these are to be substituted from
the equations of motion. The last requirement is neces-
sary to assure that the Poisson bracket of an equation of
motion vanish. We have, with these specifications,

DA()=—8:4(1)a"[6'L(1)]

- f UWOILE))dE. (2.22)
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If instead we consider a situation in which C vanishes in
the infinite future, we obtain a similar expression for
@A (t). Combining them, we find

DA (i) —AA ()= — f T AL, (2.23)

which is identical with Eq. (2.5).

For the foregoing discussion it is important that the
Lagrangian of the theory is “regular” in the sense that
the determinant of the matrix L*! be nonzero. If it is,
then the velocities are unique functions of the canonical
coordinates, and the Euler-Lagrange equations can be
solved for the accelerations. These assumptions have
been used explicitly or implicitly in the discussion of
both the Peierls and the BS theory. If the Lagrangian is
“singular,” the Peierls construction requires major
modifications: trajectories may not be determined
uniquely by initial conditions. But as a singular
Lagrangian may be rendered regular by the addition of
an arbitrarily small term, we face a situation somewhat
similar to the perturbation theory of degenerate levels
in quantum mechanics. In the BS theory, Egs. (2.7) and
(2.10) remain valid, without modification. In the follow-
ing sections we shall not assume regularity but will use
those relationships that are independent of regularity.

3. TRANSFORMATIONS GENERATED
BY CONSTRAINTS

In theories with “regular” Lagrangians there is a one-
to-one relationship between the generators and the
canonical transformations in the Hamiltonian formalism,
and the generators are unrestricted functions of the
canonical variables. Correspondingly, in the Lagrangian
formalism the generators are unrestricted functions of
the ¢x and ¢, and they determine the 8g; uniquely; the
transformations according to Eq. (2.7) determine the
generators only up to an arbitrary function of the gx. In
the canonical formalism a generator C(gs,t) produces a
transformation of the p; only; in the Lagrangian
formalism such a transformation amounts to a redefini-
tion of the momenta in terms of the velocities.

With a “singular’” Lagrangian, the relationship be-
tween generators and transformations is considerably
more involved. In particular, a vanishing generator may
generate nontrivial transformations; in the Lagrangian
formalism transformations may even be associated with
a generator that vanishes identically, i.e., not merely
modulo the equations of motion or the constraints. This
section will be devoted to the exhibition of such trans-
formations. We shall show later that the lack of a firm
relationship between generator and transformation will
be remedied if we restrict ourselves to invariant trans-
formations, i.e., transformations that leave the form of
the Lagrangian unchanged. In a ‘“regular” theory an
invariant transformation will be generated by any
constant of the motion (which is permitted to be
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explicitly time-dependent), and only constants of the
motion will generate invariant transformations. In a
“singular” theory, the generators of invariant trans-
formations will still be constants of the motion, but the
reverse no longer holds: Vanishing generators will surely
be constants of the motion, but they may be associated
with noninvariant transformations.

In what follows, we shall classify constraints in the
Hamiltonian formalism as primary and secondary con-
straints.® A primary constraint represents an algebraic
relationship in a “singular” theory satisfied by the
canonical variables as a direct result of the defining
equations of the momentum variables; secondary con-
straints will be the result of the requirement that the
primary constraints remain zero in the course of time.
They are the Poisson brackets (or possibly iterated
Poisson brackets) of the primary constraints with the
Hamiltonian. We shall also distinguish between firsi-
class and second-class constraints.” First-class constraints
have vanishing Poisson brackets with all other con-
straints (modulo the constraints), whereas second-class
constraints do not. As shown below, first-class con-
straints indicate the existence of a group of invariant
transformations that depend on arbitrary functions of
the time (of all four coordinates in the case of field
theories), whereas second-class constraints do not.

In a Lagrangian formalism, all primary constraints,
first-class or second-class, vanish identically, whereas
secondary constraints go over into combinations of
equations of motion that are free of second time deriva-
tives. As pointed out by Dirac,” higher-order constraints
may be obtained in some theories by differentiating
secondary constraints with respect to time and by
eliminating the accelerations with the help of the
equations of motion. However, in most theories nor-
mally considered, this iterated procedure leads to no new
relations.

We shall begin by considering transformations gener-
ated (by means of Poisson brackets) by arbitrary
combinations of constraints in the Hamiltonian formal-
ism. In a “singular” theory, the Lagrangian determines
the Hamiltonian only modulo an arbitrary linear combi-
nation of primary first-class constraints.® Accordingly
an invariant transformation is one that changes the
Hamiltonian at most by such a combination.

If a quantity F under an infinitesimal canonical
transformation changes its value at a given point of
phase space by the amount §F (which will depend on its
transformation law), then its change as a function of the
canonical coordinates, §"’F, will be given by the ex-
pression

§""F=§F—9*Féqi— 0, Fsp*=8F— (F,C). (3.1)

6J. L. Anderson and P. G. Bergmann, Phys. Rev. 83, 1018
(1951).

7P. A. M. Dirac, Can. J. Math. 2, 129 (1950); 3, 1 (1951).

8 P. G. Bergmann and J. H. M. Brunings, Revs. Modern Phys.
21, 480 (1949).
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The transformation law for the Hamiltonian under a
canonical transformation generated by C is that 6H
equal (dC/at); hence

aC
8" H= —+ (C,H)=p.Cr® (3.2)

is the condition for an invariant transformation, where
the symbol Cp stands for first-class primary constraints.
pa are arbitrary coefficients. It was shown previously
that if there exists a group of invariant transformations
with arbitrary functions, then these invariant trans-
formations are generated by suitable constraints.® The
converse statement is: If a theory contains first-class
primary and secondary constraints, then there exist
linear combinations generating invariant transforma-
tions. To simplify the manipulations, we shall assume
that the second-order Poisson bracket of a primary
first-class constraint with the Hamiltonian, (H,(H,Cp)),
produces no further secondary constraints; this assump-
tion is not crucial for the result. With this assumption
we have, for any Cs= (Cp,H),

(Cs%H)=x3°C g>+w3°Cp®. (3.3)

Now we examine the change in the Hamiltonian
generated by a combination of constraints:

C=7.Cp*+B.C s (3.4)
We find, in accordance with the first half of Eq. (3.2),
§"H="7.Cp+BaCs*+vdCs"
"I",Ba(KbaCSb_l'wbaCPb)
= (Yo +Ba0s*)C % (Botvs+Baks%)C 2,

if the coefficients v, and B, are free of dynamical
variables. The transformation generated by C will be
invariant if and only if

Yot BstBakye=0.

In that case, the functions p, introduced in Eq. (3.2)
come out to be

(3.5)

(3.6)

(3.7)

It should be noted that the generators (3.4) and (3.6) in
general do not form a group : Each invariant transforma-
tion changes the form of the Hamiltonian in accordance
with Egs. (3.7) and (3.2). Once the form of the Hamil-
tonian has been changed, the relationship between
primary and secondary constraints as well as the form
of the Poisson bracket of the secondary constraints
with the Hamiltonian (3.3) is modified. Accordingly, the
precise form of the conditions (3.6) depends on the
values of the coefficients p,, which are changed by each
invariant transformation. The group character can be
established only if the form of the invariant generators
is permitted to depend explicitly on the p,. The details
are of no importance for what follows and hence are
omitted.

ps= YT Baws®
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At any rate, all combinations of constraints not
obeying the conditions (3.6) will generate noninvariant
transformations, even though they are manifestly con-
stants of the motion.

We shall now derive analogous results in the
Lagrangian formalism. In configuration space, the pri-
mary constraints are identically zero and the secondary
constraints are those linear combinations of the Euler
equations that are free of second derivatives. Because of
the assumed irregularity of the theory, the matrix L% is
singular and possesses null vectors #;)(a=1---n—7, r
is the rank of L) such that L ;=0. If we multiply
the Euler equations by #(a), we see that the acceleration
terms drop out, and we are left with just the secondary
constraints Cgasy=Li(a. By introducing a set of
vectors o4 (4=1--7r), which are linearly independent
of the %) and of each other, we can construct linear
combinations of field equations that do contain accelera-
tions, L4, To study invariant transformations gener-
ated by the secondary constraints, we choose for the
generator

C=BLiniy=B°C s(a, (3.8)

and try to find solutions of Eq. (2.7) that satisfy Eq.
(2.10). It must be remembered that to any solution of
Eq. (2.7) we can add a linear combination of null
vectors of L. It is this addition of null vectors to &q;
that takes the place of the primary constraints in the
Hamiltonian formalism. Substituting Eq. (3.8) into
Eq. (2.7), we get

Liisg;=B37Cs(a). (3.9)

We can obtain the most general solution of Eq. (3.9) by
adding to a particular solution an arbitrary linear
combination of the solutions of the homogeneous equa-
tion. We shall choose that particular solution which is a
linear combination of the »,(4. The most general solu-
tion will then have the form:

Sqi=6“MaAvi(‘4)+7“%i(a)y

where the coefficients M ,4 are determined, but the y*
are arbitrary. We now substitute Egs. (3.10) and (3.8)
into (2.10) and obtain

(3.10)

BoM oa LD~y Lia ;g p
+MMMME@WMﬂ.&m

The assumption in the canonical formalism of no
tertiary constraints is equivalent to the statement that
the time derivatives of those Euler equations that are
free of accelerations are equal to a linear combination of
field equations,

OS(G)=waALi7)'i(A)+kabLiui(b)o (3.12)

We have decomposed the Euler equations into two
parts, one free of accelerations, the other containing
accelerations, by means of the (z—7) null vectors % and
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the » vectors v. Now Eq. (3.11) can be written

BM oaLiv D4y Lin; o+ BL s ica

+B8WaaLl v D4+B% L, y=0. (3. 13)

Since this equation must be satisfied identically, the
coefficients of the second time derivatives must vanish.
These derivatives appear only in the term L 4. The
coefficients of the remaining terms must also vanish.
Hence

v B8Ok, =0. (3.14)

It can now be seen that among the infinitely many solu-
tions of Eq. (3.9) only one generates an invariant
transformation.

Thereby we have demonstrated the contention ad-
vanced at the beginning of this section. In general, there
is an infinity of transformations ¢ belonging to any one
generator C. Two transformations belonging to the
same generator (‘“the same” modulo the equations of
motion) may differ from each other, both by an invariant
transformation generated by secondary constraints and
by an arbitrary (not invariant) combination of null
vectors. In the next section, we shall find that by
restricting ourselves to invariant transformations we
may nevertheless define uniquely a commutator bracket
between constants of the motion.

4. DIRAC BRACKET

We have found that in the Lagrangian formalism and
in the presence of a “‘singular” Lagrangian, the relation-
ship between infinitesimal transformations and gener-
ators is so tenuous that neither determines the other
uniquely. Moreover, the generating functions them-
selves are not completely arbitrary functions of the ¢
and ¢ but are restricted by the requirement implied by
Eq. (2.7):

6k'Cuk(a)=0, (41)

where the %, are the null vectors of L*%. It is, there-
fore, not at all obvious that the commutators between
infinitesimal canonical transformations should give rise
to a commutator algebra among the generating dy-
namical variables that will provide a promising point of
departure for the construction of commutation relations
of quantum-theoretical observables. In this section we
shall find that there exists a transformation group with
the desired properties and that the resulting commutator
brackets are equivalent to the generalized Dirac
brackets.”

We shall begin with the canonical transformations in
configuration space.* Let us consider two infinitesimal
transformations 81 and 8¢, generated by the gener-
ators C; and Cs, respectively, and their commutator.
Immediately we are confronted by the following diffi-
culty: Eq. (2.7), which relates the generator and the
transformation quantities, depends explicitly on the
form of the Lagrangian or, at any rate, on the matrix

®P, G. Bergmann and I. Goldberg, Phys. Rev. 98, 531 (1955).
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L*! which comprises the second derivatives of the
Lagrangian with respect to the velocities. Inasmuch as
the first of the two transformations will in general
change the form of the Lagrangian and, by implication,
the form of L*!, we should have to make a decision as to
whether in attempting to fix the “identity” of a given
transformation we wish to consider the generator C or
the transformation quantities ¢ as fixed functions of
their arguments g, ¢z If we fix the generators, the
following difficulty arises: In the case of a “singular”
Lagrangian, the generators must satisfy Eq. (4.1). Thus
if L*! and with it the %4, change form after the first
transformation, the second generator may no longer
satisfy (4.1). If, instead, we propose to fix the &gy as
functions of their arguments, we may violate the
integrability conditions implied by (2.7):

Al (L¥mbq,,) — d* (LImbq,,) =0. (4.2)

We conclude that it is impossible to define a group either
on the basis of fixed (but arbitrary) transformation
quantities §g; or on the basis of fixed (arbitrary)
generators C(qx,¢x,t). We can construct a group if we
allow both the generators and the transformation
quantities to depend explicitly on the form of the
Lagrangian; the generator of the commutator trans-
formation may then be found as follows:
The commutator transformation may be written as

8qi= 82(81q%) — 81(82qx), (4.3)
where

82(8191) = 0% (8:19%)82g1+ 9% (1g) 8241485 (51q4),

where 82’ (8,q:) is the change in 8;gx due to its depend-
ence on the form of the Lagrangian. We must now find
the generator C which corresponds to the transformation
(4.3) according to Eq. (2.7). We see that we must
calculate expressions of the form

LkZSQ(SIQZ) = 52(akC1)_ 52L“51Qz,

(4.4)

(4.5)

where we have made use of (2.7). The first term on the
right-hand side of (4.5) may be written as

32(0%C1) =% (8,C1)— 0'C19*" (5291)
-‘al'clak'(ézq'z), (46)

where

52C1=6lC]qul+al'C152ql+5zlcl. (47)

The term §,'C; arises because of the explicit dependence
of C; on the form of the Lagrangian. Similarly, the
second term on the right-hand side of (4.5) may be
rewritten by using

E?th=ak‘(,§2pl)—amal'La"'(52Qm) _
— Limgk- (62Qm)7

where p? is short for V'L and 8,p! is given by
521,1: amaL.ngqm_i_lequ'm_l_az. (52’L).

(4.8)

(4.9)

We eliminate d'C; from the second term on the right-
hand side of (4.6) by using the following equation,
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obtained by differentiating Eq. (2.10):
3% (8'L)= (8%d L—3'3* L)dq;
—d*C— L*¥§¢,— LW* (8q;). (4.10)

In this manner, after antisymmetrizing (4.5) with
respect to 1 and 2, we finally obtain for the commutator
the expression

L¥16q,= 3% (8,C1— 6:Ca— §2p'81q:+ 51p'82q1)
+Lm(al'81qmak'52qz—61'82qm6k'(§1ql). (411)

We thus see that, modulo the equations of motion, the
generator of the commutator is

C= 52C1— 51C2-52P151Qz+51p’5291. (4.12)

This transformation group is much larger than the
usual group of generators in the Hamiltonian formalism,
because of the great freedom in the choice of the
dependence of the generators on the form of the
Lagrangian. A similar and equally large transformation
group may be constructed in the Hamiltonian formalism
if we permit the generators to be functions of the
canonical variables and also to depend in some manner
on the form of the Hamiltonian. In phase space, of
course, there is no need for these more general trans-
formations, since the canonical transformation equa-
tions do not involve the Hamiltonian; whereas in the
Lagrangian formalism these transformations arise natu-
rally owing to the form of the transformation Eq.
2.7).

We note from Egs. (4.7) and (4.12) that the generator
of the commutator transformation contains the ex-
pressions 8,'Cs and 8,'C; explicitly. The implied depend-
ence of the generators on the form of the Lagrangian is
almost arbitrary, restricted only, in the case of “singu-
lar” Lagrangians, by Eq. (4.1). Since this group which
we have constructed has very little structural similarity
with the group of canonical (or Dirac bracket) trans-
formations usually introduced in phase space, its Lie
algebra can hardly be considered a suitable starting
point for quantization.

However, this large group contains a subgroup that
has the right size. We need not consider the dependence
of the generators on the explicit form of the Lagrangian
if we restrict ourselves to transformations that leave the
form of the Lagrangian unchanged, i.e., to invariant
transformations. In this case the generators may be
considered as fixed functions of the ¢, ¢, and £, and the
resulting infinitesimal transformations will still form a
group. We may then define commutator brackets be-
tween the constants of motion that occur as generators
within this group. For “regular” Lagrangians, to any
dynamical variable, including the ¢ and the ¢, one can
find a constant of the motion that assumes the value of
that dynamical variable at some fixed time f. For
“singular” Lagrangians, the same holds at least for all
those dynamical variables which possess a meaning that
is invariant under the “‘gauge” transformations of the
theory (e.g., the gauge transformations in electro-
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magnetic theory or the coordinate transformations in
general relativity).

The commutator in the invariant subgroup is con-
structed in the same way as in the large group, and again
the generator is given by (4.12), where now, however,
the quantities §;Cy, §:C1, 82p*, and &;p* do not depend
on the form of the Lagrangian. That is, instead of the
set of Egs. (4.7), (4.9), and (4.12), we have

C= 5201—'51C2'— Szpkglqk‘l- Slpkgzqk, (4133.)
where
52C1= 6’C152ql+6"015241 (413'3)
and
Sopl=0m3" LEsqm~+ L'™52Gm. (4.13¢)

Let us introduce the notation {C,Cs} for the commu-
tator (4.13).

For the bracket (4.13) to be useful, it must be a
unique function of the two commuting generators C;
and C,. This property is not trivial but must be demon-
strated, because the generators do not determine the
infinitesimal transformations uniquely. In particular we
must be able to show that the bracket of two generators
is not changed if we add to one of them an expression
that vanishes modulo the equations of motion, e.g., a
secondary constraint. Our method of proof is based on
the fact that the bracket (4.13) is not only a commu-
tator but also represents the transformation law for the
dynamical variable C; under any transformation gener-
ated by Cs. In other words, though in general more than
one transformation is connected with the same generator
C,, the transformation law for C; (assumed to be the
generator of invariant transformations, though not
necessarily only of invariant transformations) is the
same under all the invariant transformations generated
by C.. Once we have proven this assertion, the unique-
ness of the bracket (4.13) follows as a matter of course.

Let us consider a Lagrangian, L(g;,¢;), and let us
assume that there are p constraints. We shall label the
constants of the motion C, but use italic subscripts (Cq)
to denote constraints. We denote by §C, the change
produced in C, by the transformation generated by Cy.

We first form 6,C,:

B\Cy=9iC,80g+87°Codrd;
= 91C,5rg;+ Li*8,q1b0ds.
The last term has been rewritten with the aid of Eq.
(2.7). Using Eq. (4.10) for L%8)g;, we obtain
C,=8iC,d\gj— d7C8,q;
+879% L(8rq1b,qi— 8,q100g5) = {C,,C2}, (4.15)

the bracket defined by Eq. (4.13). This relationship
holds only modulo the equations of motion since Eq.
(4.10) is only valid under this restriction. However, this
remark does not render Eq. (4.15) useless; the commu-
tator (4.13) itself is defined only modulo the equations
of motion.

Equations (4.14) and (4.15) prove that the bracket
(4.13) represents the transformation law of the gener-
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ator of invariant transformations. We now consider the
manner in which the constraints are affected by trans-
formations generated by constants of the motion.
Constraints occur in a theory by virtue of the form of
the Lagrangian, the primary constraints due to its
dependence on the ¢;, and the secondary constraints as a
consequence of the equations of motion. Therefore,
since the transformations affect neither the dependence
of L on the ¢; nor the form of the equations of motion,
they do not change the form of the constraints.
Then:
8,Ca=0,

{Co,C,}=0. (416)

The second of these expressions holds modulo the field
equations, and demonstrates that the transformations
generated by the constraints form an invariant subgroup.
Thus we find that the commutators (4.13) possess all
the properties of the generalized Dirac brackets,”® and
we may use them to define commutators for the true
observables of a quantum theory.

5. CONCLUSION

According to our results, the Lagrangian formalism
of a theory based on a Hamiltonian principle contains
within itself the possibility for constructing a commu-
tator algebra that is equivalent to the one usually based
on the Hamiltonian formalism. True, we must restrict
ourselves to invariant transformations and, by implica-
tion, to the commutators between constants of the
motion. However, this restriction is implicit also in
¢onventional theories considering commutators between
observables at different times.

Wherever a theory will permit the construction of a
Hamiltonian formalism, Lagrangian quantization ap-
pears to offer no possibilities that are not also open
within the Hamiltonian quantization. It is conceivable,
though, that Lagrangian quantization offers an ap-
proach to some types of theories, such as nonlocal
theories, for which a Hamiltonian formulation is not
known or appears artificial.

As for quantization itself, the Lagrangian formulation
of commutators also appears to offer a new possibility.
In the past, the action principle seemed to embody a
dynamical law primarily through the variational princi-
ple; the transfer of the variational principle to a g-
number action is, however, beset with serious difficulties,
which in our opinion have not yet been fully resolved.
Through the consideration of invariant transformations,
on the other hand, we may construct a complete set of
constants of the motion; such a set is equivalent to the
differential equations of motion. It appears not un-
reasonable that the formulation of the dynamical laws
through a complete set of constants of the motion is
more nearly germane to quantum theory than the
formulation through the Euler-Lagrange equations. We
propose to follow up this conjecture in subsequent
papers.



