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First-Order Vacuum Polarizability from the Principle of Causality
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A driving current induces in the vacuum a response current, but the response must not precede its cause,
This application of the principle of causality enables one to derive the Pauli-Rose result for first-
order vacuum polarization from the most elementary calculation in quantum electrodynamics: the
absorption of a single photon (with —k k &4k~~) by a negative-energy electron. This calculation is also
given.

j„(x)= ) j,(k)e'"d4k

induces in the vacuum a driven charge-current,

jp, induced(x) =
~

jp, induced(k)8 *d k (2)

Invariance arguments connect the two quantities by a
potarisati ops coegciep4t (Fig. 2),

jp, induced(k)/jp, driving(k) = —h(k ) = —hi —ihs,
(3)

h( —k) =h*(k),

that can depend only on the quantity k'=k k = —0'.
Of interest for the Lamb shift is the inductive part, h1,
of this response coefFicient, which can be read from the
results of Pauli and Rose, ' obtained by subtraction
methods.

One can avoid direct use of subtraction theory to
find h1 if one will calculate the absorptive part, h2, and

apply the principle of causality, '

2 i' vhs(v)dv
hi(Q„) =—(1+Q„') lim

o;-o+ ~ s (v'+1) [vs—(Q„+iQ;)']

+hp. (4)

Here the constant ho is fixed by the renormalization
requirement, hi(Q„)=0 for Q„=o. The causality re-
quirement states that the vacuum should not respond
before the driving current starts.

The absorptive part of the polarization comes out of
an extremely simple calculation, remarkable both be

INTRODUCTION AND SUMMARY

N appreciable part of the Lamb-Retherford shift

~

~

~

arises from the polarization of the vacuum
(Fig. 1) by the nuclear charge. The first-order part of
the polarization can be expressed in the following terms:
a drivimg charge-current,

cause it encounters the radiative perturbation at the
most elementary possible level, and because the direct
calculation seems not to have been made before. The
process amounts to absorption of a single photon by a
negative energy electron —but a photon that does not
satisfy the relation k'= 0. In physical terms, one
envisages two uniform distributions of charge of the
same magnitude and opposite sign, one at rest, the
other oscillating back and forth in the 2 direction with
the same phase everywhere in space, and with a fre-
quency cQ. The charge is zero. The current Qows in a
single direction, is independent of position, but depends
upon time. Under the influence of this oscillatory
current, electrons make transitions from negative to
positive energy states at an easily calculable rate. The
absorption gives rise to an energy dissipation described

by the coeKcient
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hs ——(e'/2hc)SC '(C' —-', S')

where C=cosho=Q/2k, S=sinh8, and k = ppsc/h

From this result and the dispersion formula there
follows immediately the Pauli-Rose result for the
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' W. Pauli and M. E. Rose, Phys. Rev. 49, 462 (1936).' J. S. Toll, thesis, Princeton, 1952 (unpublished). We write

0=0„+iQ;.

FIG. 1. Cases of vacuum polarization which have been analyzed
so far with any completeness, except for vacuum polarization in a
strong Coulomb field, for which see E. Wichmann and N. M.
Kroll, Phys. Rev. 96, 232 (1954).Third-order effects: R. Karplus
and M. Neuman, Phys. Rev. 80, 380 (1950). Low-frequency,
strong field: W. Heisenberg and H. Euler, Z. Physik 98, 714 i1936l.
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Switching to the preferred Lorentz frame, and
recalling that the current

j (x)=J ei™+comp.conj.

has zero divergence,

Bj/Bx=0, or Jk=0
we conclude that the driving disturbance is a pure
current, J4=0, which can be taken to oscillate in the
s direction:

j„=0,

W.2
w3

except for

j3——2J3 cosk4x4.
(10)

FIG. 2. Polarization of the vacuum as a function of frequency.
Inductive part of the polarization coefficient, h1,. absorptive part,
h&. The dimensionless variable y has the value 1 at the threshold
for the production of real pairs and more generally has the value

y = (k42 —krz —k22 —k32) /4k~2 = —k k"/4k~2 = —kz/4k~2 =02/4k~2.

Here the driving current is proportional to exp(tk x ), and
k =irrc/A.

inductive response,

~e' ~ 5 t'4q 1t' 4y&tr 2q
I

—-I 1+—
I I

1——
I

(2r2tte) 9 ( 3x2J 3 g x2) ( x2)

(1+4/x') '+1X», (6)
(1+4/x') 2—1

where x'=k'/k ', with its well-known consequences
for the Lamb shift.

DETAlLS

A single photon cannot produce a pair, according to
the laws of conservation of momentum and energy.
Hence it is easy to see why this simplest of all radiative
absorption processes receives no attention. However,
the situation is diferent when a free electromagnetic
wave is replaced by a forced electromagnetic distur-
bance of the form (1). Then the quantum energy and
quantum momentum associated with the wave will

suffice to raise an electron from a negative energy state
to a positive energy state, provided that the condition
is satisfied,

(k32 —k12—k22 —k3'= —k.k )
= —k') 4k ' (=4m'c'/k') (7)

Such a wave appears simplest in a frame of reference
moving with the velocity v=c(kr, ks, k3)/k'. There the
strength of the wave depends not at all upon position,
and oscillates in time with the frequency cQ= c(—k k )'*.

There the electron is seen to jump from a negative
energy state to a positive energy state without change
of momentum; or the two components of the pair divide
the available energy equally. Only the direction of the
line of separation of negaton and positon and their
polarizations remain free.

The vector potential —in Lorentz gauge —satisfies the
wave equation

r)2A p/BX BX.= —42rj„/C,

with the solution

A p= (42rJp/Cks)e"z+C. C.

for the driving potential. This potential produces the
perturbation

—eA = —(42re J/ek2) e'"*+cc. (12)

in the Lagrangian of the electron. Here V is an abbrevi-
ation for the "Feynman slash" spin matrix V p
associated with any four-vector U„.

The driven electron starts in the initial state

(xI2)= (k /Ib'I)&ube" . (13)

Here b4 is negative and close to ——,'k4. The electron
ends in the final state

(xI f)= (k /rb')tu. e' * (14)

where a4 is positive and close to —',k4. Here both state
functions are normalized to one electron per unit
volume. The spinors I and N~ have the normalization

Q,*u.= rb'/k; u, tu, = 1;
Qb Qb= Ib I/krrr; Qbtub= —1;

depolarization Qu = (kra sk)/2km.

(15)

&(x2I t2r tlI x1)=—(«/&e)J"(x2I t2j t3I x3)

xA(x )d'x (x, It, ; t Ix). (16)

Here the Pauli conjugate of a spinor s has been desig-
nated as st= s*iy4.

j:n the absence of the perturbation, the state function
at a new time would be given in terms of the initial
state function at the original time by the integral
J (x2

I
t2 tl

I
xt)d xl(xl

I
i), where

I
t2, t,

I
is the normal

free-electron propagator. The perturbation changes this
propagator to first order by the amount
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As a consequence there is a certain probability ampli-
tude, p, for the transition from the initial state to the
final state:

4 f'=b(fl t2; tlli)

(fl x2)d'x25(x2I t2, tl
I
xl)d'xl(xiii) . (17)

Direct integration gives the result

qr; ———(ie/Ac')k (a') *(lb'I) (44r/k')(2m)'

x (u. tJul, )bl, (a' b') —bz, (a4+
I
b4I k'). —(18)

The integration was allowed to run over the limited
region Dx'= L', , hx'=L' where the perturbation is
considered to act. Consequently the functions 6L, are
not the accurate Dirac 8 functions. They satisfy the
usual normalization requirement,

between specified states by the number of positive
energy states (normalized as in (15) to one electron
per unit volume),

da'da'da'/(24r)'=
I
a

I

a4da4dQ. /(24r)', (24)

and by a similar expression for the number of negative
energy states and integrate. The integration over b'

gives nothing except when b' is close to u'; similarly
for the other space components of the wave vector b.
Thus the three space b functions in (22) integrate at
once. In addition, equality of the momenta of u and 5
implies the energy equality

I
b'I =a'. Hence the fourth

6 function becomes

b (2a4—k4) = —',b[a4——',k4].

We obtain for the total transition rate the result,

(number of pairs per cm' sec)

bl, (a' —b')da'= 1 (19)
= (4~/&"') (I a /a') (k')-' L(a')'(J. J*)

—(J a)(J* a)]dn.
but they have finite spreads, so that they satisfy also
conditions of the form = (7r/Ac) (e'/Ac) (J J*/ck~')SC '(C' —S'/3).

2 (al bl) dal —I1/2~ (20)
Each act of pair creation extracts from the driving

field the energy k4kc = 2a4kc = 2kck C. The rate of
dissipation of energy to the vacuum is therefore

conditions which may be written symbolically in the
form

(ergs lost per cm' sec)

bl,'(a' b') "=—" (L'/24r)bl, (a' —b'). (21) =24r(e'/Ac) (J J%k„)SC—4(C' —-'S') (25)

The probability for creation of a pair per unit of
interaction volume and per unit of interaction time in
the specified state is therefore

I ~ 'I'/(I-'L'L'L'/c)

= (e'/h'c') (k '/a4
I
b4

I ) (44r/k')'(24r) 4 (u.~ Jul ui, tJ*u.)

a quantity that we have now to express in terms of the
dissipative part of the vacuum polarization coefficient,
hg.

The driving field has the value

Ed„„;„,———BA/Bx4 = ( 47ri J/—ck4) e"*+cc (26.).
The time average rate of dissipation of energy is

Xb, (a' —b')" b. (a4+lb4I —k4) (2 ) (ergs lost per cm~ sec)

We sum over spin polarizations of the initial and final
electron states, encountering the quantity

Tr( Q u,u. tJ Q ui,ui, tJ*)
pol, a pol, b

= (1/4k ') Tr(k —ia y+ia4y4)(J y)

X (k —ia y —ia4y4) (J* y)

= (2/k-')[(a')'(J J*)—(J a)(J*.a)]. (23)

Let 0 denote the angle between the direction of the
driving current and the direction of emission of the
negative electron. Then the emission probability plainly
varies as 1—(v'/c') cos'8, being greatest at right angles
to the current.

We multiply the probability (22) of transition

= (Edriving3 induced)

=([( 4~i J/ck4)e" —+c c ][ hJe'"*+.c .c.]—) (27).
=(8~J J%k4)h, .

Comparing (27) and (25), we find for the dissipation
coefticient the expression of Eq. (5). It is difficult to
imagine a more elementary instance of the absorptive
properties of the vacuum.

In passing from the dissipation coefFicient, h2, to the
induction cori.cient, h~, the essential point is the
demand that the complex function hl+ih2 have no
poles when extended into the upper half of the complex
k4 or 0 plane. ' The reason for the demand may be
recalled. (a) A driving current (1) that is zero before
x'=0 is described by a Fourier transform jr, (k4) that
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has no poles in the upper half of the complex plane:
then the path of integration in (1) is deformable —for
negative x'—to a line arbitrarily far above the real axis,
where the integrand is arbitrarily small. (b) The integral
(2) for the induced current will likewise vanish if the
complex coeKcient h(k') likewise has no poles in the
upper half-plane. As a consequence of demanding this
property for h, we know that the value of h at a point
k4 just above the real axis is given by the Cauchy
integral,

an integral which leads directly to the Pauli-Rose
formula (6).

At low frequencies, (29) and (6) reduce to the well-
known Uehling' value,

hi ——(e'/15m-hc) (0'/k~') = —(e'/15'-hc) (k'/k ') (30)

In consequence, as will be recalled, a point charge,

jdciuinu'(x)/c = Zeb (x')8 (x') 5 (x')

h(k4) = (1/2') "h(x4) (x4—k4)
—'dx4, (28)

= (Ze /8~') exp(ikx) d'k, (31)

where the path of integration is a closed loop that goes
around the point k4 in the positive sense and remains
above the real axis. Thinking of the upper part of the
loop as a semicircle, we want to expand this semicircle
to an infinite radius and want then to have a zero
contribution from this region of the complex plane that
has no physical interest. But h does not fall off fast
enough to allow the contribution on that semicircle to
be neglected. Consequently we replace h in the discus-
sion by h/[1+ (k')'). Of course the "1"in this formula
could be replaced by any dimensionally correct number,
but this detail is irrelevant, for the value of the constant
will drop out in the end. Having made this change in
(28), we take the real part on both sides of the equation,
with the result (4). The arbitrary constant comes from
the value of the complex function h at the pole k'=i.
It is obvious that such a constant can always be added
to the polarization coefficient without disturbing the
causal relation between driving and induced currents.

The value of the adjustable constant comes from
another requirement: that the polarization vanish at
low frequencies. A nonzero polarization at low fre-
quencies would disturb all laboratory measurements of
charge by a common factor and would falsely suggest
the possibility of distinguishing observationally at low
frequencies between the "real charge" and the "induced
charge. "To recognize the impossibility of making this
distinction, we demand that the constant ho be so
adjusted as to make h vanish at low frequencies. Thus
we find

h (0)= (4/m. )(e'/Ac)k ' (1+0')(4k 'C'+1) '

&((4k 'C' —0') 'S'(1—5'/3C')din

—(same integral calculated for Q=O)

X (x'—1+4k '/0') 'dx, (29)

induces a charge

jinduced (x)/c= (Ze/Sa )Jt hi exp(ikx)d k,

which in turn produces a potential

Ainduced (x) = —(Ze/Sn') (4mh&/k') exp(ikx)d'k.

=Ze ~iP(0)
~

(4~k/k)g=e

= —(4Ze4/15Ack ')
~ iP(0)

~

' (32)

a well-known part of the Lamb-Retherford displace-
ment.

The causality-principle analysis of vacuum polar-
ization has three features: It shows in a very convincing
way that all questions of principle about the inductive
response of the vacuum to weak fields are concentrated
in a single constant; it gives a physical reason for
renormalizing this constant to zero; and it conceals
the fact that straightforward calculation via relativistic
electron theory yields for this constant an infinite
value. Pote added il proof We have .—just learned in
the course of interesting discussions with Dr. S. Zienau
that he has applied the dispersion formula to the prob-
lem of vacuum polarization in unpublished lectures at
Liverpool in 1953. See also J. Toll and J. A. Wheeler,
Phys. Rev. 81, 654 and 655 (1951) for other applica-
tions of causality to the problem of vacuum polariza-
tion; and M. Gell-Mann, Proceedings of the Sixth
Rochester Conference on High Energy Nuclear Phys-
ics, 1956, for the question of whether all of quantum
electrodynamics can be transliterated into the language
of dispersion theory.

' R. Serber, Phys. Rev. 48, 49 (1935) and E. A. Uehling, Phys.
Rev. 48, 55 (1935).

The atomic electron, interacting with this potential,
experiences an energy shift

DE= ( eAinduced (x))


