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Nuclear Binding Energies in the Shell Model
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Nuclear binding energies are calculated from a general two-body interaction by using jj-coupling shell
model wave functions for the nucleons. The good agreement obtained indicates that the eR'ective central
Geld in which the nucleons move is the same for all nuclei in which the same shell is being filled.

ECENTLY some evidence has been gathered
showing that the potential well of the nucleus is

constant, to a good approximation, at least in nuclei
where the same shell is being filled. ' ' This encouraged
us to try and fit nuclear binding energies on the basis
of such an assumption. As neither the interaction
between nucleons nor their wave functions are known,
we adopted a procedure which does not involve detailed
knowledge of these. In the present work only the
following assumptions are made: I. The wave function
describing the nucleus is that of independent nucleons
moving in a central field (shell model wave function),
being the same for all nuclei with the same unfilled
shell; the spin j of each nucleon is a good quantum
number (jj-coupling). II. The interaction between
nucleons is a charge-independent two-body force (this
may include central forces, any mutual spin-orbit
interaction, and tensor forces). Thus, the states are
characterized by the configuration, the total spin J,
and the total isotopic spin T. If more than one state
with these quantum numbers occur, we characterize the
states by additional quantum numbers of the general-
ized seniority. "

The expectation value of any two-body interaction
in one shell can be expressed as a linear combination of
the energies in a two-nucleon configuration. To carry
out this calculation, fractional parentage coef5.cients' ~

may be used. Instead we use an elegant method due to
Racah. ' He considers simple two-body operators, the
eigenvalues of which characterize the states [for ex-

amPle, Q(t,"t,)= T(T+1)—sert$. Clearly, if there are
enough operators with different eigenvalues for each
state of the two-nucleon condguration, the energies of
this configuration can be uniquely expressed as a linear
combination of the eigenvalues. If this is the case, then
the energies of other configurations are also given by a
linear combination of the operators with the same
coeKcients. Since usually this is not the case, it is only
possible to calculate average energies of groups of states

which belong to the same eigenvalues of the known
operators. Fortunately, almost every ground state is
the only member of its group and Racah's method can
therefore be used. In this way the energies (or rather
average energies) in the j"configuration are given by

nA+ ,'rt(rt 1-)a+—[T(T+1)——,ssz)b

+[g(W) —2rt( j+1)]c. (1)

In the first term, A is the single-nucleon energy (its
kinetic energy and its interaction with the closed shells),
while the other terms express the mutual interaction.
The quantity g(W) is the eigenvalue of Casimir's
operator4' (of the symplectic group in 2j+1 dimen-

sions) characterizing the group of states which belong
to the same irreducible representation specified by
W—= (wiwz ).This last term essentially represents the
pairing energy. For even e, the ground states with J=O
belong to W=(00) and since g(W)=wi(w, +2j+1)
+wz(wz+2 j—1)+ . we have in these cases g(00) =0.
For odd tz, the ground states (and sometimes excited
levels) with f=j belong to W= (10) and therefore in
these cases g(10)=2(j+1). If we specify the inter-
action, the coefficients a, b, and c can be calculated in
terms of radial integrals of the potentials. ' However,
in order to have the procedure as general as possible
we keep these coefficients (as well as the coefficient A)
as free parameters. %e check the agreement of our
assumptions with the data by fitting all available
energies in a definite shell to the linear combination (1)
with the same coefficients; the best values of these are
determined by a least squares fit. This is in accordance
with the standard procedure in atomic spectroscopy.
In the prtz and sitz shells, a smaller number of operators
is sufhcient for the calculation and the parameter c was
left out.

Binding energies were taken from the review articles
by Wapstra' and others. "In order to obtain the energy
within a shell, we subtracted from the binding energy
of every nucleus the binding energy of the preceding
doubly closed shells nucleus. These energies contain the
contributions from the Coulomb energy which should

~ B. C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954).' S. Goldstein and I. Talmi, Phys. Rev. 102, 589 (1956).' R. Thieberger and I. Talmi, Phys. Rev. 102, 923 (1956).
G. Racah, "Group Theory and Spectroscopy, "Mimeographed

Lecture Notes, Princeton, 1951 (unpublished).
5 B.H. Flowers, Proc. Roy. Soc. (London) A212, 248 (1952).
R. F. Bacher and S. Goudsmit, Phys. Rev. 46, 948 (1934).

~ G. Racah, Phys. Rev. 63, 367 (1943).
8 G. Racah, Furkus Memor~u/ Volume (Research Council o

Israel, Jerusalem, 1952).

' A. H. Wapstra, Physica 21, 367 and 385 (1955).
F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27, 77

(1955); P. M. Endt and J. C. Kluyver, Revs. Modern Phys. 26,
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Energy Commission Report TID-5300, 1955 (unpublished), with
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TABLE I. Experimental and calculated binding energies (in Mev).

Nucleus

Binding energies
Experi- PresentJ of state mental model Nucleus

Binding energies
Experi- PresentJ of state mental model Nucleus

Binding energies
Experi- PresentJ of state mental model

2He35
2He46
3L13
3L13
3Li4V

3L15
3Li69
4Bes'
4$e48
4Bee
4Beslo
534'
B 10

B 10

B 11

C 10

C 11

BCB"

3/2
0
0

1, 3(20)
3/2

2(11)
3/2
3/2
0

3/2
0

3/2
0

1, 3(20)
3/2
0

3/2
0

—0.95
0.93
0.13
2.17

10.95
12.98
16.53
9.30

28.19
29.85
36.66
28.00
34.70
36.22
47.90
32.02
45.14
63.85

—0.74
3.99
2.90
4.24

13.62
13.59
16.05
11.92
28.12
29.76
36.86
27.69
34.80
36.14
47.90
32.13
45.23
63.80

Plg2 shell B.E. minus that of C'2

C 13

BC 814
613

VNv'

N 14

N 15

Q 14

Qzle
80816

0
1/2
0
1

1/2
0

1/2
0

4.95 5.34
13.12 13.04
1.95 2.31

10.18 10.02
12.49 12.19
23.32 23.35
6.54 6.48

19.79 19.81
35.43 35.51

de/9 Shell B.E. minus that of 0'

Q 1V

801018
Qll"

8012"
F lz

F1019
loNe9'9
10Nelo
10Nelp'*

5/2
0

5/2
0

5/2
5/2
5/2
0

5/2

4.14 4.56
12.21 13.65
16.16 15.61

? 22.10
0.59 0.95

19.97 21.62
15.85 17.49
33.05 33.59
39.46(?) 39.36

p3/9 shell B.E. minus that of He' loNel2"
10Nel323*

llNal0
11NalP*
llNal4
ldMgll
12Mgl2
12Mgl3"
19Mgl4"
13Allge
13All326

13A11326

13All42V

14S1132V

14Si14"

0
5/2
5/2
5/2
5/2
5/2
0

5/2
0

5/2
0

1, 3, 5(20)
5/2
5/2
0

50.17
55.36(?)

?
58.53 (?)

?
?

70.66
77.99
89.10
72.96
84.09
84.03
97.36
91.75

108.95

49.65
52.83
34.95
58.03
72.71
53.11
70.41
77.40
88.90
72.18
83.69
83.44
97.68
91.96

110.47

14S11529

14S116
15Pl429

leP15
15Ple
15P16
16S153'
IBS163'

1/2
0

1/2
0

1/2
1/2
0

8.47 8.61
19.09 19.03
2.79 2.81

13.28 13.24
13.97 13.87
26.38 26.43
20.16 20.21
35.24 35,22

d3/9 shell B.E. minus that of S"

16Slv
16S18
lsS19"
lss2036
lzClls33
lvCllv'4
lvCll835
lzCll936
lvC120'z
18Alv"
18Al836
18Al93V

18Ago'

19K18
19K1938

3/2
0

3/2
0

3/2
0

3/2
2 (11)
3/2
3/2
0

3/2

3/2
0

8.65 8.66
20.05 20.04
27.07 27.12
36.97 36.93
2.42 2.38

13.75 13.77
26.46 26,29
35.03 35.10
45.39 45.23
19.69 19.58
34.96 34.83
43.79 43.96
55.54 55.82
36.88 37.00
48.88 48.86

sl/~ shell B.E. minus that of Si"

19K20
~o«1939
90Ca9040

3/2
3/2
0

61.96 61.85
54.32 54.44
70.29 70.17

20Ca21
20Ca~9"
~O«23"
20Ca24
2oCa25"*

2oCa26"
2()Ca2v4V

20Ca28
21SC20

21SC22

21SC24

91SC26

21SC28

uTi22
29T123
22Ti24
29T45
22Ti96
22T12z

22T121
23V23"*
23V24
23V264'

~3V28"
g4Crg4"*
94Cr 9549

24Cr96
24«2vel
24Crg8"
25M' 25~*
geMr)26"
95Mn2853

96Fe26
96Fe2ve3

96Fe98
2vCo2v"*
2vCO28

28»28"

7/2

7/2
0

7/2

0
7/2
0

7/2
7/2
7/2
7/2
7/2
0

7/2
0

7/2
0

7/2
0
0

7/2
7/2
7/2
0

7/2
0

7/2
0
0

7/2
7/2
0

7/2
0

7/2
0

8.37
19.85
27.78
38.96
46.38

or 46.20
57.17
63.87
73.77
1.63

24.79
45.85
65.23
83.27
35.13
43.03
56.32
64.84
76.50
84.62
95.54
48.30
61.41
83.23

103.44
69.50

?
92.87

102.02
114.25
84.60

?
120.42

116.17
129.76
120.10
134.63
141.19

8.68
21.03
28.84
40.31
47.24

57.84
63.90
73.63
2.03

25.74
46.52
65.55
82.83
33.73
43.03
56.00
64.43
76.53
84.08
95.30
48.76
60.74
82.76

103.03
68.76
78.69
92.28

101.33
114.04
84.44
97.04

120.30
105.09
115.63
129.85
121.42
134.64
142.72

fvI2 shell B.E. minus that of Ca40

be subtracted. This latter energy can be taken from
mirror nuclei, but we used a more consistent and
satisfactory way of subtracting. We utilized the Cou-
lomb energy in the harmonic-oscillator model given in
terms of e'(p/s. )& which was considered as an additional
parameter. In this case a greater number of nuclei
could be taken into account in the least squares 6t.
This is the only possibility in cases where no information
on mirror nuclei is available (e.g. , in the f7/s shell).
The es(v/s. ) & thus derived for various shells is in a very
good agreement with previous results. ' Our results are
presented in Table I. In this table are included also
some nuclei (marked with an asterisk) whose energies
are not accurately known; these were not considered
in the least squares fit. The binding energies listed
include the Coulomb energies. Where averages of states
were considered all the spins are given; the brackets
contain the numbers H/'.

Shell A

p3ig —0.738
plI2 5.337
dg2 4 565
sli~ 8.606
d312 8.658
fgg9 8.681

a b 2(j+1)c

0.594 —5.137 —3.721
2.912 —1.085
0.302 —3.205 —2.909
1.978 —0.316
0.118 —1.815 —1.759
0.155 —1.185 —2.053

e2(~/~)&

0.364
0.349
0.349
0.320
0.312
0.289

rms
devi-
ation

Percent
rms

devi-
ation

0.33 0.66%
0.29 0.86%
0.92 0.85o/o
0.10 0.31%
0.14 0.21o/o
0.75 0.57/)

The agreement is excellent for the s~~2 and d3/~ shells.
Also in the other shells the root-mean-square deviation
is less than 1% of the width of the energy range
considered. The rms deviation is defined in the usual
way as LP;=r"A,s/(1V —k)$&, where the b„are differ-
ences between the experimental and calculated energies,
S is the number of data and k is the number of param-
eters. The agreement is poor for the first nuclei up to

TABLE II. Energy parameters of the present model (in Mev).
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A=7, indicating breakdown of the shell model (or
only of jj-coupling). These cases were excluded from
the least squares fit and were not taken into account in
the calculation of the rms deviation. The best values
of the coefficients for the various shells are listed in
Table II along with the rms deviations. The large
difference in the values of a and b between the Pr~s, sr~s
shells and the other shells is not surprising in view of
the diGerence in their meaning in the two cases. It is
worth while to note that the deviations in the d5/~ shell
(and also in the f7~s shell) show a marked regularity.
In the middle of the shell all the experimental binding

energies are bigger than those calculated whereas both
in the beginning and the end the situation is reversed.
This may be associated with the effects of deformation
(or possibly of configuration interaction) not considered
here. Positions of some excited levels (usually only
position of averages) can be calculated with the param-
eters obtained, and are found to be in fair agreement
with the experimental data. It is hoped to report soon
on this and related problems. It seems to us that it is
interesting and rather surprising that the simple
jj-coupling shell model is so adequate in this region of
nuclei.
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Neutron Scattering from Iron and Carbon by Time-of-Flight*
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A ~ed-frequency cyclotron in conjunction with millimicrosecond time-of-flight techniques has been used
to study elastic and inelastic neutron scattering from iron and carbon in the Mev range. The elastic angular
distribution from iron exhibits an optical diffraction type pattern, and the inelastic angular distribution
proves to be primarily isotropic except for a slight asymmetry around 90 degrees. The elastic angular distri-
bution from carbon is in essential agreement with previous work.

INTRODUCTION

'HE dynamics of excitation of low-lying nuclear
levels is of interest in the study of nuclear

structure. Some details of the structure may be in-

vestigated by bombarding the nucleus with neutrons
and studying the reaction and scattering processes.
For most nuclei the energy of the 6rst excited state
ranges from 20 kev to 2 Mev. Until recently,
identification of various neutron groups from neutron-
out reactions in the Mev energy range has been dificult.
In the present work this identification was accomplished

by determining the Right time for the scattered neutrons
over known distances.

Neutrons of 1-Mev energy travel with a velocity of
approximately 1.4 cm/mpsec. In order to measure the
energy of 1-Mev neutrons to 2'%%u~ with a flight path
of 1 meter, the times of origin and detection must each
be known to 1 mlasec. This may be accomplished by
using millimicrosecond techniques for scintillation
detection together with the short pulse of neutrons
obtained from the natural phase bunching of particles
accelerated in a fixed-frequency cyclotron. ' These tech-
niques were applied to the study of elastic and inelastic
neutron scattering from iron and carbon.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Present address: Los Alatnos Scientific Laboratory, Los
Alamos, New Mexico.

~ D. Sohm and L. Foldy, Phys. Rev. 72, 649 (1947); S. L.
Cohen, Rev. Sci. Instr. 24, 589 (1953).

Elastic and inelastic angular distribution measure-
ments were made for Fe at 1.66, 1.58, and 1.48 Mev,
and for C at 1.66 Mev. The elastic distribution exhibits
an optical diGraction type pattern, and the inelastic
distribution shows a slight asymmetry about 90
degrees.

EXPERIMENTAL PROCEDURE

For this work the 18-in. cyclotron at the Brookhaven
National Laboratory produced a 2.45&0.03-Mev
external proton beam. About 60 pa of the external beam
were focused on a 4-in. diameter target 12 ft from the
cyclotron by using a pair of double-wedge magnets.
The natural phase bunching' of the machine resulted in
a 2-mpsec pulse of protons striking the target every
54.1 mpsec (rf= 18.4 Mc/sec).

Neutrons were obtained from a thin target ( 50
kev) of Zr-T on a water cooled copper backing. Three
different primary neutron energies (1.66, 1.58, and
1.48 Mev) were obtained by positioning the scatterer
at 0, 20, and 30 degrees with respect to the directipn
of the protons incident on the target. The target design
(see Fig. 1) allowed for very little scattering material
in the direction of the forward beam. The targets
used showed only a negligible loss of tritium over a
50 000 pa-hr period.

2 S. D. Bloom, Phys. Rev. 98, 233 (1955);Bloom, Muehlhause,
and Wegner, Phys. Rev. 99, 654 (1955); Bloom, Glasoe, Muehl-
hanse, and Wegner, Phys. Rev. 100, 1248 (1955).


