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A short survey of the results obtained by applying the theory
of Landau, Abrikosov, and Khalatnikov to pseudoscalar meson
theory is presented. An independent deduction of the explicit
expressions for the Green's functions and vertex part is obtained
on the basis of simple renormalizability considerations. The rela-
tion thus obtained between g0~, g,2 and the momentum cutoff A

is such that the theory inevitably leads to the result that for
point interaction (i.e., in the limit A —+ ~) the renormalized
charge g, must equal zero,

It is shown that if two cutoffs A~ and A& (corresponding to the
nuclear and meson momenta) are introduced, this result can
rigorously be proved for any value of g0', provided that the
limits are moved apart sufficiently rapidly when A& ~ ~. In the
course of the proof an estimation is made of the terms neglected
in the zero approximation in the vertex part equation, these
terms corresponding to diagrams with intersecting meson lines
and nucleon loops.

It is shown that for two different ways of carrying out the
limiting process, r) amely,

(a) for A5 ~ oo, and (In(/155/ms))pin(A /A5 )j '&&1,
(b) for /4 ~ 00, and only Dn(A '//45) j '&&1

the contribution of these diagrams is vanishingly small for any g0'.
In the second case, the contributions from an infinite set of

meson-meson scattering diagrams are summed and it is found
that the total contribution is of the same order as that from the
simplest diagrams of this process.

The theory with pseudovector coupling, which is not renor-
malizable when expanded into the usual perturbation theory
series, is also considered. It is shown that renormalization can be
carried out without expanding into a series; the renormalized
charge in this case also vanishes. This result has been rigorously
obtained only for a special type of limiting process h.l, ~ ~,
namely if the inequality

(c) /4'//a'Dn(/t„'//15') j '«1
is obeyed.

In conclusion, a short discussion on the possibility of an experi-
mental proof of the inconsistency of field theory is presented.

1. INTRODUCTION

A QE~ approach' to a solution of the quantum
field theory equations has been suggested by

Landau, Abrikosov, and Khalatnikov. ' Point inter-
action was treated by these authors as the limit for
p —+ ~, of a nonlocal interaction "smeared out" over
a radius 1/A, the bare coupling constant gss generally
being considered to depend on h..

If one also assumes' that go'((1, it becomes possible
to expand any quantity (Green's function, vertex part,
etc.) for large momenta, when —ps))r/5', m being the
nuclear mass (or electron mass in electrodynamics) in
a series of the form:

foLg
' »(~'/ —p') 3+as'ftLgs' »(&'/ —p'))

+ (gss)'fsLgss 1n(A'/ —P') j+.. .. (1)
An essential difference between this expansion and

the usual perturbation theory series is that all terms
proportional to various powers of the quantity
x=gss in(A'/ —P') are gathered together in the closed
expressions f (/r) The quantity . x cannot be considered
small even for gs'&1, since 1n(A'/ —p') may be arbi-

trarily large. ' In principle the functions f„(/r) can be

~ Landau, Abrikosov, and Khalatnikov', Doklady Acad. Nauk
U.S.S.R. 95, 497, 773, 1177 (1954).

2 It will be seen from the following that this condition is not
essential for the further exposition.

' The usual perturbation theory series,

& G~p(go') "Dn(~'/ —P') 3"
n=0 v=0

t see, for example, M. Gell-Mann and F. E. Low, Phys. Rev. 95,
1500 (1954)), follows from (1) if the f„(~) in (1) are written i
the form of a series:

f„(g)= 2 C„+v, v&"

v=0

found with the aid of the Dyson-Schwinger integral
equations. As a matter of fact, Landau, Abrikosov, and
Khalatnikov determined in this way the zero-order
term fs(x) in the series expansion of the same type as
(1) for the Green's function and the vertex part in
electrodynamics.

Analogous calculations for pseudoscalar meson theory
were carried out by Abrikosov, Galanin, and Khalat-
nikov. ' The following expressions were obtained for the
case —p'))r/5'.

I'5—distr (go', &'/ —p'),

D(p) =—d(gs', cV/ —p'),
2

where, ' in the case of symmetric pseudoscalar theory:

~—Ql/5 p Q
—5/10 d —

Q
—4/5 (3)

and for neutral theory:

~—
Q

—1/5 P —
Q

—1/10 g Q
—2/5

where
Q= 1+ (Sg(P/41r) ln(A'/ —p') (5)

The dependence of go' on A and g,' was found' to be

g
2

go =
1—(Sg,'/4rr) L

(6)

4Abrikosov, Galanin, and Khalatnikov, Doklady Acad. sauk
U.S.S.R. 97, 793 (1954).

~ At large momenta, the vertex part F5(p, p —k) depends on
the largest of the momenta p, k, and p —k. Henceforth it is
assumed (if not otherwise stated) that p is the largest quantity.
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where L= ln(A'/ms), or'

go
g

2

1+(5g p'/47r) L
(7)

in symmetric theory, and by

gp
go =

1+(gp'/2~) (L —Lp)
(9)

The structure of expression (7) is such that, irre-
spective of the mode of variation of gps with A (with
the only restriction that gp'&~0, for the theory to be
Hermitian), we obtain

g 2~0
when A~ po or I —+ ~. (If gp'L —+ po as L, —+ po,

then g,'&&4r/SL —+ 0; if, however, gp'L —+ 1V, where 1V

is any constant, then g,'&~I'/L ~ 0).
Thus present 6eld theory leads to the result that the

renormalized nucleon charge is equal to zero.
At first glance, this conclusion may seem to be in-

correct since, according to (6), gp' increases with A.
Beginning from some A, the conditions gp2&1 will be
violated, and the series expansion in gp' upon which

(3), (4), and (7) are based will be invalid.
It is not difFicult to see, however, that all the relations

remain valid for any gp' which is not small, provided
that the "smearing out" of the interaction is carried
out from the very beginning in the most general form, '
the point interaction

g
2

gp

1+(5gp'/4m) Lp
(10)

is correct, to any degree of accuracy, for any gp, provided
that in(A„'/Ass) is sufficiently large.

For h.&
—+ ~, or I-I, —+ ~, it yields

g 2~0

in neutral theory: here L~= 1n(A„'/m'), L& ——ln(A&'/m').
The quantity gp is arbitrarily small for any tulle of

gp lf

L~—Lp ——ln(A. ~'/Ap')

is sufficiently large. Therefore the series expansion (1)
(in which gp' is replaced by gp') is always valid. More-
over, the first term L(2), (3), (4), or (7)j of this type
of series (zero order in gps) will, for sufficiently small
gps, s be equal to the total sum of the series (1) with any
degree of accuracy.

Thus, relation (7), which may now be written as

irrespectively of the mode of variation of gp with A.
Thus, modern meson theory for point interaction is

inconsistent, as it leads to the absurd conclusion that
no physical interaction exists (this statement also
applies to electrodynamics, ' to scalar coupling meson
theory, and, as will be shown below, to pseudovector
coupling theory).

In this paper, we shall give a simple deduction of the
explicit expressions (2)—(5) for the Green's functions,
and of formula (6) for the "bare" charge, on the basis
of renormalizability considerations (Sec. 2). In Sec. 3,
the two-cutoff case of Abrikosov and Khalatnikov will
be considered. An estimation of the validity of formulas
(2)—(9) of the zero-order approximation will be made in
Secs. 4—7 by applying the two-cutoff technique.

For this purpose an estimation is made of the terms
neglected in the zero-order (in gp') approximation, cor-
responding, in the vertex part equation, to diagrams
with intersecting meson lines and nucleon loops.

It is shown that for two different ways of carrying
out the limiting process, namely, (a) if in the limit
I p

—+ Po, I,„—Lp= 1n(A~'/h ps) is so large that

gpss(x)ysr P(x)q (x)

being considered as the limit for A~ ~ ~, A„~ ~ of
the interaction

f
gp Fs„a&(x y, x—s)f(x)—ysr P(y) p (s)dyds,

where Fs~s&(x y, x—s) is n—onzero only if y and s are
near to x, within regions with radii 1/h. „and 1/Ap,
respectively. For AA,

—+ ~, A„~ ~,
Fa„a&(x y, x—s) —+ 3(x—y)—8(x—s)

and A„ is always greater than Az (otherwise the results
do not differ' from the single cutoff case). After renor-
malization the result shouM not depend on the method
of approaching the limit, as the renormalized quantities
do not contain any "smearing" parameters.

It can be shown (see reference 7 and below) that for
the two-cutoff technique all relations remain exactly
the same (in the momentum region —p'(Ap') as in the
one-cutoff case, the only difference being that instead
of A the quantity A& enters all the formulas and gp' is
replaced by (a) Lk/(L„—Ls) Lp/L «1

g
2

gp =
1+(g.'/-) (L.—L.) For such a transition to the limit of point interaction in

which ln(A. „'/AI, ') remains large, see I.Ya. Pomeranchuk, Doklady
Acad. Nauk U.S.S.R. 104, 51 (1955); 105, 461 {1955).' L.Landau and I. Pomeranchuk, Doklady Akad. Nauk U.S.S.R.
102, 489 (1955); I. Pomeranchuk, Doklady Akad. Nauk U.S.S.R.
103, 1001 (1955). Landau pointed out in the spring of 1954 that
this difFiculty might appear in present day theory; Fradkin in
the fall of 1954 independently suggested that the renormalized
charge must be equal to zero.

Relations between g0 and g, similar to (6) and (7) were ob-
tained by T. D. Lee [Phys. Rev. 95, 1329 (1954)7 for a special
model of interaction fields. See also G. Kallen and %. Pauli
[Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd. 30, No. 7
(1955)7.

A. A. Abrikosov and I. M. Khalatnikov, Doklady Acad. Nauk
U.S.S.R. 103, 993 (1955).A.„is the nucleon momentum cutoff and
AA, is the meson momentum cutoff.

(8) (the so-called "super-two-cutoff technique"), and (b)
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if only
(b) (Lu—L2) '«1

the contribution of these diagrams is vanishingly small
for any go'.

In case (b) the contributions from an infinite set of
meson-meson scattering diagrams, which are essential
for the problem, are summed, and it is found that the
total contribution is of the same order as that from the
simplest diagrams of this process.

Thus, result (7) Lor (10)] and the conclusion that
g,~0 for 1.&—&~ can be rigorously proved not only for
limiting transition (a) but also for the case (b).

We shall (in Sec. 9) consider separately the theory
with pseudovector coupling, in which the usual series
expansion in go' cannot be renormalized.

If an even more special case than (b) is considered,
namely the "super-two-cuto6" case for which

n'/n =n, '/n, =Fi (g'),

~'/~=~. '/~. =F (g'),

d'/d =d.'/d. =F (g')

(13)

We introduce the quantity

g'R) =go'n'(go' L E—)P'(go' L —$)d(go' L—5)
=g' '(g', E)P'(g', k)d. (g', k), (»)

which may be called the effective charge for a given
value of —p' and which is in fact independent of A. For
convenience of notation, instead of A2/ —p' and —p2/2222

the logarithms of these quantities, L )=in—(S'/ —p')
and (=in( —P2/2222), are written as the arguments of
the functions n, n„etc. If now we denote n'=dn/d$,
etc. , it will not be difficult to see that the logarithmic
derivatives of the functions n, P, d with respect to $
may be expressed as functions exclusively of g':

i.e.,

(c) ((1,
2222 (L„—L2) 2222 ln (h.„2/A22)

A„2 ~Ai2~
»exp]

Consider, for example, the first of these equations.
According to (12), $= $(g,2,g2), and therefore the quan-
tity n. '/n. , which depends on g,2 and $, can be expressed
in the form of a function of g.' and g'. Therefore the
ratio n'/n, which equals n, '/n„can be expressed as
follows:

n'(go' L k)/n(go' L f)=F Lg
' g'(go' L &)] (14)

when I I, ~ ~, then it will not be dificult to prove that
renormalization can also be carried out for pseudo-
vector coupling and that the renormalized charge will

be zero.

2. DEDUCTION OF THE GREEN'S FUNCTIONS AND
VERTEX PART FORMULAS, (2)—(6), FROM THE

RENORMALIZATION CONDITIONS

The expressions (2)—(5) possess, as one would expect,
renormalizability properties:

n (g
2 A2/ P2) —n (g

2 P2/22 2)/n (g
2 g2/~2)

p (g22 A2/ p2) p (g 2 p2/2222)/p (g 2 A2/2222)

d(g 2 A2/ p2) —d (g
2 p2/2ri2)/d (g

2 A2/2222) (11)

g
2 —

g 2n 2(g 2 g2/222 )p 2(g 2 A2/2222)d (g
2 A2/2222)

Indeed, qualities (11) can be obtained from (3) or

(4) if one notices that Q= Q2 Q„where

Q,= 1—(5g,2/42r) ln (—P2/n22),

Q2
——1+(5g22/42r) ln (A2/2222),

and if one determines n„P„and d, similarly to n, p,
and d, with Q, substituted for Q. LThe last of Eqs. (11)
will then determine the dependence (6) of g02 on A.]

We shall now show that the explicit forms (3) and

(4) of functions n, P, and d can be obtained directly
without solving the integral equations, exclusively on
the basis of the renormalizability properties (6) and by
using considerations similar to those presented in Gell-

Mann and Low's paper' (see also papers referred to in
reference 24).

It is emphasized here that, according to (12),
g'= g'(go', L—

&)

If go' is fixed and L and $ are varied in such a way that
I. )remains cons—tant, then g,', which according to
(11) depends on g22 and A, will vary, whereas the other
quantities in (14) will not. Relation. (14) will therefore
be fulfilled only if Ii

& does not depend on g,' explicitly.
In this case we arrive at the first of the Eqs. (13):the
other equations can be proved in a similar manner.

One can determine the explicit form of functions Fy,

F2, and F2 in (13) by assuming $ —+ L. In this region
ln(A2/ —p') =I.—$ is not large, and for g22 & 1, g22(L —$)
is also a small quantity, i.e., the familiar perturbation
theory can be applied. According to (12), for $ —+L,
g2~ g22, aS then n=p=d=1.

Simple calculations, carried out to logarithmic ac-
curacy (i.e., by taking into account only the largest
logarithmically diverging part of the integrals), yield
in the first order of perturbation theory for symmetric
pseudoscalar theory":

n=1+(go'/4 )(L—5),
&=1—(3g '/4 ) (L—$), go2(L —() &1,
d=1—(go'/ )(L—5).

' After elimination of isotopic spin variables and matrices,
we obtain for example for the vertext part

gp2
~.(&—

&
—m)-'

7rZ

Xy5(P —&—
&
—m) 'y (P—p') 'd4l

where Feynman's notation has been used, with p=—~p—=~ppp—yp, k =kp —lP, d k= (27'.) dkpdkldk2dk32 sGp(p) = j(p—m)
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Hence for $ —& L we get:

o.'/tr = —gss/4r, P'/P = 3gp'/4x. , d'/d = gss/x-.

Comparing with (13) we obtain to first order in g'.

F (g2) g2/4rr F (g2) 3gs/47r F (gs) g2/x

Since, according to (8) and (9), (g')'/g'=2F&+2Fs
+Fs, we then obtain

Lg'(5)j'/g'(5) = (3/4 )g'(5)

Integrating this equation over $ from $ to L Land taking
into account that, according to (12), g'(L) =go'), we get

ag

i[

~isie

go go
g'(&) =

1+(5a.'/4-) (L-~) ()(~)
(»)

Fro. 1. Vertex part diagrams with intersecting meson lines (b,c)
and nucleon loops (d,e).

Inserting this expression for g'($) and the expressions
for the functions Fi, Fs, Fs into (13), and integrating
over $, we directly obtain (3).

Analogously, in neutral pseudoscalar theory, the
perturbation theory formulas yield:

n = 1—(gss/4tr) (L—(),
P=1—(go'/gx)(L —5), go'(L 5) &—1,

d = 1—(gps/x. ) (L—g),

P—ns—

'

2go f
k' —ii'+ Sp/G(p)1'sG(p —k)8ys

~i

3gp

i
I'sG(P —k)8ysD(k)d'k G(P) =1,

m.Z ~

and we obtain Ft(g') =g'/47r, Fs(g') =g'/Sx. , Fs(g')
=g'/2x. The form of g'($) in this case turns out to be
the same as that in (15), and after integration of (13)
over $ the formulas (4) for n, P, and d immediately
follow.

(Concerning the notations, see reference 10.) Here
8=8sss„(p, P—k) is the Fourier component of the
"smear-out" function Fa~q(g —y, x—s) Lfor hs ~ ~,
A„~~, 8~1$. By definition, 8 vanishes if —p')A~',
or —k')AI, '. At high momenta all quantities vary
slowly (logarithmically) and therefore the detailed form
of this function is unimportant. It may be considered
that 0=1 if the momenta do not exceed the cut-off
values, and otherwise 0=0.

Equations (17) and (18) are exact, while Eq. (16)
approximate. The latter equation takes into account
only the simplest diagram in Fig. 1(a), and does not'
take account of more complex irreducible diagrams (in
the usual Dyson sense) with intersecting meson lines,
of the type shown in Fig. 1(b), 1(c), etc. , or with
nucleon loops, as in Fig. 1 (d), 1 (e), etc."The possi-
bility of disregarding these diagrams in the expansion
of type (1) in the zero approximation with respect to
gas (or gs', for two cutoffs) will be examined in detail
below.

If A~=i1s=A, the functions (2)—(3) will be solutions
of Eqs. (16)—(18) for large momenta. In this case, all
integrals break og at the momentum value —p'=il. ',
and only the region in which p and k do not exceed this
cutoff value is essential.

For two-cutoff values A„)&XI„F~ also vanishes if
either of the mornenta p or k exceeds the cut-off value
(as then 8=0 and, according to (16), I's ——0). Thus,
integrals (16) and (17) break off at the momentum A~

3. THE CASE OF TWO CUTOFFS'

Let us consider in greater detail the two-cuto6 theory.
We shall show that all the formulas are indeed the
same as those for a single cutoff, provided that go' is
substituted in all formulas for go', and AA for A.

After elimination of 'the isotopic spin variables and
matrices (a trivial operation), the Dyson-Schwinger
integral equations for symmetric" pseudoscalar theory
take the form:

goI', (p, p a) =87, —r,G(p —i)——

Xr,G(p —u —i)I,Dg)d i,

'2 All lines and points on Fig. 1 are thick and therefore refer to
the exact functions G, D, and F.

corresponds to the nucleon line, and 4xiDp(l) =4'(P —y') ' to
the meson; the S-matrix being T(exp/go j'fyrvPy dx] }. -

For integration with logarithmic accuracy, only the region in
which / is much greater than any of the momenta p or k is
important Li.e., on a logarithmic scale, the region P~&s&~L where
s=ln( —P/ms) j. Disregarding in this region the moments p and
k and the masses m and p compared with /, we obtain for the
integral the value

'L L
( —vs) J (d'&/&')=( —i/4)vs ds=( i/4)v (L 85)— —

The value of n given in the text then follows.
'In neutral theory the integral term in the equation for I'5

has a positive sign, whereas in the equations for G and D the
integrals enter without corresponding multipliers 3 and 2.
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l

I
4 g

+OOOO OOOOO

functions cr($) and P(g) remain equal to unity [since
in this case there is no logarithmic integration region in
integrals (16) and (17) and in the approximation con-
sidered here they should be neglected]. In distinction
to n and P, the function d(ri) for ri=Ls undergoes a
jump7 from the value (1+II) '

I in agreement with
(20)] for ri= Ls—e, e —+ 0, to the value d= 1 for" ri) Ls.
An approximate plot of u($), P($), and d(]) is shown
in Fig. 2.

Substituting in (19) the values (2) of the functions
I'5, D, 6 and, in accord with the foregoing, putting
rr=P=d=1 in the range of integration, it is easy to
compute the integral:

i I Pz+XJ

4w
g' =f

2g02 t
hp 1 1 1 1

Sp Ys Ys
—'Ys Ys d p

p p —p p p

Fto. 2. Approximate behavior of the functions n(e), P(e), and d(e)
in symmetric theory with two cutouts.

It will be shown below that in the most important
region p'«( —k')«As the dimensionless (and positive)
quantity II is practically independent of O2. Taking
into account (19), Eq. (18) may be written in the form:

2g 2 ~hit,

(P—p') (1+II)+ Spt G(P)r G(P—k)r,

(G(p)rsG(p &—)»)~"=P ]d'P —D(&) =1.

Substituting in this equation and also in (16) and (17)

D(k) = (1+II)—'D(k), [or d(ri) = (1+II)—'d(ri)], (20)

we obtain for I' s, G, and D the set of Eqs. (16), (17),
and (18), that is, a set which is exactly similar to that
in the case with a single cuto6 momentum A=XI„
provided however that go2 is replaced by

go'= (1+11) 'go' (21)

It is evident that in the range $~&Ls the solutions
for cr($), P($), and d($) will be the functions (3), (5)
I or (4), (5) for neutral theory] obtained above, if one
rePlaces A by A& and gss by gs'. For $=L& these functions
equal unity; for $)L&, in the range L &$s~&L„, the

and (18) breaks off at A~. Moreover it follows from
(18) that d(ri)=1 if —ks)Ass or ri=ln( —jP/ms) )~L„,
as in this case, the functions I"5 and 8 in the integral
term in (18) vanish.

For —k'&Ass, i.e., ri~&Ls, the integral term in (18)
does not vanish. Let (k' —p')ll denote that part of it
which corresponds to integration over the region
A,'& (—p') &~„"

2g 2 ~hp
(&'—~')ll= —.i' Spl G(p)r, G(p —k)&,

7lZ ~ hg

—(G(P)rsG(P —&)»)s ="]d'P (19)

Hence

$2g 2 ~Lp $2g 2

(L,—Ls).

11= (go'/~) (L, L.)— (22)

and (21) is the same as relation (8). In the neutral
theory there is no multiplier 2 before the integral in
(18) and II in this case equals:

11= (go'/2~) (Lu —L.)
Thus we obtain (9).

Relations (7), (8), and (9), which lead to the result
that for point interactions the renormalized nucleon
charge is zero, depend significantly on the explicit form
(3), or (4), and (5), of the functions rr, P, d. The form
of these functions is in turn determined by Eqs. (16),
(17), and (18). t

We emphasize once again that the
deduction of formulas (3) and (4) from the renor-
malization condition is equivalent to an asymptotic
solution of the set of Eqs. (16)—(18)].

4. ESTIMATION OF THE TERMS NEGLECTED IN
ZERO-APPROXIMATION THEORY

Consider now the theory with two-cutoG values AA,

and A„ t
in which gs' in Eqs. (16)—(18) is replaced by

gp ].We shall show that in this case the neglect in (16)
of diagrams of the type shown in Fig. 1(b), (c), (d), (e),
etc., with intersecting meson lines and nucleon loops,
can be rigorously justified. In order to do this the terms
emitted in (16) should be estimated. For this purpose
the functions (2), (3), and (5) of the zero approximation
Lwith respect to gs'] should be used.

It can be shown in a general way that to a diagram
with e intersecting meson lines Lof the type shown in
Fig. 1(b), 1(c), etc.] there corresponds in (16) a
quantity of the order (gss)" ' in the sense of the expan-
sion of type (1) Lto be more exact, the series expansion
(1) in which gs' is rePlaced by gas and A. by As).

"This is due to the circumstance that the integral term in
(18) suddenly vanishes when p exceeds I.&, which is a result of the
assumption made above concerning the form of the function 8.
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This is simply a result of the fact that on integration
over e virtual meson momenta only one of n integrals
is divergent (logarithmically) and the result of integra-
tion is thus proportional to 1n(Ass/ —p'). Hence the
contribution from such a diagram will be of the order
(if free-field functions D, G, and I's are used in the
estimation),

'y (go')" 1 (A'/-p')=7 (g ')" 'Lgo' 1 (A'/-p')j, (23)

i.e., of the order

(g 2)n—i

as gss in(A2/ —p') is, with respect to expansion into a
series of type (1), a zero-order quantity. A more
accurate estimation, obtained by substituting in the
integrals expressions (3) or (4) for n, P, and d, yields
instead of gss ln(A2/ —p') a numerical function of this
quantity F„(gs2 ln(A2/ —p')) of order unity. We shall
demonstrate this for the simplest case, when e= 2; the
corresponding diagram is shown in Fig. 1(b).

Using exPressions (2) for rs, G, and D (with
D=D/(1+II)), we find that the contribution of this
diagram,

FIG. 4. Double-scattering diagrams. When each of the squares
in Fig. 4(a) is replaced by one of the figures in Fig. 3, two series of
18 identical diagrams are obtained. Thus altogether there are
18)&3=54 different diagrams.

everywhere: s'=ln( —t"/m )~2s and G(p k l —l')——
=G(p l 1') G—( —l t') ~—(—/+I') '—p(s), etc.j. In-
troducing the variable g=1+(5go2/4~)(Ls —s) and
carrying out the integration, we obtain the result:

/go ) t'

5
~

—
~

r,G(p —t)r,G(p —t—t')r, G(p —t—t' —k)
Eni& ~

&&r,G (p k t')r,—D (l—)D (l') d4/d4l'

, (—1) ~',
vsgo' — '(g)P'(g)d'(g) dg,

4~ J, (24)

(in symmetric theory a factor 5 appears because of the which confirms the estimate (23) for e= 2, if
isotopic spin variables: r„r„r r„r.=5r, : it is absent in gs' ln(422/ —p') is replaced in (23) by a function F2(Q):
the neutral theory), may be represented in the form

(g 2)2 ~Ls
~'(s)P'(s)d'(s) «

44~j
It is taken into account here that only the logarithmic

region $~&z&~Ls Ls=ln —/2/m2$, in which l and t' are
much greater than p and k, is important; and that, for
a fixed value of /, the integral over t',

d4l
(l+l')2/i4

converges, is equal to unity, and values of l' of the
order of l are essential in it /correspondingly, we put

F2(Q) = ——' n'P4dsdq= ——(1—Q
—4~2),

4~

which is, for any Q=1+(5gs'/4 )(L&—$), a quantity
of the order of unity or less.

Thus, in the zero approximation in go, all diagrams
with intersecting meson lines are indeed unimportant.
It is more dificult to appraise the contribution in (16)
of all possible diagrams of the type shown in Fig. 1(d),
1(e), etc. , which possess an arbitrary number of nucleon
loops.

Let us consider a diagram of the type shown in Fig.
1(d), which contains in the meson-meson scattering
part any arbitrary diagram of this process represented
in Figs. 3—6, etc. (say, diagram e, if the diagrams are
numbered). The contribution from it [see Fig. 1(d)j
may be written in the form;

(go 'l I'—2
i
—

i
i"I'sG(P —/)I'sG(P —/ —l')I'sD(l)

&~i i "
XD(t')D(k —l—/')R (l, l', —k, k l l')d4/d'l', ——

(go2/4m) E„(ki,ks, ks, k4) (25)

FIG. 3. Meson-meson single-scattering diagrams.

(with ki+k2+ks+k4 ——0) denotes the contribution cor-
responding to the mth meson-meson scattering diagram
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following quantity is found to correspond to Fig. 3(a):

I
I

iJ

I l I

l

gp
Ro, =—

~

Sp/I' G(P) 1',G(P+k, )F,G(P+k, +k,)
~z ~

XFpG(P k1)]d P Tr(2u1ra22a42ao). (27)

(In the neutral theory, the factor Tr(rp1rporp4rpo) does
not appear here, of course. ) For all 18 diagrams of the
type shown in Fig. 4(a) we get the quantity R1„where

I
I

I l
rr

I

h

g
2 pAlp

2R1~ (k1,k2, ko, k4) = ——
I Rp(k1) k2~l~l') D (l)D (l')

7'

XRp( —l, —l', ko, k4)d4l (28)

Fxo. S. Examples of "contractible" diagrams.

under consideration. A denotes a factor which depends
on the isotopic spin variables"; this factor is absent in
the neutral theory. Taking into account in the integral
only the logarithmic region $~&s~& I.2, we obtain simi-

larly to (24)

/'go l r' ",
n'(s) P'(s) d'(s) A R„(s)ds

&4~) &l

and P= l k1—k—2= ——l+ko+k4. Evidently, Rp and R1
are quantities of the same order (of zero order in go'),
as the factor goo in (27), and (28) is "absorbed" by the
logarithmically diverging integral. This can easily be
confirmed by straightforward calculations. Taking into
account only the logarithmic region

(27) [2l=in( —k'/m'), —k' is the square of the
largest meson momentum) and 2l&&s~&I2 in (28), we
obtain

Ro= p05g)

pp(Q) = (16/3) (Q"'—1)+(4g '/2r) in(A„'/A42), (29)

~s ba1a2haoa4+ba1a3ba2a4+ba1a4baoap&

g
2 Q

= vp ~ '(g)P'(g)d'(g)~R. (g)dg, (26)
20m.

where R„(s) or R„(q) are the expressions for
11

l1(Q) = ——
10 &,

R„(l, l', —k, k l l'), ——
l o'(g) d'(g) dg (30)

where l, l', and k—/ —1' are very large and of the same
order of magnitude .[In this case the sum of any two
momenta on which R„depends will be of the same
order of magnitude as l, l', or k —/ —I'; it is shown

below that under these conditions R„depends only on
a single variable, R =R„(s).j

We shall 6rst consider the simplest diagrams for
single and double scattering (Figs. 3 and 4). In accord
with (25), let Rp correspond to the contribution from

the six diagrams in Fig. 3 for single scattering and

for symmetric theory, or analogously,

Ro(Q) =24(1—Q "')+(6go'/~)»(~. '/~"), (31)

3 pQ
R1(Q) = —— Ro'(g) d'(g) de

10 ~I
(32)

for neutral theory.
Substituting these values into (26), we can estimate

the contribution to (16) from the diagrams of Figs.
1(d), 1(e) containing one or two squares. Consider, for
simplicity, the case Q)&1 Li.e., go'(I2 —2l))&11, when
(26) is maximal. In this case, we can substitute in (26),

R1 Rl +Rlp+R1

to the contribution from the diagrams of Fig. 4 for
double scattering La doubled number of these diagrams

(108) can be obtained from Fig. 4 if each square in

Fig. 4 is successively replaced by one of the diagrams
in Fig. 3. Figure 4(a) then yields two series, each con-

taining 18 identical diagrams). For example, after
separating, in accord with (25), the factor go2/42rz, the

FIG. 6. Examples of "un-

I
contractible" diagrams.

'4 If, in symmetric theory, a1, a2, a3, and a4 denote the isotopic
spin variables of meson lines l, l', —k and k —l—l' in Fig. 1(d),
then A =&aI&ag&a4 and

R„(l& P, —k, k —l l') =Raya2aaa4™(l, l—', —0, k l —l')—
depends on these variables.
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in accord with (29), po = (16/3)Q"', or, according to
(31), Ro =24+ (6go2/m) 1n(A„2/AP) =const. This yields

v~(5go'/3~) (1—Q "')=»5go'/3~
(33)

y5(RO/247r) go'(1 —Q ') =»(Ro/24lr) go', (Ro =const)

for the contributions from diagrams of Fig. 1(d), for
symmetric and neutral theories respectively (it has been
taken into account that in symmetric theory Ab, =Sra,).
The quantities thus obtained are of the order go', and
vanish if go —+ 0.

Contributions from the diagrams of Fig. 1(e) for
double scattering can easily be estimated in a similar
manner from (30) or (32). The corresponding quan-
tities are also of the order go' and should not be taken

into account in the zero-approximation theory. In

symmetric theory, for example, the contribution from
Fig. 1(e), for Q((1, differs from the contribution from
Fig. 1(d) only by a numerical factor, since in this case,
according to (30),

11 (16)' t. @ 11 (16)'
»(Q)=—

f

—
I

'

10&3) ~, 6 E3i

5. "CONTRACTIBLE" AND "UNCONTRACTIBLE"
MESON-MESON SCATTERING DIAGRAMS

The difficulty, however, is that besides the diagrams
of Fig. 1(d) and Fig. 1(e), for single and double scat-
tering, there is an infinite set of similar diagrams with a
larger number of nucleon squares, to each of which
there corresponds a contribution of the same order of
magnitude. " As a matter of fact there is an infinite
number of meson-meson scattering diagrams, each of
which corresponds to a contribution of the same order"
as (29) and (30) or (31) and (32).

These diagrams can be called "contractible. " They
are composed only of nucleon squares connected by
meson lines and are such that if two squares connected
by meson lines are successively replaced by one square,
one finds that, by gradual simplification, the diagram
will reduce to one of the diagrams in Fig. 3. (For
example, the diagrams of Fig. 5 are "contractible, "
whereas those in Fig. 6 are "uncontractible. ") If the
"contraction" is replaced by the inverse process, then,
starting from one of the diagrams of Fig. 3, we arrive
at the diagrams of Fig. 4, Fig. 5(b), or 5(c), etc.
Substitution of two squares instead of one does not
change the order of magnitude of the diagram con-
tribution, as an extra factor go' and two diverging
integrals (over the meson and nucleon momenta) then
appear. The result is, roughly speaking, that the

'5 This was noted by Landau and does not refer to electro-
dynamics. For the latter (owing to cancellation of the divergences
in the total contribution from diagrams of Fig. 3) a quantity EI,
of order e0' with respect to E0, will correspond to the diagrams of
Fig. 4 with two squares. Therefore, the following discussion refers
only to meson theories.

P(kg, kg, ks, k4) =Q R„(kg,k2, k3,k4),
n=o

(34)

which is taken only over "contractible" diagrams.
Correspondingly, the total contribution to (16) from

diagrams of the type shown in Figs. 1(d), 1(e), etc. ,
with an arbitrary number of nucleon loops, is deter-
mined by expression (26), in which R„ is replaced by
the total sum P. The magnitude of the expression thus
obtained can be estimated only if the series (34) can
be summed, or if at least it can be shown that the series
does not diverge.

In the following, it will be shown that the di6iculty
connected with the necessity of evaluating the sum (34)
(the so-called pdrgget problem) can be circumvented if
a special type of limiting process (b) (super-two-cutoff
case) is considered.

The possibility of evaluating the sum in (34) will be
discussed in Sec. 7.

6. "SUPER TWO CUTOFF CASE" (B)

If, as AA,. —+ ~, (b) is fulfilled, the contribution to
(34) from all terms of the sum except Ro will be infini-

tesimally small and

lim P=Ro.
+Is—+co

Indeed, since

&go' La —q=1+
4~ 1+(g, /~) (L„—L„)

where q&~L~, we get for L„—L~ ~ ~,
5 p L~—

rt yQ~1+—
I

4 (L, LpJ—
and therefore, according to (30) or (32). R~ —+ 0.

diagram contribution will be multiplied by go'LQ&,
which is of order unity. (If L~~ ~, go'L„—+m, and
go'L„L~~ ergo'L~. ) The transition from a diagram of
Fig. 3 to one of Fig. 4 carried out in (28) is a good
example of absorption of the factor go' due to divergence
of the integral. Similarly, a simple estimate shows that
a quantity of higher order in go corresponds to "uncon-
tractible" diagrams.

If the contribution from the infinite set of all the
meson-meson scattering diagrams (i.e., the exact value
for the meson-meson scattering amplitude) is denoted
by

(gp'/4s. i)P'(kg, k2, k3,k4),

then, for large meson momenta k; the P' can be repre-
sented by a series of the same form as (1):

P =P(k)+go'N(K)+' ' ' ' K=go'ln(Ap/ —k').

The first term of this series is defined by an in6nite
sum
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~I

/

Fro. 7. Diagrams (a) and (c)
are reducible, whereas (b) and
(d) are irreducible with respect
to "separation" of kI and k2
from kz and k4 .(In the sepa-
ration method illustrated in
Fig. 7(a) the part contiguous to
kI and k2 is irreducible with
respect to "separation" of
these two lines from the two
others. )

Similarly, all other terms of the series (34) vanish,
because the quantity gs'L+k, by which, roughly
speaking, the contribution from any diagram is multi-
plied if one square is replaced by two, itself vanishes.

If Ls/L„«1, Rs according to (29) or (30), becomes a
constant of order unity, and according to (26), for
P=Rs const, ——the contribution to (16) from all
diagrams of the type shown in Figs. 1(d), 1(e), etc.
will be proportional to Ls/L~ and vanish for Lq ~ ~.
[To be more precise, in the limit L~ —+ ~, (Lr/L„) —+ 0,
the contribution to (16) from a diagram with rs squares
will be proportional to (LI,/L„) ".7

7. COMPUTATION OF MESON-MESON SCATTERING
AMPLITUDE (34)"

The sum (34) of all contractible-diagram contribu-
tions obeys an integral equation whose form depends
only on Rp. In order to deduce this equation we intro-
duce the concept of reducible and irreducible diagrams.

Diagrams which are reducible with respect to
"separation" of meson lines k~ and k~ from k3 and k4

are de6ned as those which can be divided into at least
two parts, connected by only two meson lines. It is
assumed, moreover, that the separation is carried out
in such a way that lines k& and k& are connected to one
part and ks, k4 to the other. [For example, the diagrams
of Figs. 4(a), 7(a), and 7(c) are reducible. ) Those
diagrams which do not possess this property are irre-
ducible with respect to separations of k~, k2 from k3,

k4,"[example: diagrams in Fig. 3, Figs. 4(b), 4(c), 7 (b),
and 7(d)j.

For the sake of generality, we shall first consider all
(i.e., contractible and uncontractible) meson-meson
scattering diagrams. Let P' be the total contribution
sum, R'(kr, ks, ksk4) the sum of all irreducible diagram
contributions (in the sense of separation of k, , ks from
ks k4), and F(k&,k&,ks, k4) the sum of all reducible
diagram contributions:

P'(kr, ks, ks)k4)=R'(kr)ks, ks)k4)+F(kr)ks) k„k,). (35)

P" is symmetric with respect to any transposition of

"The computations made in this section were carried out in
collaboration with I. T. Diatlov. See I. T. Diatlove and K. A. Ter-
Martirosyan, Soviet Phys. JETP 30, 416 (1956); Diatlov,
Sudakov, and Ter-Martirosyan, Soviet Phys. JETP {to be
published); V. V. Sudakov, Soviet Phys. JETP (to be published).

'7 The same diagram can be reducible or irreducible in this
sense, depending on how the meson lines approach it. Thus, the
diagram in Fig. 4(a) is reducible in the sense of "separation" of
k1, k~ from k3, k4, whereas the diagramS ig. Figs. 4(b), 4(c) are
irreducible.

yD(l')o. '( l, l', ks, —k4)d'l. —(37)

Summing both sides of this equation over all possible
diagrams, i.e., over e and m, we obtain

— 2
gp

2F'(k&, ks i ks, k4) = ——
~l R'(k&)ksi l)l')

~i

XD(l)D(l')P'( —l, —l'; ks, k4)d'l, (38)

which is equivalent to (36).Equation (38) was obtained

by taking into account the fact that when the total set
of all possible diagrams in both parts of the reducible
diagram are connected by lines 1 and l', two sets of
identical diagrams appear. As a result the factor 2

emerges in the left hand side of (38), just as in (28).
Consider now only contractible diagrams and let P,

R, and F denote the corresponding sums only for them.
The foregoing considerations can be applied to this
case without alteration, and we obtain:

P(kr, ks, ks)k4) =R(kr, ks, ks)k4)+F(kr)ks) ks, k4),
(39)

gp f
F(k„ks, ks, k4) = ——

~~ R(kt, ks, l)l')D(l)D(l')
mZ ~

y P( l, l', ks, k4)d4/. — —

meson lines, whereas R' and P are invariant if k&

and k2, or k3 and k4 are transposed, or if k~, k2 is replaced

by k3, k4. P' and R' are related by an integral equation
which is similar to the Bethe-Salpeter equation,

P (k&,ks, ks, k4)
go

=R'(k, ,k, ; ks, k4) — R'(k rk ,sl, l')
2mi ~

)&D(l)D(l')P'( —l, l', k—s k4)d'l, (36)

where l'= —l—k& —k&, just as in (27).
For convenience we present here a short deduction

of this relation. Consider an arbitrary reducible diagram
(with respect to separation of kr, ks from k, , k4),
and let the site of separation be chosen in such a
manner that the part adjacent to k& and k& is already
irreducible (with respect to separation of kr, ks from

l, l'). An example of this type of separation is shown in

Fig. 7(a). Denote by p„'(k&,k, ; l,l') and o( l, l', ks-,k4—)—
the contributions from both parts of the diagram; we

then obtain, evidently, for the total contribution

go
f„„'(kr,ks, ks, k4) = —— p '(k] ks l,l')D(l)

gZ
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We may use relations (39) to solve our problem, if
we note that any "contractible" diagram is rIecessarily
reducible with respect to separation of some pair. of
meson lines from some other pair (provided that it is
not a simple diagram of the type of Fig. 3). Indeed,
by carrying out the contraction process, any arbi-
trarily complex contractible diagram can be transformed
into one similar to that shown in Fig. 4, for which this
statement is obviously true.

Thus,

F(kl)k2)ks)k4) Rp(kl)k2)ks)k4)+F(ki)k3) k2)k4)

+F(ki)k4) k2)ks)+F(ki)k2) k3)k4). (40)

This results together with (39), yields

R(kl k2 k3 k4) Rp(kl k2 k3 k4)

+F(kl k2 k3 k4)+F(kl k3 k2 k4)

and

F(k, )k2) kp, k4)

go
[Rp(ki, ks, /, /')+F(ki, /; k2, /')

2mi ~

+F(kr, /; k2, /)]D(/)D(/ )[Rp(/, / k3 k4)

+F( /, ks, —/', —k4)+F ( /, k4, —/', —ks)

+F( /, /'; k3, k——4)]d4/. (41)

Equation (41) uniquely defines the function F if Rp
is known.

If the meson momenta are large and only the loga-
rithmic region —P»—(ki+k2)' is taken into account,
then (41) can be considerably simplified. An attentive
scrutiny of (41) reveals that if the momenta ki and k2

are very large and considerably exceed their sum ki+k2,
F will be dependent only on the two variables

f= in[ —(k1+k2)'/223'] and 1=2ln( —k'(223') where k is
the larger of the momenta k~ and k2, i.e., in this case"

F(ki, k2, kp, k4) =I (r1,f)

If, however, all sums k;+k; of meson momenta are
quantities of the same order [this is exactly the case
which is of greatest interest with respect to substitution
in (26)) or if there are two large momenta belonging to
diGerent pairs —the first to k~, k2 and the other to the
second pair, then )1=/ and F will depend only on one
variable F=F(21)=C()),))) [by definition )f) is always
&/]

A shortcoming of Eq. (41) is that when F depends
on one variable it is coupled in (41) with the value of
F( /, /'; ks, k4)~C'(s—,r1), d—epending for /~ po on two
variables.

' It is assumed that the larger of the momenta k3 and k4
(momentum k') is of the same order of magnitude as k3+k4= —(k)+ks); otherwise F=C()1,/', )1'), where)1' 1n( k'2/)))'=)—

/3n

FIG. 8. Division of a reducible diagram into 1V' irreducible
diagrams with respect to "separation" of lines l; and / from l;+I
and l;+I'.

Thus, for example, in neutral theory we obtain

go'2 f I/3

F(r)) = ——
~

[Rp(s)+2F(s)]
8x ~„

X[R0(.)+2F(2)+C(s,q)]d'(s)ds. (42)

F(2)) therefore can be found only if 4 (z,21) is known. For
this reason we are forced to consider in (41) the case
when k& and k2 are very large compared with their sum.
We then obtain:

go
C'(~ f) = ——[Ro(~)+2F(~)] LR (s)+2F (s)

8~

go f"
+4 (s,f') ]d'(2) ds ——

~

[Rp (s)+2F (2)]
8~ ~p

X [Ro(s)+2F(s)+C (s,/)]d(s)ds (43)

and, according to (42), C ()1,21)=F()1). The set of Eqs.
(42) and (43) has 'a unique solution which can easily
be constructed for g02(I.3—21) (1, or g02(L3 —21))1.

. The corresponding calculations are given in the ap-
pendix for the case of symmetric theory. The equations
corresponding to (42)—(43) in this case are also given
in the Appendix.

We shall now demonstrate that if all the momenta
sums k~+k, are quantities of the same order, then the
set (42), (43) is equivalent to a simple equation for the
function" F ()1)=Rp()1)+3F(11).

In this case we deduce anew an equation which is
similar to (41). From the very beginning, however, we
restrict our considerations only to asymptotic values of
the functions and take into account only the logarithmic
integration region g ~&s &&I./, .

An arbitrary diagram reducible in the sense of sepa-
ration of k~, k2 from k3, k4 consists of a number of
diagrams (at least two) connected by meson lines /, ,
/,'= —/, +ki+k2 (Fig. g), each of these diagrams being
irreducible with respect to separation of the pair of lines
/, , /,' from /;+1, /, +1' (see Fig. g). If the momenta /, and

"In the symmetric theory each of the three functions depends
on the isotopic spin variables in an individual manner, i.e.,
P(g)=Ep(q)+F (p)+Ff,(p)+F, (&), where the subscripts a, b,
and c refer to the three diagrams in Fig. 4 Li.e., F =F (kI,k2, k3,k4),
Fs=F(k),k3, k2)k4), F.=F(kl)k4) ks)k))7.
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g
2 ~LIs

F(r)) = ——~ P(z)d'(z)P(z)dz.
8~~„

(49)
f~, (z,,z,~i), z;= ln( —IP/m'),

l,+i are very large the contribution from the ith dia- and all e; we obtain, in accordance with (47) and (48),
gram in such a chain, fn, , will depend only on the
larger of these momenta. We write it as

where f~; in fact depends only on the larger of the
quantities z, , z,+i. In this case, analogously to (37), we
obtain for the total contribution from the diagram in
Fig. 8

tr —g')~ tz'
fnpni ~ ~ ny(0)) =

]( 40r )
LIs

dzpr

Xfpp(rl)zi)d (zi) fpi(simp)d (zp) ' ' '

Xd'(zi)fiw (sx, r)), (44)

Xfn;n, +4 ~ nor (z;)ds, . (45)

Here f&pni n i(s') i's defined in exactly the same
manner as in (44), i.e., it is the contribution from that
part of the diagram under consideration (part I in
Fig. 8) which is contiguous to lines ki, kp and t;, l,', and
which one would expect if k& and k2 were quantities of
the same order as t,, 1„'. Similarly, f~ n,+i n~(s,') refers
to part II in Fig. 8.

By definition,

& f p(si)=~(si)
Ap

(46)

is the contribution of all irreducible diagrams (with
respect to separation of lines k, , k, from I,, l, '), and

t'=2 np, nI, ~ ~ ~, ns-I
2 'fnpni n; i(si) =F(si) (47)

is the contribution of all reducible diagrams (in this
sense).

The factor 2' ' Lsimilar to the factor 2 in (38)7 takes
into account the fact that on summation over all types
of irreducible diagrams in each "contractible" part (of
part I in Fig. 8), 2' ' identical types of reducible dia-
grams appear.

According to (46), (47), and (39),

P(z) =E(z)+F(z)=Q
i=1 nPn1 . nz —1

2 'fnpni ni i(s). (48)

Multiplying Eq. (45) by 1/2~ and summing over N

where E is the number of irreducible diagrams in the
chain in Fig. 8, corresponding to the given reducible
diagram. The integration region over s~, s2, , s„can
be divided into E regions in each of which one of the
variables, say s;, is smaller than the others. Corre-
spondingly, (44) can be represented as the sum of 1V

integrals over these regions:

N —gpp

fnpni ~ .ny(0))=p fnpni ~ n~ i(zi)d (si')

In neutral theory P(r)) =Rp(r))+3F(r)), and therefore

3g 2 ~LIs

P (0I) =14'.p(0)) — P'(s)d'(z) dz.
gx ~„

(50)

In the symmetric theory P depends on the isotopic
SPin VariableS a;, Paiapapa4(0)) = P(r))h„Where 3, iS
defined in (29). In (49) we therefore find (for the func-
tion F, corresponding to diagrams of Fig. 4(a) which
are reducible with respect to separation of k~, k2 from
kp, k4),

fag '
P'(s)d'(z) dz.P(n) = up(n)—

8~ ~„
(51)

In the approximation considered here Lzero order in
gpz, for an exPansion of tyPe (1)7, Eqs. (50) or (51)
accurately define P(0)). These equations can easily be
solved after substituting in them expressions (3)—(4)
for the functions d and (29)—(31) for the functions pp

and Eo. We shall consider the most general case, in
which, besides the usual interaction, a direct interaction
of the type" hop' is included in the Hamiltonian. The
only alteration in the formulas given above is that a
constant quantity is added to (29) or (31). As a result
one should substitute in (50) or (51),

po= (16/3)( —1)+5o, z= 0"',
&0=24(1—s)+50 s= q'i' (52)

respectively, for symmetric and neutral theory, where
bp is a constant. " Substitution in (50) and (51) yields,
after introducing a variable x in accord with (52) and

"In the presence of this interaction, the S matrix has the form

XpT exp gp py5~&4 q &d&+ .4 )
~s+~1+~2+~3+~4~&

1,4t

in symmetry theory and

PpT exp gp Py6$ydx+ —.
,

y4dx
i4t

in neutral theory.
"This constant is equal to

(4/pr)gP In(A /Ap )+(40rhp/gp ) [or 4/(40rXP/gp ))
in symmetric theory, and to

(6/pr) gp' In(A ~0/i40)+ (40rkp/gp') [or 6+ (4rr) 0/gp') j
in neutral theory. The values in brackets refer to the case
(gp /m) ln(h. y /h. 7s )))1, for rvvhich (gp /m) 1n(A /h. 7, )~1; ~o
=Qp 9p.

Palaprg(z)PVllG3G4(S) (230+536iCQSQpp47P (S).
v, p,=l

Thus, for the quantity P(0))o,=ppo, +F,+F&+F., we
get
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taking into account (3), (4),

16 ii t dx
P(b p, x) =—(x—1)+bp —— P'(bo, x)—,

3

3 r' dx
P(bp, x) = 24(1—x)+bp —— P'(bp, x)

2&g x

(53)

dP(bo, x) 3 (P(bo, x) ) '

dx 2& x ) '

(54)

where, according to (53), P(bo, 1)= 5o. Solving Eqs. (54)
with this boundary condition, we obtain

16
P(bo, x) =—x, x= Qo",

11 P+ (8/11)x—""
(145) '*+1

P(5o,x) = x
x&145

x=Q "'
(145)'*+1

Il+ x&145

(145)'—1
where

Here, as in the following, the first formula refers to
symmetric theory and the second to neutral theory.
Differentiating (55) with respect to x we obtain

dP(bp, x) 16 11 (P(bo, x) ) '

dx 3 6E x )'

go' g.' P(bo,x)
Zoo P(b p—,x) =——

4m 4+ xp
(57)

where xp ——Qo'" in symmetric theory and xp=Qp ~ iii
neutral theory. Thus after renorrnalization, P(bp, x) is
replaced in all the formulas by

P, (x)= P(bp, x)/xo,

which is the meson-meson scattering amplitude after
renormalization. " As x=xpx, [where xp and x, are
defined in terms of Qp and Q, as x is in terms of Q], we
obtain, in accord with (55),

P, (x)=P(b„x,), (58)

where P is a function (55) and b, is a function of bp, gp'

and I. being dined by the formulas

(1+-',b.)/(1 ——,",b.) = [(1+-',bp)/ (1—,",bo) ]x—o"~',

(145) +1 i ( (145)'—1

l
1+ — b,

l l
1+—

48 ) t, 48 i

is multiplied after renormalization by

Z 2 d —
2(g 2 L) d2(g„2 L)

According to (12), go=go'/Qp, Qp ——1+(Sgo'/4o-)L,
and according to (3) and (4), Zo ——Qp

~' in symmetric
theory and Zo ——Qp

+' in neutral theory. Thus we
obtain

&= (1+obo)/(1 —iobo)

(145)*+1 i ( (145)'—1
Il=l 1+ b. I I

1+
48 E 48 )

(56)
(145)'+1

~ t
(145)' —1

l
1+ b,

I
x

48 ) E 48 )
If P(bp, x) and P.(x) are replaced by the quantities

These formulas show that P(bp, x) is a quantity of
the same order of magnitude as Rp(x). Substituting (55)
in (26) we find, as in (33), that for Q»1 the contri-
bution in (16) of all diagrams with any number of
nucleon loops is

Sgp' 5gp'
vp (1—Q "')=vp

117r 1ix

(145)'+1 (145)'+1
go'(1 —Q "')=v — go'p5

727r 727r

for symmetric theory and neutral theory, respectively.
It is obvious that for gp' ~ 0 this contribution vanishes.

8. RENORMALIZATION PROPERTIES OF THE
SCATTERING AMPLITUDE P (bp, x). DEDUCTION
OF (54), (55) FROM THE RENORMALIZATION

PROPERTIES

22 For the sake of simplicity we consider in this section the case
A„=AI,=A., for which g02=gp, Xp=hp, and the quantity bp (see
reference 19) equals 4m'Ap/gp. To change to the two-cutoff case
D, d, gp, Xp, bp should be replaced by D, d, gp, Xp, and bp.

In the familiar renormalization procedure, " the
meson-meson scattering amplitude

(go'/4p-) P(bo, *)

P(bp, x) goP i 4~Xp
0'(go', Xp, I. $) =——=— Pl, x l, (59)

bo 4mAo ( goo )
g.o g.o P(bp, x)

5'.(g,',X.,&)
=- P.(x) =

4mB. 4m-P, x'
(60)

where, according to (59), P(gp', Xp,0) =1 [since P(bp, 1)
= bp for $=L, x= 1j, one may then rewrite the renor-
malization relation (57) in a form which is exactly
similar to that of (11). (P and (P, are the vertex parts
of the meson-meson scattering diagrams before and
after renormalization. According to (57),

XoP(goo, Xo, L $) =X.d.'(g.',Xc,L—)6'e(gc', X.,$), (61)

where Zp ' is replaced by d, '(L). Putting g=L, we
obtain

Xo ——X.d.'(g.',X„L)(P,(g,',) „L). (62)

This formula defines the dependence of Xp on X„l., and

g,', which was expressed above in explicit form. In-
serting in (61) the values of X, from (62), we obtain,

"It should be noted that P, (x), according to (55), remains
finite for any value of bp.
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as in (11),

6'(gp', Xp, L—
P) = (P.(g,',X.,g)/(P. (g.',X.,L). (63)

/

/

g'(&) =go'/Q(k).

In order to obtain Ii4, one should determine I' to first
order in gp' and Xp.

From the diagrams of Fig. 9, we obtain for the cases
of symmetric and neutral theory:

Equations (11), (62), and (63) completely determine So
the renormalization procedure, if one takes into account

Fto. 9. Essential diagrams in perturbation theorythat n, P, and d in relations (6) depend, in the presence
of direct meson-meson interaction, on Xp, and n„P„
and d, depend on A, effect), and hence for g'(g) we obtain the expression

We now show that Eqs. (54) and (55) for the meson- (15)
meson scattering amplitude can be obtained from these
equations in a manner similar to that used above to
obtain the values (3) and (4) of the functions n, P,
and d.

We introduce, similarly to (12), the effective charge
of direct meson-meson interaction,

X($)=Xo5'(goo, Xo, L—$)d'(go', Xo, L $)—
=&.6—.(g.',l.,~)d'(g. ',~.,&) (64)

By a method similar to that used in obtaining (13),
we obtain from (11) and (63)

~'/~= ~.'/~. =Fi(g', ~),

e'/O=O. '/e. =F.(g', ~),
d'/d= d, '/d, =Fp(g', X),

6"/6'= 6.'/6, =F,(g',X),

where the functions F&, Ii&, Iia, and F4 depend only on
the effective charges (12) and (64). As an example we
present the proof for F4. From (12) and (64), we obtain

$= $(g,',g', X), X,=X,(gg, g',X);

therefore the ratio 5', '/(P, , which is a function of gP, X.,
and $, can be expressed as a function of gP, g', and X.
Thus (P'/6', which is equal to (P,'/(P„can be expressed
as follows:

6"(go',&o, L $)/6'(—go', l o, L—5)=F (g ',g'») (66)

If the values of gp' and Ap are fixed in this equation and
L and f vary in such a manner that L fremains-
constant, it will easily be seen [see the similar equation
(14)] that the only varying quantity in (66) will be g,'.
Equality (66), therefore, can be true only if F4 is in
fact independent of g,', i.e., we arrive at the last of
Eqs. (65). A similar proof can be applied to the re-
maining cases. The logarithmic derivatives of the
effective charges (12) and (64) yield

[g')'/g'=»Fi(g'l )+»F (g'~)+F (g'l )
X'/X =F4 (g',X)+2F p(g', X),

(67)

which (if the functions F are known) can be considered
as the differential equations for g'($) and X($). These
equations should be solved with the boundary condi-
tions: g'(L) = gp', A(L) =) p. Letting $ —+ L, Xp«1,
gp'«1 (and ho~go') and using perturbation theory, one
may determine the functions F;. For F&, F&, and Ii3 we
obtain the previous expressions (since the effect of
direct meson interaction on them is a higher order

gp 11
Xoa'= Zo+—(I.—~) ——Z,P (L—q),

7r2 2

3gp
Xo6'= ho+ ——(L—5) ——&o'(L—$).

27r2 2

[The three terms in these formulas correspond to
diagrams (a), (b), (c) in Fig. 9.].Hence,

F4= (6"/6') o I.——(11/2)X—(g'/pr9, )

for symmetric theory and F4 op X—(3g'/2——m-9, ) for neutral
theory. Inserting these values of F4 and the values of g'
found previously in (67), we obtain the equations

&'(P) 11 go'
=—x ($)— +

l (r) 2 -'l (r)Q(~) Q(&)

2gp

~'(k) 3 3go'-=-l (~)-, +
~(~)» 'l (~)Q(~) Q(~)

These equations reduce directly to (54) if, in accord
with (64), the substitution X($)= (gp'/4r)F(bp, x)d'(x)
is made and one changes to the independent variable
x= Q'i' in the case of symmetric theory and to x= Q

—'io

for neutral theory. '4

'4 See also in this connection ¹ N. Bogolubov and D. V.
Shirkoff, Doklady Akad. Nauk S.S.S.R. 103, 400 (1951);Nuovo
Cimento 3, 845 {1956);D. V. Shirkoff, Doklady Akad. Nauk
S.S.S.R. 105, 972 (1954); J. C. Taylor, Proc. Roy. Soc. (London)
234, 296 (1956).

9. VANISHING OF MESON CHARGE IN PSEUDO-
SCALAR THEORY WITH PSEUDOVECTOR

COUPLING

As is well known, within the framework of the usual
perturbation theory, the theory with pseudovector
coupling is not renormalizable.

This, however, cannot be used as an argument
against a treatment in which an expansion in powers of
gp' is not used.

Ke shall consider the theory with two-cutoff values.
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We confine our considerations to the limiting process (c), The second term can be written as

(Ai'/m') [ln(A '/A~'))-'&&1

as this is the simplest case.
We will now show that in this case" the Schwinger-

Dyson equations

gpI' (P, P —k) =8ygk= I'G(P —l)

—Sm2k2

(p' —m') ((p—k)' —m')

—Seek' 2pk —k'
—8m'k' . (73)

(p2 m2)2 (p'2 m2)2[(p k)2 m2]

)& I'G (p —k —l)I'D (l)d'l+

3gp
p m— — t 8y,kG(p k)I'D—(k)d4k G(p) =1,

xim' " J

2ge
tk —~+

'
Sp[rG(p)8~, kG(p —k)

m'mZ ~

—(I'G(p)8yskG(p —k))i2=„~jd'p D(k) =1

On substitution of (73) in (70), the second term of

(68) (73) gives a convergent integral, whereas the integral
of the first term of (73) diverges logarithmically. The
part of this divergent integral in the region Ai'( (—p')
(A.~' will equal (k' —p')ll, where

II= (4go /7r) 111(A„/A ).
Taking into account in (10) only the largest, logarith-
mically divergent part of the integral and writing
(1+II) in front of the brackets in (70), we get the

(70) following expressions for D = (1+II)D(k):

(where 8 is the cut-oR function, y the observable meson
mass, and m the "bare" nucleon mass which equals, as
shown below, the observable mass), have a simple
solution of the form

D '(k) = (k' —p') [1—(4g.'/x) ln(Ai'/ —k') j (74)

gp
g'= (1+11) 'ge'= (75)

1+ (4g,2/~) ln(A„'/X, 2)

G(p)=(p —m) ',

y„.A if the momenta are less than
the cutoff values,
otherwise,

r(p, p —k)
.0

D (k) = (k' —p') '.

4g2 - —1

D(k) = 1+ ln(A„'/Ag') D(k),

(71)

(72)

which is the same as (72) since g,2 In(A„'/At. '), accord-
ing to (c), is an infinitesimally small quantity. Accord-
ing to (71) and (72), g.e is the renormalized charge.
Thus, if (72) is substituted in (68) and (69), ge will be
replaced by g,' and the free-field function D is sub-
stituted everywhere for D.

Equations (68) and (69) are satisfied in this case,
i.e., the integral terms which enter them are in6nitesi-
mally small. To prove this we estimate the integral
term in (69),

First of all it will be proved that (72) is a corollary
of (70) and (71).

Inserting (71) in (70) and transforming the inte-
grand in (70), we get

M(p) =—

We have

3g 2 )Aa ] d4k

+5k ps@ o

m'rrr', ~ p —k —m k' —p'

M (p) P-,'g, 'h. i'/m', (76)
Sp y5k ps'

p —m p —k—m to terms of the order of m'/ —p' and —p'/Ai, 2 relative
to unity.

Sm'k' If —p' is not small compared with Ai2, the magnitude
of M(p) will be even smaller.

If, however p=m, then M(m)=Am will be the
change of mass resulting from interaction with the
meson field. In this case, expanding (p—k—m) ' in a
series in ns, we obtain

1
=Sp k

p —m p —k —m

The term

1 1 1 1
Sp A; A. —k

p m p k m p m p k m M (m) =Dm~-'mg 'Ag'/m' (77)

According to (75) and (c), g 2i1i'/m'«1, and (76)and (77)does not make any contribution to the integral in t', 70'.26

~~Only neutral theory will be considered. In this case the
S-matrix has the form T{exp/(go/m) 1'pyq( i& q)gdx]), wh—ere go
is the dimensionless coupling constant and (—i&)e '~=Ee '~.

'E. S. Fradkin and Avrorin (to be published). It should
be remarked that, if the cut-o6 procedure is carried out in such a

way that

Sp k
p —mp —X—m

yields a nonzero result, the proof that the renormalized charge is
zero is even simpler.
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are vanishingly small quantities L(77) in particular
shows that Am/m&&1, i.e., the "bare" nucleon mass is
practically the same as the observable mass].

In the exact equation (68), besides the term written
above, which corresponds to the simplest diagram of
Fig. 1(a), one should also take into account other
terms which correspond to more complicated diagrams
with intersecting meson lines and nucleon loops (Fig. 1).

We first consider the case when the momenta p,
p —k, k, corresponding to free ends in (68), are small

compared with A~.
It is easiest of all to estimate the contribution from

the term given in (68),

g
2 Ap ] d4) g2+2

+5~ +5~ 75~ =75~
P—f P—A, —l P 42r m'

It evidently is vanishingly small compared with p;A.'.

Consider now an arbitrary diagram of the type of
Figs. 1(b) and 1(c) with n intersecting meson lines.
Its contribution involves the factor (g,2)"; in the
integrand we have 22 functions D = (k2—p2) ', 2g,

functions G, and 2n functions F, the number of inte-
grations over the momenta k~, k2, , k„of the mesons

being e. The order of magnitude of the integral will not
be underestimated if each integration over —k,' is
carried out independently, starting from —p' (or —k',
since for —p2«Ai2 and —k2«Ai, 2 the lower limit is of
no consequence, owing to the quadratic divergence of
the integrals). Thus we obtain the following estimate of
the contribution I from the diagram under considera-
tion,

I„y2kC (g,2)"(AI2/m2)", (78)

where C„ is a numerical factor. Obviously the mag-
nitude of (78) is arbitrarily small for g.2Ai2/m2((1.

Consider now the diagrams of the type of Figs. 1(d),
1(e), etc., which include meson-meson scattering. An

elementary "square" of Fig. 3 in the case of pseudo-
vector coupling does not involve any divergences, and
yields a contribution equal in order of magnitude to

g 2( k2/m2)2 (79)

if (—k') (—ki2) (—k22) (—k22) —(ki+k2+k2)2.
Now compare this quantity with the contribution from
the diagrams of Fig. 4, containing two squares. Vsing
(71) and (72), we get the following estimate of the
contributions:

g 'k4
t

2 f' —k2)2t A1,2) '
d'1-g'I

I I
g''

~ J m2 m2
(80)

Thus, in order of magnitude, (80) differs from (79)
by a factor (g,2A&2/m2)2&(1, and is vanishingly small.
The series of successive meson-meson scattering acts
converges rapidly and practically equals (79). In other
words, the contribution from all the diagrams with
nucleon loops of the type shown in Figs. 1(d) and 1(e),

is practically the same as the contribution 8&& from the
single diagram in Fig. 1(d); the magnitude of the
latter can readily be estimated,

A 2q 2

s~~-»acid.
l g. m')

where C~~ is a constant.
The estimates thus obtained show that all diagrams

with intersecting lines and nucleon loops of the type
shown in Fig. 1 form a series

( Ag2) " 2. AP
y2A Q 8„( g,'-

~
=y2k P 8„——

n=i 0 m2 ) n i 4 m21n(A 2A 2)

(81)

where the B„are numerical multipliers. This series is
evidently asymptotic. However, its sum can be made
arbitrarily small relative to ps% by virtue of condition
(c). Thus I' really equals y&k, in agreement with (71).

Up to the present the momenta p and k were con-
sidered small compared with A~. If this condition is not
obeyed, the difference between F and y5A'. will be even
smaller than in the case considered above (this is
similar to the situation in electrodynamics and in
pseudoscalar coupling theory). For example, if

—p'))A22 —k'(&A1,2

the quantity 1/p (instead of 1/k) will correspond to
the nucleon lines of the diagrams in Figs. 1(b), 1(c),
etc. Instead of (78), we obtain the following estimate
of the order of the contributions from diagrams with e
intersecting meson lines:

(A )n( A2) n

I„=~,kC„'~ —
I I g,

E —p2) ( m2 )
which is even smaller than the quantity in (78).

Thus, by strengthening inequality (c), in the limit
AI, —+ ~, we may, with any degree of accuracy, satisfy
Eqs. (68), (69), and (70) with functions (71) and (72).

Relation (75), which establishes the connection
between the renormalized and "bare" charges, indicates
that for AI, —+ ~,

g, —+0,

which is similar to what one finds in electrodynamics
and pseudoscalar coupling theory.

10. CONCLUSION

The result g,' —&0 was rigorously proved above for
pseudoscalar theory with two different types (a) and

(b) of limiting processes Aq —+ ~. In both cases, in the
limit AI, ~ ~, the physical interaction disappears; thus
under these restricted conditions the result g,' —+0 is
independent of the form of the limiting process. It is
significant that no ambiguity arises in the theory and
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after renormalization all the results are independent of
the form factors, i.e., of the specific nature of the
limiting process (parameters of the type A„and As

which characterize the "diffuseness" completely disap-
pear from the formulas of the renormalized theory; they
remain only in the formuls relating the unrenormalized
quantities). This indicates that, from the theoretical
viewpoint, various types of limiting processes are
equivalent; i.e., in the limit of AI, —+ ~, any relationship
between A„and Ak is permissible. '

In other words, physical results for fixed finite
distances should not depend on the character of the
limiting process, i.e., on the relation between A„and
As, which, in the limit, refer to infinitesimally shalt
di stances.

It can be seen from the foregoing that two cutoffs are
necessary to keep, in the range up to AI„ the "effective"
charge go' small, no matter how large the bare charge

go might be. A slow, logarithmic dependence of all

quantities on the momenta, and the possibility of

expanding into a series of the same type as (1), is due

to the smallness of go'. Thus, introduction of two-cutoff
values considerably simplifies the problem, as in this
case the theory with an arbitrary go directly reduces to
the case when the charge is small (if II»1) and ex-

pansion (1) and formula (7) are valid [or else the
problem directly reduces to the case when the inter-
action is turned off, if (b) II ' ln(As'/tran') ~0, or (c):
II 'As'/m'~ 0]. Since the results are independent of
the character of the limiting process, the result that

g,' equals zero can also be expected in a single-cutoff
theory in which A„=As. (According to (7) for a suf-

ficiently small gs this is certaintly true. ) If, however,
go' is not small in the single-cutoff theory, the functions
will depend strongly (nonlogarithmically) on the mo-

menta near the upper limit, and a more refined mathe-
matical technique will be required. Nevertheless, in this
case one may also present some general considerations
which indicate that the renormalized charge should
vanish.

For simplicity consider the case of electrodynamics
for which at es'«1 we have' n=P= 1,

d(k) = [1+(ess/3x) ln(A'/ —k')] '
= (3rr/e ') [ln(A'/ —k') ]—'

The latter equality refers to the case when (es'/3x)
Xln(A'/ —k')))1. Inverse proportionality between the
function D= k 'd(k) and es' indicates that in the
Lagrangian of the system the part belonging to the free
fields can be neglected. [It is not difficult to see that

~7 This does not signify that the "smearing" function 8 can be
introduced in an arbitrary way, the only restriction being that
A.I, —+ 1 as A& —+ ~. Since the unrenormalized theory involves
logarithmically and even quadratically divergent integrals, it is
important that A.7, approach unity suKciently rapidly with
decreasing momenta. Otherwise some definite general conditions
will be violated {e.g. , the conditions of the Lehmann theory)
which chould be satis6ed in any physically reasonable theory.
The results obtained in this case will not have any physical sense.

in this case the average of T(A„(x)A„(y)) ovei' the
physical vacuum, which defines the D function, is in-

versely proportional to es'.] If, however, the free-field

Lagrangian does not play any significant role, at eo'«1
it is natural to assume that with increasing eo' its role
will be even smaller. Therefore [d(k)] ' must also be
proportional to es' for ess) 1, i.e., essd(k) is independent
of es' and always has the form essd(k) = 3rr[ln (A.'—k')] '
(if only —k' does not approach A' too closely). Hence
for e,' we obtain

e '=3s[ln(A'/nz')] ' —&0

just as in the case when eo'(1.
It should be noted also that for two cutoffs one may

consider firmly proved the validity of the expansion of
the various quantities in series of type (1) in powers of
an arbitrarily small quantity go'. Thus, for I'z or g,' we

get series of the type

t' As' )r,—y, =Q(g, ')"&„] go'ln —')

where, for instance, Gi(x) = [1+(Sx/4s.)] ', etc.
Although these series are apparently asymptotic"

and not convergent, their sum, nevertheless (as for any
asymptotic series) can be approximated, with any
degree of accuracy, by the first terms if the latter
decrease sufficiently rapidly with increasing e. This was

directly demonstrated above for F~. A similar state of
affairs also holds for the expansions of other quantities.
Therefore, for go' —&0 the expansion of the various
quantities in series of type (1) is permissible, and does
not in any degree undermine the rigorousness of the
proof.

Evidently, the vanishing of the renormalized charge
is a general difhculty which appears in any theory with

point interaction. This difficulty is encountered in elec-

trodynamics, is pseudoscalar and pseudovector meson

theories, in meson theories with mixtures of various
interactions, in theories with mesons and nucleons of
various types which mutually transform into each other
without restriction when the interaction has the form

or with certain restrictions ss and

finally, even in the case of a meson fieM which interacts
with itself and possesses an interaction energy of the
form ),Oq 4. The relation between the renormalized
constant P, and )0 in the latter case can be directly
determined from (62) and (60), since according to (62)

X,= (gs'/4rr) P (bp, xp) d'(I ).
ss C. A. Hurst, Cambridge Phil. Soc. 48, 625 (1952); A. Peter-

man, Helv. Phys. Acta, 26, 291 (1953).
"Theories with mixtures of various interactions and various

mesons were studied from this viewpoint by A. D. Galanin,
Soviet Phys. JETP (to be published).
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This equation, in the limit ggg~0 (which means
that free nucleons and mesons directly interacting with
each other are being considered) yields

1+(11/2) Xg ln (hg'/ggg')
(82)

for the symmetric theory, and

Xp

(83)

for neutral theory.
In these formulas P p can only be a positive quantity,

as otherwise arbitrarily large values of p will correspond
to the minimum of the energy

1 tt'8 gg)
g Xp

I
—P'~' +—V'(~)

2 (a~)

and this is obviously absurd.
From formulas (82)—(83) it follows that, for point

interaction (for Ag —& ~ ) the renormalized constant X,
will also vanish.

The fact that the renormalized charge is zero seems
to indicate the existence of a certain operator which, in
the case of point interaction, transforms the energy
operator K to the form

in which it merely represents the sum of free-field
energies and the interaction operator disappears. Thus
the failure of modern theory lies in the fact that in the
limiting case of point interaction it directly leads to the
disappearance of any type of physical interaction.

In conclusion, we shall consider the possibility of an
experimental proof of inconsistency of the theory.
Evidently the important types of experiments will be
those in which weakly interacting particles (electrons,
photons, and possibly p-mesons) are involved, as present
theory yields quantitative results only for these particles.
If the inconsistency of the theory is due to a change
in the usual properties of space at small distances 1/h,
one should expect that departure of experiment from
theory will be observed if the essential momenta are of
the order of or exceed 1/h. Moreover, the characteristic
length should be the same for electrodynamics as for
meson theories. Equation (76) shows that Ag/gggg cannot
be very large, as then the physical meson charge
constant g,' would be small, and this is contrary to
experiment. Therefore A. in order of magnitude equals
gN, where I/ggg=A/M„c 10 " cm. This length corre-
sponds to electrons with an energy of 400—1000 Mev.
Thus if the electron energy in electron-electron scat-
tering experiments in the center-of-mass system is of
the order indicated above (i.e., 10'—10' Mev in the

laboratory system), deviations from theory (from the
Mgller formula) should be expected. For this reason
it would be highly interesting to carry out precise
measurements of the cross sections for the brompton
effect, Mpller scattering, pair production, etc. , at these
energies.

If P mesons are also weakly interacting particles (i.e.,
if the anomalous p, meson scattering described in the
literature" does not really exist), P-meson experiments
may also be very important. The most promising
experiments seem to be those on meson pair creation by
p quanta of same Sev energy, and also experiments on
high-energy 6 electrons formed by p, particles.

Discussions with L. D. Landau were of great aid to
us in obtaining some of the results presented in this
paper, and the authors express their sincere thanks to
him. We also take the opportunity to express our ap-
preciation to J. I. Diatlov, V. Berestetsky, A. Galanin,
and B. Joffe for stimulating discussions.

where

Palagaga4(g, )) =P(ff, ))5~+Pl(7),$)5ayag5aga4,

Paya a a4g(qg, g) =P(q)8~+P~(q)8agag8aga4,
(b)

(c)

P (n) =P(n, n) =Pg(n)+3P(n),

P~(n) =Pg(n, n)
—=o

Inserting (a) in (41), considering separately in (41)
the integration regions $&~s&&q and" q&s&&Lg, and

~ J. L. Lloyd, and A. W. Wolfendale, Proc. Roy. Soc. (London)
A68, 1045 (1955); A. I. Alikhanov and G. P. Yeliseev, Izvest.
Akad. Nauk U.S.S.R., Ser. fiz. 19, 732 (1956), and other inves-
tigations.

"Taking account of the fact that in the 6rst region E0,
F(k1,l; k2,l') and F(kI,l'; k2, l) depend on g, and in the second on s.

APPENDIX: LIMITING FORM OF SOLUTION OF
EQUATION (41l IN SYMMETRIC THEORY

We shall consider here equations which are similar
to (42) and (43) but for the case of symmetric theory.
If the momenta kj and k2 are very large so that the
largest of them, k, is much greater than k&+kg (i.e.,
q) $, g=ln( kg/gg—g ), g$=lnL —(k~+k ) g/ gg5gg)g, we seek
the solution of (41) in the form:

F(ki,kg jkg)k4) =C (g)$)8,+C'i(g, p)Sal~glaga4 (a)

Putting here g = $, 4 (gg) =P (q), C ~(q q) =Fg (g), we then
obtain

P(klykg j kg)k4)
~ g=$ P(g)~a+Pl'('g)~+1+g~+g+4

According to (40), for the unknown sum

Pa yaga ga4 (k] )kg) k g) k4)

of the contributions of all contractible diagrams we have



VANISHING OF RENORMALIZED CHARGES

equating the coefficients of 8, and sa]a28aaa4 we get

C (x,y) = ——',[pp(x)+2F(x)+F1(x)]

r" dT
[po(r)+2F (r)+F1(r)++(r,y)]—

T'

[pp(r)+2F (r)+F1(r)]

dT
X [po (r) +2F(r)+F1(r)+4'(r, y) ]—,

2

@1(X,y) = —
p

" ((p)[po(X)+2F(X)]

X [po(r)+2F (r)+4 (r,y)+C 1(r,y)]

+F1(x)I 41(r,y) -F1(r)])—
T2

We now prove that in the limiting cases x—1«1,
y —1«1 (i.e., gp'(L —g)«1, gp'(L —f)«1) and x&1,
y&1 [i.e., gp'(L —q)»1, goo(L —f)»1], the solution of
the set of equations (e) and (f) can be found easily.

The case x—1«1 and y
—1«1 is equivalent to the

usual perturbation theory. The system (e) and (f) can
then easily be solved by an iteration procedure, if in
the zero approximation F=F~= C =C ~

——0 is substituted
in the right hand side of these equations. We obtain

F(x) = —(1/3) p p'(r) dr = —(1/9) (16/3)'(x —1)',

(e)
Fl(x)= —(5/ g)( / )'(x—)'

4 (x,y) —F(x)

= —(1/6) (16/3)'(x —1)[(y—1)'—(x—1)'],

C 1(x,y) —Fi(x)

= —(5/») (16/3)'(x —1)[(y—1)'—(x—1)'].

—o)" ((p)[po(r)+2F(r)]
1

X [pp(r)+2F (r)+4 (7.,y)+C 1(r,y)]

dT
+F1(r)[Pl (r,y) —

F p (r)])—,2'

where q, $ and s have been replaced by the more conven-
ient variables x, y, and r, respectively: x= Q'"(p), y=
Q"'(P) and r= Q"'(s), and (go'/4rr)d'(s)dz= ——',dr/r'
Putting in (c) x= y, we obtain two additional equations,

F(x) = ——', [Pp(r)+2F (r)+F1(r)]

dT
X[Po(r)+2F(r)+F1(r)+C (r x)]—,

2

F1(x)= —
p f (5/2) Lpo(r)+2F (r)]

X[po(r)+2F(r)+P(r, X)+pl(r, X)]

+F1(r)[$1(rlx) Fl(r)]) 2'

which are equivalent to Eq. (42) of the neutral theory.
It should be remarked that Eqs. (53) and (54) obtained
directly for F(x)=pp(x)+3F(x) are equivalent to the
set of Eqs. (e) and (f) or (42) and (43); i.e., they
can apparently be obtained from the latter as their
mathematical corollary. However, we were unable to
accomplish this.

For simplicity consider the case when pp(x) is defined

by formula (52) for bp
——0, i.e., pp(x) = (16/3)(x—1).

If these expressions are substituted in the right-hand
sides of (e) and (f), one may determine all the functions
as series in (x—1) and (y—1).

If x)&1 and y)&1 in (e) and (f), then large values of
the integration variable r are important (r»1). There-
fore, neglecting unity compared with r (or x or y), we
insert po(r) = (16/3)r in (e) and (f), and we replace,
in the second term of (e) and (f), the lower integration
limit (unity) by zero. It will now be shown that (e)
and (f) have solutions of the form

F(x) =Ax, Fl(x) =Alx, (g)

O'4 1(x,y) 1
((5/2) (&—A 1)[(fl—A 1)x

Bx 3x

+C (x,y)+C 1(*,y)]+A 1[c1(*,y) —A lx]),

where 8= (16/3)+2A+A 1. This differential equation
should be solved with the boundary conditions

~(o,y) =4' (o,y) =o,

BC (x,y) BC 1(x,y)

which follow from (e) if the expressions (g) for the
functions F and F~ are taken into account.

where the values of the constants A and A~ can be
determined by solving (e) and (f), i.e., by substituting

(g) in (e) and (f) and differentiating (e) twice with
respect to x,

8'4 (x,y) 8
[Bx+C (x,y)],

Bx 3x
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It is not difficult to see that the solutions are

8
C = Bx—+ xv—y' v

p

58 1
4,=A» — xvy+v+-[(5/3) 8—A,]x y'-,

3p P

where p, &0 and v&0 are positive roots of the equations

According to (i) and (j), we then get

A = —(16/3) (16/121),
8= —(16/3) (40/121) .

In accord with (g), (c), and (d), we obtain

(16/3) (x—1){1—(88/27) (x—1)'

—(g/3) [(y—1)'—(x—1)']+ ),
/4(/4 —1)= 68 v(v —1)= -',8+-', (8—A). (h) P(x,y) =

From the condition 4 (x,x) =F(x)=Ax, 41(x) =A1x, we
find

A = [(1—
/ )// ]8, A1= —(5/3) [(v// ) —1]8.

x—1(1, y
—1(1,

(16/3) x{1+(5/3) (x"'"y "'"
x16/66y 16/66)+. . . ) x) 1 y) 1

The last equation together with (h) yields

v = 1+ (5/6) (Bl/4)
and therefore P1(x,y) =

—(5/12) (16/3)'(x —1)

X{[(y—1)'—(*—1)']+ )

A1———(5/3) [(1//t4) —1]8—(25/18) (8'//4') . (j)

Inserting in the definition of 8,
8= (16/3)+2A+A1,

and

(16/11)x(x16/6y —16/3 1)

x—1(1) y —1(1)
x&i, y&1,

the expressions (i) and (j) for the constants A and A1,
we get the following equation for 8:

(16/3)x, x&1.8'+ '/4'8 (32/9—)/4' =—0

x—1&1, (k)

which should be solved together with Eq. (h) for /4.

The only solution which gives positive values of p
and y is

8= (16/3) (7/11)', /4 =49/33, v = 73/33.

It is easy to verify that for b6 ——0, 8= 1, formula (55)
for P(x) yields in the cases x—1&1 and x& 1 the same
limiting values as those in (k). However, we obtained
here the expression for Pa1n6~6a4 not only for r/={ but
also for the case when 4/) {.


