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Reorientation EBect in Coulomb Excitation*
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The semiclassical treatment of the effect of the reorientation of the spin of the target nucleus during a
collision resulting in Coulomb excitation is presented. It is found that the eGect vanishes for zero excitation,
but that it may be appreciable for finite excitation. The effect on the angular distribution of the photons is
similarly found to vanish for head-on collisions. Three diferent types of experiments involving the measure-
ment of the angular distribution of the photons are discussed. Typical numerical results for comparison with
experiment are presented and the possibilities offered by bombardment with heavy ions are noted.

I. INTRODUCTION

HK fact that 6nite-amplitude effects can be ap-
preciable in Coulomb excitation has been pointed

out by Breit and Lazarus. ' In the present note, one of
the effects is calculated in the semiclassical approxima-
tion for a 0—+2 transition. The effect under consideration
consists in the reorientation of the nuclear axis caused

by the electric 6eld of the bombarding particle after
it has excited the nucleus. The change in the nuclear
spin direction affects the angular distribution of the

& rays. The latter distribution is affected by other
finite-amplitude effects entering in the same order of
the calculation such as the excitation 0—+4 followed by
de-excitation 4—+2. Since this effect depends on higher
(2') multipole action, it appears reasonable to neglect
it in a preliminary survey of possibilities. The transition
chain 0—+2—&2' will also affect the y angular distribu-
tion. In the usual case of Coulomb excitation from

ground states of even-even nuclei, the order of the rota-
tional levels is 0, 2, and 4 while levels with I=2 occur
at higher energies and transitions to them involve

changes in quantum numbers additional to the rota-
tional one. For both reasons, their effects may be ex-

pected to be less serious although they should be
eventually taken into account.

The principal interest in the reorientation effect lies

in the possibility which it offers of ascertaining static
nuclear quadrupole moments in excited states. The
other available method' employing intermolecular field

involves the theory of solids and complexities regarding

the motion of a recoil nucleus through a solid. The
reorientation effect in Coulomb excitation appears to
be relatively free of such complications, the orbit of

the projectile being well defined. It should be pointed
out that screening corrections for the influence of atomic

electrons are minor for the Coulomb excitation re-

orientation effect while they are present in the method

of intermolecular 6elds. Since values of quadrupole

moments of ground states are usually affected by screen-

~ This research was supported by the U. S. Atomic Energy
Commission and by the Office of Ordnance Research, U. S. Army.

' G. Breit and J. P. Lazarus, Phys. Rev. 100, 942 (1955).
' H. Frauenfelder, in Anngal Reviews of Nuclear Science (Annual

Reviews, Inc. , Stanford, 1953),Vol. 2, p. 129; see also A. Abragam
and R. V. Pound, Phys. Rev. 92, 943 (1953).

ing corrections' and since the latter are hard to estimate
reliably, 4 there may be a special value in the Coulomb
excitation reorientation effect for the measurement of
these moments.

The calculations presented below are made by means
of the semiclassical treatment (SCT) which employs
classical mechanics for the relative motion of the target
and projectile. Since one expects the reorientation effect
to be more serious for the heavier projectiles, this ap-
proximation is likely to be satisfactory for a preliminary
survey. The calculations are presented with reference
to three possible experiments. In the 6rst the angular
distribution of the p rays is measured in the usual
manner, the only reference line being the incident
charged particle beam. In the second the inelastically
scattered charged particles are counted in coincidence
with the y rays, no attempt being made to de6ne the
charged particle orbit. In the third the incident beam
and the inelastically scattered particle directions are
used to define the orbit in coincidence with y counting.
In the third type of experiment there is a maximum
possibility of obtaining checks on the parameters enter-
ing the interpretation. It is probably the one most
seriously affected by the inexactness of the SCT.

The present paper is confined to consideration of the
first nonvanishing order in the finite amplitude effects.
It is thus concerned with the calculation of cross-term
effects arising from the second order probability ampli-
tude effects. Terms quadratic in the second-order

probability amplitude corrections are omitted since
their inclusion would require the consideration of third
order effects in the probability amplitudes. With these
approximations, it is found that some special circum-
stances cause the reorientation effect on the y-angular
distribution to vanish for zero excitation energy. These
considerations do not exclude the possibility of detection
of finite-amplitude effects for small excitation energies

by studies of inelastic scattering. For nonvanishing

excitation energies, there remains an effect which, while

somewhat affected by the special circumstances which

R. Sternheimer, Phys. Rev. 84, 244 (1951); Foley, Stern
heimer, and Tycko, Phys. Rev. 93, 734 (1954);R. M. Sternheimer
and H. M. Foley, Phys. Rev. 102, 731 (1956).

4 C. Schwartz, Phys. Rev. 97, 380 (1955).



8 REIT, GLU CKSTERN, AN D RUSSELL

make it vanish for zero excitation energy, appears to be
large enough for observation.

An additional special circumstance arises for the case
of 6nite excitation by head-on collisions. The total cross
section shows an appreciable effect, but the angular
distribution remains unaffected in the higher order
calculation. Since the large probabilities of excitation
occur for head-on collisions, this circumstance makes

the reorientation e6ect smaller than it might have been
otherwise. Nevertheless the second-order effects rise

rapidly as the impact parameter increases from its

vanishing value for head-on collisions.

List of Notation

The following is a list of the more frequently occur-

ring symbols and their delnitions in the approximate

order of their appearance.

P2= nuclear charge of the incident, target particles
respectively.

e= velocity of the incident particle.

r, r&=displacement of the incident particle from the

target nucleus in the frame of reference in which the

g axis bisects the orbit hyperbola. The plane of the
orbit is the xy plane and the direction of the orbit is

such that the incident particle moves from the fourth

to the 6rst quadrant of the xy plane in its trajectory.
C =azimuth of r with respect to the x axis.

r„; r„, 8„, q „=displacement and components ip spher-

ical coordinates of the equivalent nuclear proton in

the same frame of reference as that used for r.
0„&——angle between r and r„.
V&

——spherical harmonic of order l and magnetic quan-

tum number re.

R;(r~), Rf(r„)=radial wave function of the equivalent

nuclear proton in the ground and excited states of
the target nucleus.

p =2, 1, 0, —1, —2 =magnetic sublevels of an I= 2

state of the excited target nucleus.
H'(t) = time-dependent quadrupole interaction term be-

tween the incident particle and the proton in the
target nucleus.

Eff;——~~;——Ace =excitation energy of the excited state
of the target nucleus.

H'„;(t) =matrix element of H'(t) between the target
nucleus ground state (I=O) and the excited state
(I=2) sublevel with magnetic quantum number 44.

H'» (t) =matrix element of H'(t) between sublevels t4

and t4' of the excited (I=2) state of the target nucleus.
co(t), c„(t)=time-dependent amplitudes of the nuclear

wave function corresponding to the ground-state
(I=O) and excited-state (I=2) sublevels given by t4.

c=c(')+c"'+c(')=separation of the time-dependent
amplitudes into terms corresponding to the power of
the interaction H, as given in the superscript,

(r')ff, (r )f;——radial matrix element of r„' between the
states R~, R~ and Ry, R; respectively.

2u'=closest distance of approach of the incident par-
ticle to the target nucleus for head-on collision.

e= eccentricity of the hyperbolic orbit.
'g f ));, 2);=—Z,Z2e'/Itv;, 2)f Z)Z——2e'/Avf

S„"'= amplitude for direct quadrupole Coulomb excita-
tion to the sublevel t4, apart from 2- and $-independent
factors.

S„=quantity which replaces S„&2) after inclusion of the
reorientation effect.

(8, (())=polar angles of the direction of the photon emis-
sion in the same coordinate system as that used for r.

c, s= cose, sin0 respectively.
8= tan. '(42 —1)&. The angle 2r —28 iS the SCattering angle

of the incident particle.
y'=ad+8=azimuthal angle of the photon emission

direction for the x-axis directed along the negative of
the initial particle velocity and the s axis the same
as for y.

l,=unit vector in the direction of polarization of the
photon.

k=propagation vector of the photon.
F2(I4r) = (m./2kr) Ji(kr).
8'=angle of k with respect to the negative of the inci-

dent particle direction.
J=angular distribution, apart from constant factors, of

the emitted photons.
(J)=average of J with respect to a rotation of the orbit

plane about the incident beam direction.
a2, ($), a4, ($)=angular distribution coefficients of the

Legendre polynomial of order 2 and 4 for a given
orbit eccentricity, c.

a2($), a4($) =averages over orbit eccentricity of a„(]),
&4 (k)

Pp —&S (2)

2.,= (S,(2)+S (2))/2/6
T —(S (2) S (2))/2/6
~p —gSp
V', = —(S2+S 2)/2/6.
&,= (S 2

—S2)/2V'6.
X=Z&e'(r') ff/[7))ta"()$, parameter relating magnitude of

the reorientation effect to direct Coulomb excitation.
D+h'D = separation of the 8'-independent term in

(1/4)(J) into the result of neglecting reorientation
and the change due to reorientation.

X2+81V2= separation of the coefficient of P2(8') in

(56/5)(J) into the result of neglecting reorientation
and the change due to reorientation.

cV4+KV4= separation of the coeflicient of P4(8') in

(7/2)(J) into the result of neglecting reorientation
and the change due to reorientation.

Cy, . -.Cv= coefficients of the angle-dependent terms in
a measurement of the correlation between the direc-
tions of the scattered particle and the photon. The
C's are defined in Eqs. (15), (14.2), (14.3), (14.4),
(14.5).
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II. PROBABILITY AMPLITUDES involved. One obtains also

t

X H';„(t) exp(iEpt/A)c„'" (t)dt. (2.3)

Since the c„are being calculated by an iteration pro-
cedure which gives perfect normalization when com-

pletely carried out, a correction for normalization need
not be made and Eq. (2) should be therefore good
enough for obtaining

l
c„l' correct up to and including

terms in H". It may be of interest to note that the
normalization sum resulting from the inclusion of c„&')

and without taking cp~ ) into account is already good
enough for calculating H" effects on

l
c„l' without the

consideration of what happens in higher iterations as
may be seen as follows. In a given order, the iteration
procedure gives only an approximately normalized solu-
tion. Calculation of

H'(t) =Zie'(r„'/rP)P, (cose ~),

the nuclear proton quantities being distinguished by
subscript p, the trajectory quantities by subscript t, and

8„& being the angle between the proton and projectile
directions as viewed from the origin. For simplicity the
discussion will be carried on as though the bombarded
nucleus were infinitely heavy. The nuclear wave func-
tion is represented as

~.(r.) = Rf (r.) 1'p. (0., p .)
in the state with I=2 and as

In the interests of simplicity, the calculation will be c (i) (i/A) e ( iE t/A)
presented as though there were only one nuclear proton
present. As is well known, the generality of application
is not affected by doing so provided the results are
expressed in terms of appropriate transition and static
quadrupole moments. The interaction Hamiltonian is
taken as

(1.2)

in the state with I=O. The radial functions are nor-
malized by

R'(r„)rp'dr„=1;
Jp

(1 3)

the latter equation being meant to apply to both radial
functions. The wave function is expanded as

f=cpvp+Zpcpwp ) (1 4)

all other nuclear states being omitted in view of the
simplifying assumptions mentioned in the introduction.
Employing the zero-order approximation

cp "=exp( —iEpt/A)

and the equation

Ad
——[c„exp(iE„t/A) 7+(H'„, (t) cp+Z„.H'» (t)c„}
i dt

Xexp (iE„t/A) =0, (1.6)
one obtains

c,
l

yz„lc
shows the presence of a correction factor of the form

1+8(H")

to all probability amplitudes. Since the intention is only
that of obtaining c„ to within order H'2, one may omit
this factor and similarly, since cp('&=8(H"), the first
term in brackets in Kq. (2.2) is 8(H") so that it may
be dropped. There results

~t
c„(t)=c„("(t) —(i/A) exp( —iE„t/A) exp(iE„t/A)

XZ„ II'„„(t)c„('&(t)dt+ 8(H"). (2.4)

From now on, the correction 8(H") will be omitted.
The quantity c„being needed only for t= ~, it suffices
to consider

c„(~)=c„('&(pp)—A 'exp( —i(pft) ~ dP

X dt'&„H'» (t')H'„, (t") exp(i(df, P) (3)

with

c =c (i)+c (p)
with the notation

t

c„('&= —(i/A) exp (—iE„t/A) ~ H'„;(t)
~f Ef/A) (p~' E~'/A~ p)fi =Ef~/A

Employing standard manipulations, one Gnds

(3 1)

Xexp(iE„,t/A) dt, (2.1)
c„"&= —(i/A) exp ( iE„t/A)—

X exp(iE„t/A) [H'„;(t)cp"'

+Z„H'» (t)c„' (t)7dt, (2.2)

5
Z„H'» (t)H'„, (t') =——AI„/[r'(t)r'(t') 7 (3.2)

(4pr)'
with

~OQ

A =Zi'e r~'Rf'(r~) dr„
l

where cp") is the first-order correction to cp, the designa-
tion of the order being in terms of the power of H'

r„'Rf (r~)R;(r„)dr~
~o

(3.3)
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and

I„= Y2„*(p)P2(pp') P2(pt) P2(p't') dQ„dQ„'
(3l '

= (4m/5) Yg„~(p)P2(pt)P2(pt')dQ, . (3.4)
$e+ coshwWi (c' —1)l sinhw]'

X- dw, (4.4)
(1+&coshw) 4

Here p stands for H„and (p~, pt for e~(, etc. The quan-
tities I„can be conveniently evaluated in a coordinate
system with s-axis perpendicular to the plane tt'. It is
found that

I„=(4m./5) 4„/7,

i„=-',(-')l(r—'+r' ') 0, 2—3 cos'(C —C') 0

+oo ~i) (m+e sinht0)

go(2)— dzo.
(1+e coshw)'

(4.5)

5 =re rt'— (4.6)

The notation S„")is that used by Alder and Winther. '
The quantity $ is taken to be

k (k)'( '+ ")
for @=2, 1, 0, —1, and —2, respectively, with

r =exp (iC), r'= exp(iC ')

(3 6)

(3.7)

rather than &er;&t'/&) in order to obtain better agreement
with the quantum-mechanical treatment of first-order
Coulomb excitation. Here

g;=Z)Z2e /h&);, re Z)Z2e /——A&)r. (4.7)

For Et,=0, the integrals in Eq. (4) are simplified.
Thus one finds in this case

Z)2e' exp(i(u)t)
(r'b) (r') r.

7+5 A'
c (2) (~) = —kS2"'So"'/(~ "'), (&~'=0) (5)

and C, C' standing for azimuthal angles of x& and x&

respectively.
If one den. otes the integrals in (3.3) as (r')t) and (r')~, ,

respectively, Eq. (3) becomes 1 (3& ' t' I' r +r
2 &. 2) s " &( r'r"

i„(t,t') exp(i&sr;t')
X dtdt' (4)

t&t' r'r"

with r and r' standing for values of r at times t and t',
respectively. Strictly speaking, the quantity in this
equation is not exactly c„&2' in the sense of Eq. (2.2)
but is obtained by omitting the first term in brackets
in (2.2), causing an error of order II". Introducing the
parametric representation'

X=&l (e+COShW), y=&& (e —1)& SlllhW,

r =a'(1+e coshw), t = (u'/&)) (w+e sinhw), (4.1)

aJ aJ ~&g

$2 —3 cos'(C —C ')j/(r'r") dtdt'

= $-,'(So&")'—-', (S '")']/( " '), (E;=0). (5.1)

where the vanishing of contributions from sin2C+sin2C '

can be inferred by a consideration of the transformation
(t,t')~(—t', t). Since th—e integral is symmetric, it is
possible to remove the condition t) t' and to express
the result in terms of an integral over the whole t, t'

plane. Substitution in terms of the S„"' through a
comparison with (4.2) and (4.3) yields then. the right
side of (5). Similarly,

where

'LZ ye

tI AG 5(4m)'*i
c„&')(~)= — Zle'(r')g; exp( i&utt)—

SA X( So 2 Q ISO(2) (S2 2 )2/So(2 Q So 2 )

' —'ZZ ''M" Substitution in Eq. (4) and comparison with Eq. (4.3)
gives

the quantity M being the reduced mass, one 6nds that

X r 'Yg„*(t) exp(i(o), t)dt (4.2)

has the value

$Zy8
c„&')( ) = (r') y; exp( —ko) t)S„(') (4.3)

2 (+5)ha"&)

5 K. A. Ter-Martirosyan, J. Kxptl. Theoret. Phys. (U.S.S.R.)
22, 284 (1952l.

the order being again for @=2, 1, 0, —1, and —2,
respectively. The ratio of second-order to first-order
eGects is seen to be pure imaginary since the S„(2) are
real. The gamma-ray intensities depend on the prob-
abilities of emission from the states p, , which in turn
are proportional to ~c„~'. According to Eq. (5.2), the

6 K. Alder and A. Winther, Phys. Rev. 91, 1578 (1953).
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population of the excited levels is aGected only to the
second order of c„(~)(~)/c„(')(00) on account of the
purely imaginary value of the ratio, and the eRect on
the angular distribution disappears in the order worked
with here.

The consideration just given is incomplete on account
of the presence of interference eRects between p rays
emitted from diRerent sublevels p, . A consideration of
their eRect shows that in the lowest order they appear
in the combination

with C standing for a constant the value of which is
immaterial for immediate purposes. The term I, (r/r)
arises from the particle current, which contains (h/i) &wo.

Here k is the propagation vector of the photon while

I, is its polarization vector. In Eq. (7), effects of all
multipoles are included. For the transition in question,
there can be no electric or magnetic dipole eRects on
account of the AL selection rule. The electric quadru-
pole effect arises from the 3iP~(cose)F2(kr)/(kr) part
of the expansion of e'"' and gives rise therefore to

with

'2

—csSO&'&+ cs(S2"'e'*"+S ~("e "&)
6

(5.3)
-

t'rp
-

~k -r

~
I'»*(0.,~.) ~

—
I I. P)l — — ldfl. (71)

. &r) „ k r ,)
as the angle-dependent factors in the matrix elements.
Employment of relations between rates of change of
matrices and their values replaces the dvo/dr of Eq.
(7) by &)0 giving rise to standard forms of quadru-
pole matrix elements with the same angular factors.
The term in P,((k/k) (r/r)) in the expansion of e'~'

also gives a nonvanishing contribution, but since it is
multiplied by Fa(kr)/kr it corresponds to a 2' pole and
will be omitted. It is convenient to introduce the
polarization vectors with direction cosines as follows:

(5.4)c= cose, s = sing,

where (O, y) are the polar angles of the direction of
photon emission. From Eq. (4.4), it follows that

S2(2) —S 2(2) (gf,.—O) (5.5)

and hence, according to Eq. (5.2) the eRect of the second-
order correction, may be represented by

S2&'&—)(1+in2)S2(» S 2'(~)(1 +io)2S2")
So(2)~(1+ino)SO&'& (5.6) l.= (c cosy, c sing, —s),

1(,= (—sin&t), cosy, 0),
(7.2)and the S„~2) as well as o.p cx2 are real. The cross-product

terms arising from (5.2) with the S„&2& corrected for
second order eRects are seen to be

The O.p and e2 survive only in the combination n~2
and the angular distribution eRect is therefore of a
higher order than the eRects considered here.

For head-on collisions, which correspond to &=1,
one has

(r/r)~= (sint&~ cosy„, sin8„sinrp„, cos9~). (7.3)

Substitution in Eq. (7.1) gives

()rq q tk -r

(6) ) Ek
S2&'& = —(3/2)'So&'&, (e=1, Er;=0),

so that

~SO(2) —(S2(2))2/So(2) — So(2)
(4~q1 1

cs exp()((ip), (p, =2, —2) (7.4)
E5) g6

(e=1,Z,,=O). (6.1)

According to Eq. (5.2), the c„(»/c„(') are all changed
in the same ratio and there can be no change in the ) ( pry q fk r'
&-ray angular distributions emitted for these orbits 2 0 I I I ~ IP&li

' Idol«r), ) ik r)
even apart from the fact that the changes in the c„are
90' out of phase with the Grst order eRects.

)4n-y
-'*

= —
i
—

i
cs, (7.5)

the Grst of which is in the plane through the s axis and

—(4/6&) c's' the photon direction while the second is perpendicular

&R ~S (»~S &»(1 )(1+ ) 2 ) (5 7)
to that plane. The direction cosines of the nuclear
proton are

III. GAMMA ANGULAR DISTRIBUTIONS

The angular distribution of y rays for quadrupole
radiation can be obtained by employing the interaction
energy with the transverse electromagnetic Geld in the
—J'j Adr form, which makes the transition matrix
element appear as

, (rH"=C u„*~ —I, ~e'~'(d&)o/dr)dr,
)r )

( (r) ) (k
) &k . ,)

t'4~q & s
=i»'~ —

) exp(pique), (y= 2, —2) (7.6)
&5) g6

while the other matrix elements vanish. Since the emis-
sion of a p ray leaves the nucleus always in the same
state ep, the p rays emitted from the sublevels p, =2, 0,
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x'+iy'= (x+iy)e", h= tan '(e' —1)'*, (7.8)

where (x',y', s) are the new axes. The azimuthal angle
of the y ray with respect to the (x',y', s) axes will be
called q'. It is related to p by

«'=«+3 (8)

In the p-ray intensity formulas one should substitute
therefore cp' —b for q.

The relative intensities will first be obtained by

r See, for example, G. Breit, Revs. Modern Phys. 5, 91 (1933),
Part VD.

—2 are coherent~ and one should add the amplitudes
obtainable from Eqs. (7.4), (7.5'), and (7.6) before
taking the square of absolute values. Since the S„&~) are
real, it does not matter in the calculation of lowest
order effects (i.e., on assumption of infinitesimal ampli-
tude of excitation) whether one uses the quantities in
(7.4) and (7.6) or their complex conjugates in the calcu-
lation of y-emission amplitudes. For finite-amplitude
eGects, however, the S„(') are replaced in the c„by
complex numbers and care must be taken therefore
regarding having the gamma emission matrix element
multiplied by the correct excitation amplitude. The
whole process takes place in the order of transitions
i0~fp~i0, the first arrow occurring by Coulomb exci-
tation and the second by gamma emission. Since, ac-
cording to (4.2), the c„&i& contains Fs„* under the
integral, the element in (7.1) corresponds to absorption
of a y ray and the quantities listed in (7.4), (7.5), and
(7.6) should be used multiplied by corresponding S„"'
for the same p, . The relative amplitudes for emission,
applicable also in the case of complex quantity replace-
ments for the S„&')) are

c'asl —S&&+ (1/g6) (Sse'"r+S se "'r)
I

'
+-'s'Is e»~—S s—»~I'

=c's IS I'+ss'(c'+1)(IS,
I +IS,I )

—(2/+6)c's' Reso*(sse 'v+S se ")
—ss' Re(sss s*e"r)—= (2/15)J, (7.7)

where the omission of the superscript (2) on S„"'
means that it is replaced by its corrected value in such
a way that substitution of S„for $„(2) on the right side
of' Eq. (4.3) causes a change of c„&i& on the left to
c„&"+c„&".The quantity J in Eq. (7.7) contains the
angular correlation of the y rays with the direction
of the incident particle; the factor 2/15 turns out to
be convenient in later expressions, but has no other
significance.

In the calculation carried out above, the parametric
representation of Eq. (4.1) has been used. This corre-
sponds to the x axis directed along the major axis of
the hyperbolic orbit. It is more convenient to have the
results referred to axes such that the initial particle
velocity is along the negative direction of the x axis.
This is accomplished by the transformation

averaging over rotations around x'. Such intensities
are needed for an experiment in which no coincidences
with inelastically scattered particles are used. The in-
tensities so obtained can also be used for an experiment
in which the inelastically scattered particles are counted
in a cone corresponding to a given scattering angle
m —28 of the inelastically scattered particle. The latter
type of experiment yields more information than the
former since it gives the angular distribution corre-
sponding to a given orbit eccentricity e. In the evalua-
tion of averages of Eq. (7.7) one needs the following
averages over rotations of orbit planes around Ox'.

((c'+1)s') = (4/5)+ (2/7)P —(3/35)P,
(c's') = (2/15) —(1/21)Ps —(3/35)P4,

(8 1)(c's' xp(2i&p')) = (1/7) (P, P4), —
(s' exp(4iq')) =P4

The argument of the I egendre function I'I. is cos8',
with 8' standing for the angle between the photon
propagation vector and the negative of the incident
beam direction. The averaging is readily performed by
introducing the coordinate system of the orbit plane,
transforming to a coordinate system fixed with respect
to the laboratory, and working in Cartesian coordinates
until one is ready to introduce the angle of rotation of
the orbit plane by a simple transformation for s and y'.
Substitution of these averages in (7.7) gives

&»=Re(lssl'+ ISoI'+ ls-sl'
+(5/14)l:IS, Is

—IS, Is+ IS, ls
—(+6)ss*(sse "'+$ se"'))Ps
—(3/28)Lls, ls+6ls, fs+ Is, ls
—(10/3)(46)S *(S"-"'+S."")

+ (70/3)sss s*e 4"$P4}. (8.2)

The quantity (J) consists of two contributions, the
first of which corresponds to replacing the S„by their
first-order values S„(2).This part will be referred to as
(J"&), the superscript on J referring to the order of the
calculation rather than to the order of the multipole.
The second part consists of terms one order higher than
&I&i&) and is obtained by collecting cross-product terms
of the first-order terms and the correction terms to the
S„"&.The contribution to (» due to these terms will

be called &J&'&). Thus

&~) = &~"&)+&~"&)+ (8.3)

One finds from Eq. (8.2)

(8.4')

&
J"')= —(5/14) (v'6) Ls, & &(s,'—s, ')

—S&&'(Ss&'&—S s&'&)j(Ps—P4) sin23
—(5/2) (Ss'S s "&—Ss&s&s s')

XP4 sin43+3 &J&'&) (8 4)

where b„means the change caused by changing the
S &'& in J&" to Re(s„},and where

S„'=ImS„,
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while

sin25= 2 (e'—1)1/e' sin45 = 4(2—es) (e'—1)1/eP. (8.5)

When one employs the last equation, the first-order
contribution is

(J(r)) —(Ss(P})P+(Sp(P))P+ (S p(P))P

5
(S (2))2 (S (P))s+. (S (2))P

14

+ (V'6)I 1——IS,"'(S,"'+S,"') P,")' ' ' I'

and defining

(Ppg. +P,Qp) sin(dtdw,
p

(Ppg. +P,gp) cos(ptdw,

one finds

(—Ppgp+3P. Q.+3P,Q,) sin(ptdw,
0

(9 5)

3
(S (2))2+6(S (2))2

28

10 p 2y
+(S &»)P+—6il 1 ——ISp&')(Sp&')+S &")

3 E es)

70' 8 8q
IS (P)S (P) P4 (9)

e4)

in agreement with Alder and Winther' provided the sign
of the term in I'4 is changed as noted by Breit, Ebel,
and Benedict. ' In this comparison the explicit values of
Alder an(l Winther's Bs 5/14, B4=——8/7 applying to the
present 0—+2 case will be found helpful. In the evalua-
tion of c„&'), it is convenient to make use of the sym-
metry of various parts of the integrand in reducing the
region t&t' to the region t&t'&0. Introducing the
abbreviations

Pp(w) = P, (w) =Pp(w) cos2&p,
(1+e coshw)'

and

V'p ——Tp+'A(3R, T,+i (RpT p 3R,T,) —g), —
1',= T,+7}f i (R,Tp+R p

—T,) A), —
&,= T,+h ( R,Tp iR p

—T,+B)—

X =Zre'(r' )tf/[7))ta"v j.

(9.8)

(9.9)

In terms of these quantities, one Ands on substitution
into Eq. (8.2)

(J)=4 Re(D+BD+ (5/14) (lVs+51Vs)Pp

+ (8/7) (E4+pcV4)P4)t, (10)

Sp&') =2Tp, -', (Sp&"+S s&")= —(/6)T„
-'(S- "'—S "')=h/6)T. , (9.6)

while

Sp=2V'p, p(Sp+S p) =—(Q6) V'„

s (S-s—Ss) = (V'6) &, (9 7)

S2 ( /6) (K +W ) S—2 ( /6) (E, E,) (9.7')—

with

P, (w) =Pp(w) sin2pp, (9.1) with

Qp(w)=
'

Pp(w)dw, Q.(w)= P.(w)dw,
D+»=«(3I ~ I'+3I ~ I'+

I ~pl') (10.1)
~Jo

g, (w) = P, (w)dw, (9.2)
f"

R.=g,(-), R.=g.(-), R.=g.(-), (9.3)

Pp(w) cos(dtdw,

&s+h&p=«(3I ~ I'+3I& I'—
I
&pl'

+61'p*(V', cos28 —iV', sin25)), (10.2)

g +hA)', = ——', Re(3I r I'+'3I ~ I'+6l ~pl'
+209"pe(V, cos25 —i V', sin2io

—35LI g",
I

s—
I T, l

p+2i Irn(V', 9',*))e 4's). (10.3)

Here D, &2, E4 correspond to J") and bD, KV2, BE4
to J&s) oi Eq. (8.4). Explicitly

P, (w) cosp)tdw, (9 4) D=3T s+3Ts'+T(}' (10.4)

T,= P, (w) sin(ptdw,
~o

p Breit, Ebel, and Benedict, Phys. Rev. 100, 429 (1955); see
also Breit, Ebel, and Russell, Phys. Rev. 101, 1504 (1956).

&s=3T,s+3TP Tps+6TpT, cos25, —
cos28= (2/e') —1, (10.5)

~ = —P (T s+T ) ,'~Tps (15/8)TpT, —co—s25-

+ (105/32) (T,'—T,s) cos48. (10.6)
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The parts corresponding to 7&2) are

t')D=X[ 6A—T,+6BT, 2C—Tp]) (10.7)

+B[—)Pp T,+(105/16)T, cos45]

+C[(9/8) Tp+ (15/8) T, cos25]—(45/16)R, TpT,

15 (p' —1)&—(45/8)R, T,T, cos28+—
4

)&[( 3R,T,+2—RpTp) T, 7R,TpT,—cos25]

—(105/16)R,TpT, cos4|) . (10.9)

For &=1, one has C =0 and according to Eqs.
(9 1)' ' ' (95) P8=Q))=Re= Ta=0, Pc=Pp Qa=gp
R =Rp, T = Tp, 8=0, A =C. Consequently, in Eq.
(9.8) one has

1'p= Tp 'A(A+2$RpTp) —= 1', V =0, 8=0, (p= 1) (11)

and hence

(J)=4!V'p! '[4+ (20/7)Pp —(48/7)P4], (p= 1). (11.1)

Since! V'p! 'enters as a common factor, there is no effect
on the y-angular distribution coefficients usually called
ap($) and a4($). In this case (p=1), the second-order
effects are not detectable by an ordinary y-angular dis-
tribution measurement although there is an effect on
the absolute value entering through ! V'p!'. A special
case of this relationship has already been pointed out
for p=1, Er;——0 in connection with Eq. (6.1). On
account of the vanishing of second-order effect in the
y-angular distribution coeKcients ap, ($) and a4, ($) for
&=1, the nearly head-on collisions are also especially
unfavorable for the detection of the reorientation
e6ects. This circumstance makes the reorientation effect
smaller than might have been expected, because for
head-on collisions the excitation effects are largest.

An interesting consequence of the linear variation of
(J&')) with P is that the reorientation effect is, in f)rst
approximation, independent of bombarding energy.
This can be seen from Eqs. (4.1'), (4.6), and (9.9) since
the product of X and $ is

Zge' (r')gr p)r;a' Mp)y;(r')gg

Ava" 7 v 7ZgA

and since in the range of $ for which the linear approxi-

8Np ——X{ 6A—[T,+Tp cos28]
—12R,TpT,+18R,T,T, cos28

+[ 12R—pTpT,+18R,T,T,] sin2t)

+6BT,+C[2Tp 6T, c—os2t)]), (10.8)

8N, =g A [—,'p T,+ (15/8) Tp cos25+ (105/16) T, cos45]

mation holds the reorientation effect depends on $ only
through XP.

Since according to Eq. (10) the spherically sym-
metric part of (J') is represented by D+t)D, the angular
distribution coeKcients are obtainable as

! v'p! =Tp' 1—(4X/Tp) " Ppgp(sinp)t)dw,
aJ p

(p = 1). (13)

The integral in this formula can be expressed as follows:

A/2= Ppgp(sin&pt)du)

with

4 t
" u t' 2(1+3u) i

! 1 —
! (sinppt)du (13.1)

3 &i (1+u)' ( (1+u)' )

a)t=) lnu+ —
! u ——

! .
2E

(13.2)

In terms of it one 6nds
I'

P.g. ...td
Jp

~ oo

Pp cosp)tdw
p

(13.3)

By means of Eq. (13.1), this can be expressed as

(D+hD) 4l) !
t'" u I' 2 (1+3u) 'l

! =1—— ' !1— !
D ), , 3 !") (1+u)4 ( (1+u)' )

u cosset
g (sinp)t)du ~~ du. (13.4)

(1+u) 4

For 5-Mev protons on7,Pt, with an assumed Q= 7X10 "
cm', BE=330 kev, one has )=0.1915, 'A= —0.100, and
the eGect on the collision for inelastic scattering may
be estimated from (13.3) to be &3.8%%u~. Here the
quadrupole moment Q is connected with the radial
matrix element (r')tr by the equation !Q! = (4/7)(r') ff.

By means of Eq. (12) combined with Eqs. (10.4),
(10.5), (10.6), (10.7), (10.8), and (10.9), one obtains
the change in the angular distribution of y rays for a
6xed value of ~ but averaged over rotations of orbit
planes around the direction of the incident beam. The
change in the values of ap($) and a4($) is obtained by
integration of the p intensity in any direction over e,

a, (()= (N, +8N, )/(D+ pD) =N, /D+b)V, /D
N, (SD—)//D' (s=2 4) (12)

According to Eq. (9.8), the number of excitations for
&=1 is proportional to
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taking the number of collisions as 2orvpdp=2orva" od e.

The formulas described so far su%ce therefore for the
calculation of y-angular distributions in experiments on
the angular distributions without coincidences and also
with coincidences in which the inelastically scattered
particles are collected in a cone with symmetry axis
along the incident beam. Some information is lost in
this type of experiment because of the averaging over
orbit plane orientations.

This information is retained if the orbit plane is
defined by the observation of the inelastically scattered
particle and the direction of the p ray is observed in
coincidence. The angular distribution under these con-
ditions is obtainable from Eq. (7.7) which gives I
before this quantity is averaged over directions of orbit
planes. Expressing the 5„ in terms of Vo, F., V, by
means of Eqs. (9.6) and (9.7), one obtains

(2/15)J =4c's'f V'oI'+2s'(c'+1)CI ~.l'+
I
~ I')

+Sc's' Re(1'o*[V', cos2y+i V', sin2q)}
+2s4 Re([ I

O'
I

'—
I

V',
I
o+2i Im(V', *9",))e""} (14)

and the division into first- and second-order parts is
obtainable from Eq. (9.8). Averaging the first line over
all directions and taking account of the factor 4 of
Eq. (10) in the definition of D, one obtains D+8D in
agreement with Eq. (10.1).

The remainder of the first line contributes to J'/4
the quantity

(5/7)CI ~ol 31~
I

31~
I )P&

—«/7)[f ~ I'+
I
~ I'+2I ~ol')P4 (141)

This quantity is related to but is not the same as the
8-dependent but 8-independent part of Eq. (10). The
reason for the difference is that in the present considera-
tion the directions of orbit planes have not been aver-
aged over. It should be observed that the argunMnt of
Po and P4 in Eq. (14.1) is cos8, with 8 standing for the

angle between the p ray aed the mortal to the orbit
plane while through all of the forntulas for (I) the
arguntent of Po and P4 is the cosine of the angle with

the incident wa~e. The analysis of the angular distribu-
tion in the coincidence experiment is in principle
capable of giving the coefficients of cos2q, sin2cp, cos4q,
and sin4oo in Eq. (14). It should be possible to verify
the dependence of these coeScients on 8 which appears
in this equation. By doing so, the interpretation of the
experiment in terms of the mechanism described in this
paper would be more certain than in the axially sym-
metric type of coincidence experiment discussed in
relation to (I&").It is probably important to have such
a verihcation in order to be sure that second-order e6ects
caused by transitions to other levels have been suK-
ciently corrected for, and it may be helpful to have
such a verification as a check on the experimental pro-
cedure. It would appear that for these reasons the
coincidence experiment defining the orbit should be

Co
—=Im(V, *r,) = —ZR, T,T,

and in the coe%cient of cos4y

(14 4)

Cv=—Re[I v' I' —
I

v' I')
= T '—T,'+2K[A T,+ (B R,To)T,). (—14.5)

Another way of stating the possibilities of the orbit-
defining coincidence experiment is to observe that the
coefficients of Po, P2, and P4 of the q independent parts
of J give the combinations

c —= I& I'+3I& I'+3I&.l',
C, =lr, lo —3lr, lo—3lr, lo,

c —=2I~oI'+I~ I'+I~ I',

and that through these quantities there is available

I
&oI',

I
9;I'+I O', I' with a check on experimental

values through 7Ci+5Co ——6Co. The quantities

6
I

V'o
I

'= 2XTo(C—3R,T.), &
I

V'.
I
'+6

I
1',

I
',

with

6
I

9".
I

'= 2XT.(B R,To) ) 6
I

O'.
I

'= —2XA T., (15.1)—
are thus available, and from the coeS.cient of cos4q
there is available B,

I
T, f' —6I'E, f' so that &I'E, f' and

6
I

V',
I

' can both be obtained from experiment.

more informative than the axially symmetric type of
experiment or the observation of the p-intensity distri-
bution without coincidences. A further reason for be-
lieving that the orbit-defining experiment is preferable
is that some of the angle-independent quantities enter-
ing the coeKcients of sin2q, . cos4y can be obtained
in more than one way in this arrangement, providing
an additional check as will be discussed presently.
Before doing so, it should be pointed out, however, that
the validity of the semiclassical theory has never been
tested to the degree implied in the coincidence experi-
ments. Since in the orbit-defining geometry lack of large
diffuseness resulting from diGraction eGects is pre-
supposed both in the orbit plane and in a direction
perpendicular to it, one may expect this circumstance
to be more serious in the orbit-defining arrangement.
The expressions derived in the present paper are ap-
plicable only approximately on account of the semi-
classical nature of the treatment. The errors due to this
cause are probably smaller, however, for bombardment
by heavy ions such as that by N'4 than for light particle
projectiles such as protons.

In the coeKcient of cos2q, one has available

C4= Re(r,*r,)
= ToT,+P,[ ATo+ (3R—,T, C)T,); —(14.2)

in that of sin2@ there is present

Co =Im('To*Vs) =X(3RcTc 2RoTo)T8 —(14 3)

Similarly there is available in the coefficient of sin4p
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TABLE I. Values of e and 8 used for numerical computation.

1.000 0'
1.015 10
1.064 20'
1.100 24.6'
1.155 30'

1.250 36.9'
1.414 45'
1.550 49.8'
1.700 54.0'

2.000 60'
2.500 66.4'
3,000 70.5'
3.864 75'

The angles used in the description of the orbit-
de6ning experiment are as in Fig. 1.

As has been mentioned in the discussion immediately
preceding Eq. (14.2), the reorientation effect has to be
separated from other second-order effects such as the
change in the angular distribution caused by transitions
to other levels. It may be pointed out, however, that in
the usual 0, 2, 4 sequence of levels a quadrupole transi-
tion 0—+4 is forbidden, and hence the populations of
sublevels of I=2 are not affected by the 0—+4—+2

sequence of excitations if higher multipole effects are
neglected. There may be eGects caused by 0—+2~2
sequences, but the intermediate level has to belong to
another configuration of nucleons such as would be
obtained by changing the vibrational quantum number.
It may be expected to lie at a higher energy than the
I=4 state and to be consequently less important in its
effect on the p-ray angular distribution; the transition
quadrupole moments to states involving a change of
vibrational quantum number are presumably also some-

what smaller than those in the normal 0~2—+4 sequence.

FIG. 1. Diagram of coordinate systems used, showing particle
trajectory and direction of emitted photon.

It appears desirable to mention that even though the
regular sequence of excitations 0—+2~4 gives eGects

in populating the I=4 level, the associated depletion
of the I=2 level does not produce an effect on the

TABLE II. Values of %0, K., and E, as a function of g and E.

0.0000

0.1915

0.4028

0.6882

1.000
1.015
1.064
1.155
1.414
2.000
3.864

1.000
1.015
1.064
1.155
1.414
2.000
3.864

1.000
1.015
1.064
1.155
1.414
2.000
3.864

1.000
1.015
1.064
1.155
1.414
2.000
3.864

1010

3.33—(4.06$ +2.22')X
3.27 —(3.65$ +2.06')X
3.09—(2.56& +1.641)X
2.79—(1.23( +1.09i))
2.15+(0.27) —0.373i)X
1.32+ (0.549$—0.035i))
0.47+ (0 158&+0 00.68~)X.
2.81—(0.534 +1.88')X
2.76—(0.481 +1.75i))
2.59—(0.346 +1.42i))
2.32—(0.179 +0.9741)X
1.74+ (0.007 —0.375i))
1.00+ (0.046 —0.069')X

0.28+ (0.0101—0.0033~)7

1.97—(0.673 +1.31i))
1.92—(0.610 +1.23i)X
1.79—(0.445 +1.02i) X

1.58- (0.243 +0.732i)X
1.13—(0.016 +0.320z))
0.58+ (0.03/ —0.078')X
0.11+(0.0061—0.0056i)P

1.07—(0.546 +0.716i))
1.05—(0.497 +0.680i))
0.97—(0.369 +0.580i))
0.84—(0.210 +0.436i)X
0.56—(0.030 +0.209i)X
0.25+ (0.016 —0.055i))
0.03+ (0.0019—0.0029')7

1OV.

3.33—(4.06& +2.229)X
3.23—(3.86) +2.12i)X
2.94—(3.30' +1.82i)X
2.50—(2.51$ +1.40i)X
1.67—(1.25& +0.715z)X
0.83—(0.372(+0.220i) X

0.22 —(0 034)+0 02.08')X.
2.81—(0.534 +1.88i)'A
2.74—(0.508 +1.79i)X
2.51—(0.435 +1.541)7

2.16—(0.333 +1.18i)X
1.50—(0.171 +0.610i))
0.80—(0.054 +0.1891)X
0.24 —(0 0063+0 017.5i)X.
1.97—(0.673 +1.31i)X
1.92—(0.641 +1.25i)X
1.78—(0.552 +1.08i))
1.56—(0.425 +0.832z) X

1.12—(0.220 +0.430i))
0.62 —(0.070 +0.130i)X
0.16—(0.0069+0.0101i)X

1.07—(0.546 +0.716i)X
1.05—(0.521 +0.684z) X
0.99—(0.450 +0.592i))
0.89—(0.348 +0.458i)X
0.66—(0.181 +0.235i)X
0.'35 —(0.055 +O.'067i)~
0.06—(0.0038+0.0037')X

109;

0
1.70'+ (0—0.56zg)X
3.16/+ (0—0.98ig)X
4.18'+ (0—1.17zg) X
4.63'+ (0—0.99ig)X
3.75'+ (0—0.491i&)X
1.95'+ (0—0.091ij)X

0
0.21—(0.033 +0.069i)X
0.39—(0.057 +0.121z)X
0.52 —(0.068 +0.144i)X
0.56—(0.057 +0.1201)X
0.43 —(0.028 +0.057i))
0.19—',0.0050+0.008$)X

0
0.25 —(0.064 +0.083i))
0.47 —(0.111 +0.145z)X
0.61—(0.131 +0.171i)P

0.65 —(0.107 +0.139i)X
0.47 —(0.048 +0.061i)X

0.15—(0.0062+0.0069i)X

0
0.19—(0.069 +0.064i)),
0.36—(0.120 +0.111i)P
0.46—(0.139 +0.129i)X
0.47 —(0.108 +0.102i)).
0.30—(0.044 +0.040 )X
0.06—(0.0035+0.0029')X
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TABLE III. Values of the coefBcients, C& ~ C7, of the angular dependent terms available in a coincidence type experiment which
defines the eccentricity and the plane of the orbit of the incident particle, in coincidence with the y ray. The quantities C; are defined
in Eqs. (15), (14.2), (14.5), (14.4), (14.5).

100 Ca 200 C2 100 CR 100 C4 100 CR 100 C6 100 C~

0.0000 1.000 44.4 —108)X —22.2 +54p,
1.064 35.5 —74p —16.4 +42p
1.414 12.9 —11.4p. —3.7 +13.7p
2.000 3.82 — 0.41P, —0.35+ 3.31P.

33.3 —8ig
27.8 —51p.
12.0 —1.88p.
4.17+ 2.28p.

11.11 —27.ip,
9.10 -17.7p.
3.58 —2,2p.
1.10 —0.03p.

0
2.2p.—0.4p—0.52p.

0—2.9p.—1.7p,—0.41p,

—11.11—8.66—2.78—0.69

+27.1p.
+19.4p.
+ 4.2p,
+ 0.62P

0.1915 1.000 31.7 —12.0)
1.064 26.1 — 8.5)
1.414 10.7 — 1.70)
2.000 3.47— 0.24K

—15.8 + 6.0~—12.7 + 4.9)—4.6 + 1.75&—1.48+ 0.43)

23.8 —9.0z
19.9 —5.8x
8.6 —0.52'
2.81+ 0.07&

7.92 —3.00'A

6.51 —2.00K
2.60 —0.29K
0.80 —0.02K

0
0.24&
0.002&—0.03'

0—0.30m—0.16m—0.04&

—7.92—6.15—1.92—0.45

+ 3.00&
+ 2.14m

+ 0.45K
+ 0.06K

0.4028 1.000 15.5 —10.6)
1.064 13.4 — 7.8P
1.414 6.3 — 1.%,
2.000 2.14— 0.35)

—7.7 + 5.3x—7.0 + 4.6X—3.8 + 1.%.—1.46+ 0.44'

11.6 —7.9X
9.8 —5.3x
4.2 —G.B
1.28—0.09

3.86 —2.65)
3.19 —1.78&
1.27 —0.2B
0.362 —0.018)

0
0.22K
0.05&
0.000~

0—0.25m—0.12K—0.023)

3.86 + 2.6Q.
2.96 + 1.86K
0.84 + 0.36m
0.167+ 0.042K

0.6882 1.000 4.62 — 4.70K —2.31+ 2.35K
1.064 4.29— 3.66K —2.42+ 2.23K
1.414 2.29— 1.06) —1.66+ 0.99)
2.000 0.71— 0.188) —0.59+ 0.204K

3.46—3.52m
2.98—2.41K
1.29—0.41&
0.34—0.049~

1.15 —1.17&
0.96 —0.80'
0.37 —0.12K
0.088—0.008K

0
0.10'
0.042m
0.007K

0—0.10)—0.044m—0.006K

1.15 + 1.17&
0.86 + 0.81)
0.21 + 0.136K
0.032+ 0.012K

angular distribution of y rays to within the order con-
sidered here. A similar effect has been noted in connec-
tion with the contribution of the term containing co("
in Eq. (2.2) which turned out to be of a higher order.

)=0
/=0. 1915
(=0.4028
(=0.6882

(no excitation);
(5-Mev protons on Pt"4, 330-kev level);
(3.3-Mev protons on Cd'", 555-kev level);
(2.4-Mev protons on Cd "4, 555-kev level).

The values of orbit eccentricity e and the corresponding
values of 5 given by Eq. (7.8) used in the computations
of the single and double integrals in Eqs. (9.1) to (9.5)
are given in Table I. Computation of all integrals was
performed in the form given in Eqs. (9.1) to (9.5),

TABLE IV. Values of the coeflicients of the angular dependent
terms available in a limited coincidence experiment which defines
only the eccentricity of the orbit of the incident particle in coinci-
dence with the y ray.

IV. ESTIMATES AND VALUES OF INTEGRALS

Calculations for the three different types of observa-
tions discussed in Sec. III have been performed for the
following values of )=4)r—4),.

using Simpson s rule with m as the independent vari-
able. The results for V"0, V„and V"„de6ned in Kqs.
(9.6) to (9.8), are given in Table II for representative
values of e.

The quantities available from the coincidence type
experiment discussed in the previous section are given
in Eqs. (14.2) (14.5), (15). In order to make their
comparison with theory possible, the values were calcu-
lated making use of the numbers in Table II. The
results are listed in Table III for a few of the values of e
in Table II'

The limited-type coincidence experiment also dis-
cussed in the previous section, in which the eccentricity,
but not the plane of the incident orbit is observed in
coincidence with the p rays, yields the quantities
D+0D, E2+KV2, and 1V4+KV4 of Eqs. (10.1), (10.9)
which are listed in Table IV for typical values of e, so
as to facilitate comparison with experiment. '

If only the angular correlation of the p rays with
respect to the incident beam direction is measured, one
obtains only the quantities

4(f4(D+&D, X2+51Vg, X4+bN4).

0.0000

100(D +bD)

1.000 44.4 —108P,
1.064 35.5 —74P
1.414 12.9 —2 2.4Q,
2.000 3.82 — 0.41$)(

100(NR+8N2)

88.9 —217'
58.3 —116'
3.73 —16.1Q,—2.95 — 5.92@,

100(N4+MV4)

—66.7 +162@.—25.8 + 30@.
5.74 —2 2.4'
1.00 + 2.50@,

TABLE V. Values of the coeKcients of the angular dependent
terms available from observation of the p rays alone.

0,1915 1.000
1.064
1.414
2.000

0.4028 1.000
1.064
1.424
2.000

0.6882 1.000
1.064
1.424
2.000

32.7
26.1
20.7
3.47

15.5
13.4
6.33
2.14

4.62
4.29
2.29
0.714—

22.0X
8.5X
2.70K
0,242K

20.6X
7.8X
1.94'A
0,352I)L

4.7X
3.7'4)L

2.06K
0.288K

63.4
42.6
4.6-0.91

30,9
21.7
3.78
0.37

9.23
6.84
2.66
0.325—

24.0&
23.2X

2.74K
0.525K

22.2&
22.0X

2.57&
0.383K

9.394)L

5.53k
0.74K
0.245K

—47.5 +—185 +
3.9
0.70 +

2302 +—90 +
1.58
02S +

—6.93 +-2.71 +
0.33
0.038+

28.0X
3.5)
2.32K
0.208K

25.9)
3.2X
2.07)
0.055)

7.04&
2.52K
0.42)
0.02 22K

100f (D+4D)edi 100J (Ns+4NI)ed' 100J (N4+4Nc)ede

0.0000 28.4 —21P, —1.54 —SO@, —0.022 —0.24@,
0.2925 23.5 —3.4X 8.1 —5.0X 0.50 —0.078K
0.4028 12.7 —3.6X 7.9 —4.2X —0,12 —0.105K
0.6882 3.97 —2.79) 3.20 —2.84I)L -0.20 —0.027)L

~ The values listed in Tables III, IV, V for )=0 are consistent
with the vanishing of the reorientation effect for no excitation,
as discussed in the previous section. The limit $-+0 is implied in
the terms listed as being proportional to g.
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These values were obtained by numerical integration
over e and are listed in Table V.'

The computational error of the values listed in the
tables is believed to be about 1 in the last figure listed.
In Table V considerable cancellation has taken place
in obtaining the values given in the last column. How-
ever, the quantity N4+KV4 is the most difficult of the
three to obtain experimentally since it is roost sensitive
to the angular definition of the photon direction.

The values of J1 DC', Jl N2ctE, and Jl N46dt'
listed for )=0 represent the exact values

Dad e= (m'/16) —(1/3)~0.284,

¹ede= (7~'/16) —(13/3)——0.0154,

l

N4ede = (17/9) —(49vr'/256) ——0.00022,

obtainable by direct analytic integration.
The quantity jj" (D+bD)ede listed in Table V repre-

sents the angle-independent part of the correction due
to the reorientation effect. As a result the quantity

(D+0D)EdE Dtde)
1

represents the factor by which the presence of the re-
orientation eRect increases the total cross section.

It is clear from examination of Tables III, IV, and V

that the coincidence-type experiments offer opportunity
for obtaining eRects due to reorientation which are
relatively larger than for the non-coincidence-type ex-
periment. Specifically, one sees from Table III that a
judicious choice of coincidence angles which selects the
coefficients of sin2&p, sin4p(ImL1"O*V', ],and ImL V',*9',])
may offer the possibility of measuring X directly.

There seems to be an indication that the reorientation
eRect is relatively larger for higher excitation, but this
will depend on the static quadrupole moment of the
level in question. An additional inference which may be
drawn from the tables is that the reorientation eRect
is larger for values of e near 1. This is probably due to
the fact that larger values of e correspond to distant
collisions for which the amplitude for excitation is small,
and the relative importance of the reorientation eRect
can be expected to be reduced for large e.
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