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Nuclear binding energies are calculated from a general two-body interaction by using jj-coupling shell
model wave functions for the nucleons. The good agreement obtained indicates that the effective central
field in which the nucleons move is the same for all nuclei in which the same shell is being filled.

ECENTLY some evidence has been gathered
showing that the potential well of the nucleus is
constant, to a good approximation, at least in nuclei
where the same shell is being filled.'—® This encouraged
us to try and fit nuclear binding energies on the basis
of such an assumption. As neither the interaction
between nucleons nor their wave functions are known,
we adopted a procedure which does not involve detailed
knowledge of these. In the present work only the
following assumptions are made: I. The wave function
describing the nucleus is that of independent nucleons
moving in a central field (shell model wave function),
being the same for all nuclei with the same unfilled
shell; the spin j of each nucleon is a good quantum
number (jj-coupling). II. The interaction between
nucleons is a charge-independent two-body force (this
may include central forces, any mutual spin-orbit
interaction, and tensor forces). Thus, the states are
characterized by the configuration, the total spin J,
and the total isotopic spin 7. If more than one state
with these quantum numbers occur, we characterize the
states by additional quantum numbers of the general-
ized seniority.*5
The expectation value of any two-body interaction
in one shell can be expressed as a linear combination of
the energies in a two-nucleon configuration. To carry
out this calculation, fractional parentage coefficients®’
may be used. Instead we use an elegant method due to
Racah.® He considers simple two-body operators, the
eigenvalues of which characterize the states [for ex-
ample, > (t;-t;)=T(T+1)—%xn]. Clearly, if there are
enough operators with different eigenvalues for each
state of the two-nucleon configuration, the energies of
this configuration can be uniquely expressed as a linear
combination of the eigenvalues. If this is the case, then
the energies of other configurations are also given by a
linear combination of the operators with the same
coefficients. Since usually this is not the case, it is only
possible to calculate average energies of groups of states
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which belong to the same eigenvalues of the known
operators. Fortunately, almost every ground state is
the only member of its group and Racah’s method can
therefore be used. In this way the energies (or rather
average energies) in the j” configuration are given by

nA+in(n—1)a+[T(T+1)—inlb
HeW)—2m(j+De. (1)

In the first term, A is the single-nucleon energy (its
kinetic energy and its interaction with the closed shells),
while the other terms express the mutual interaction.
The quantity g(WW) is the eigenvalue of Casimir’s
operator*® (of the symplectic group in 2j+1 dimen-
sions) characterizing the group of states which belong
to the same irreducible representation specified by
W= (wws- - -). This last term essentially represents the
pairing energy. For even #, the ground states with /=0
belong to W= (00) and since g(W)=w:(wi+25+1)
+ws(we+25—1)4- - - we have in these cases g(00)=0.
For odd #, the ground states (and sometimes excited
levels) with J=j belong to W= (10) and therefore in
these cases g(10)=2(j41). If we specify the inter-
action, the coefficients @, b, and ¢ can be calculated in
terms of radial integrals of the potentials.® However,
in order to have the procedure as general as possible
we keep these coefficients (as well as the coefficient 4)
as free parameters. We check the agreement of our
assumptions with the data by fitting all available
energies in a definite shell to the linear combination (1)
with the same coefficients; the best values of these are
determined by a least squares fit. This is in accordance
with the standard procedure in atomic spectroscopy.
In the pys and sy/s shells, a smaller number of operators
is sufficient for the calculation and the parameter ¢ was
left out.

Binding energies were taken from the review articles
by Wapstra® and others.!® In order to obtain the energy
within a shell, we subtracted from the binding energy
of every nucleus the binding energy of the preceding
doubly closed shells nucleus. These energies contain the
contributions from the Coulomb energy which should
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NUCLEAR BINDING ENERGIES IN SHELL MODEL

TasLE I. Experimental and calculated binding energies (in Mev).
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Binding energies Binding energies Binding energies
E: i- P E; i- P E. i- P
Nucleus J of state m’g):il;l r;%sdeglt Nucleus J of state mﬁgigll nrlisger:llt Nucleus J of state m’égall nrlisgglt
pas2 shell B.E. minus that of He! 10Ny 0 50.17  49.65 19K 5o 3/2 6196  61.85
10Ney528% 5/2 55.36(?) 52.83 | s0Cais® 3/2 5432 5444
JHes® 3/2 —095 —0.74 | 1uNa;® 5/2 ? 3495 | 90Can®® 0 7029  70.17
oHeys 0 0.93 3.99 11Na28% 5/2 58.53(?) 58.03
311153: . 3(220) (2)3 Z.gg ull:I/Iau”:s g% g ggﬁ for2 shell B.E. minus that of Ca®
1; s . 3 12V1g81y ! .
(i 3/2 1095 1362 | Mg 0 7066 7041 | wCaa® /2 837 8.8
oLis3 2(11) 1298 13.59 | 1, Mgu® 5/2 7799 7740 | wCaa® 0 19.85 2103
sLi¢® 3/2 6.53 1605 | ;Mg 0 8910 8390 | 20Cax? 7/2 27.78  28.84
Bey? 3/2 930 1192 | AL 5/2 7296 7218 | wCaxl 0 3896 4031
Besd 0 2819 2812 | 1Al 0 84.00  83.60 | 20Casx 7/2 46.38  47.24
Bey 3/2 2085 2976 | Al 1,3,5(20)  84.03  83.44 Cans or 492(7)
Beg® 0 36.66  36.86 | AL 5/2 97.36  97.68 | 2Cas 0 S7.17  57.84
B¢ 3/2 2800  27.69 | 1Si¥ 5/2 91.75 9196 | Cax 7/2 63.87  63.90
Bl 0 3470 3480 | uSiw® 0 10895 11047 | wlas] 7(}2 7?-2; 7;-8%
B3l 1, 3(20) 3622 36.14 uSCa’ . .
%“:: 3(/)2 %;(9)(2) gg?g s12 shell B.E. minus that of Si?® iigg::w % i‘;gg 421‘2?21
64 B . i .
Cst 3/2 4514 4523 : 21SCa6* 7/2 65.23  65.55
zC:” 6 6385  63.80 “S;“:: 1(/)2 133; 138; uSCas? 7/2 83.27  82.83
14P “;9 1/2 279 281 zlezz“ 0 35.13 3373
. 15214 / : . 2 Tiats 7/2 4303 43.03
?l/z shell BE‘ minus that Of C12 15P1530 0 1328 1324 22Ti2446 0 56 32 56 00
15P 1% 1 13.97 13.87 29 Tigst7 7/2 6484 6443
oG 1/2 495 534 | nPut 1/2 2038 2643 | Py 0 76.50  76.53
Cs! 0 1312 1304 | 16Si™ 1/2 20.16  20.21 Tioss 772 : ’
1 20 221127 / 8462 8408
Nt 1/2 1.95 2.31 16516 0 3524 3522 T
Nt 0 1018 10.02 = : 230 a9
23V 23 B .
N7 1 1249 12.19 dy2 shell B.E. minus that of S® 23Vadt? 7/2 6141  60.74
Nl 1/2 2332 2335 19
Ol 4 54 c18 Va6 7/2 8323  82.76
“0515 1/2 1979 1981 16917% 3/2 8.65 8.66 23V as® " 7/2 103.44 103.03
fons A 3543 3551 S 0 2005 2004 | 5Cra® 0 69.50  68.76
OSSN e sp o me mn | aCes T2 2 TR
16920' . B 24LT2¢ . .
ds/2 shell B.E. minus that of 016 17Cly %8 3/2 2.42 238 | wCram 7/2 102.02  101.33
17Cli® 0 13.75  13.77 24Cras® 0 11425 114.04
507 5/2 4.14 456 | 1,Clig® 3/2 2646 2629 | 55Mng;0* 0 84.60  84.44
401018 0 1221 13.65 17Cly% 2(11) 3503  35.10 | 25Mnggt 7/2 ? 97.04
sOnt® 5/2 16.16  15.61 1Clag® 3/2 4539 4523 25Mn5™ 7/2 12042  120.30
80122 0 ? 22.10 18A17%° 3/2 19.69 19.58 26Fegs®? 0 ? 105.09
oFst7 5/2 0.59 0.95 18A15% 0 3496  34.83 ssFey 7/2 116.17  115.63
oFpot® 5/2 1997  21.62 18A16%7 3/2 43.79 4396 | aFeq™ 0 129.76  129.85
10N egt? 5/2 1585 1749 | 15Ax® 0 55.54  55.82 27C 025 0 120.10 12142
10Ner® 0 33.05 3359 | 19K 3/2 36.88  37.00 | 2,Cos® 7/2 134.63  134.64
10Nep2* 5/2 39.46(?) 39.36 | 19Ki1o® 0 48.88  48.86 | 25Nigs™ 0 141.19  142.72

be subtracted. This latter energy can be taken from
mirror nuclei, but we used a more consistent and
satisfactory way of subtracting. We utilized the Cou-
lomb energy in the harmonic-oscillator model® given in
terms of ¢*(v/7)? which was considered as an additional
parameter. In this case a greater number of nuclei
could be taken into account in the least squares fit.
This is the only possibility in cases where no information
on mirror nuclei is available (e.g., in the f7» shell).
The e2(»/m)? thus derived for various shells is in a very
good agreement with previous results.! Our results are
presented in Table I. In this table are included also
some nuclei (marked with an asterisk) whose energies
are not accurately known; these were not considered
in the least squares fit. The binding energies listed
include the Coulomb energies. Where averages of states
were considered all the spins are given; the brackets
contain the numbers W.

The agreement is excellent for the sy/» and ds/, shells.
Also in the other shells the root-mean-square deviation
is less than 19, of the width of the energy range
considered. The rms deviation is defined in the usual
way as [ 2.i=1"A2/(N—FE) ]}, where the A; are differ-
ences between the experimental and calculated energies,
N is the number of data and % is the number of param-
eters. The agreement is poor for the first nuclei up to

TasLE II. Energy parameters of the present model (in Mev).

Percent

Shell A a b 2(i+1)c¢  e2(v/m)t ation  ation
pyz —0.738 0.594 —5137 —3.721 0.364 0.33 0.66%,
b2 5.337 2912 —1.085 0.349 0.29 0.869,
5/2 4565 0302 —3.205 —2.909 0.349 0.92 0.859%,
S1/2 8.606 1.978 —0.316 0.320 0.10 0.319,
d3z 8.658 0.118 —1.815 —1.759 0312 0.14 0.219
Sz 8681 0.155 —1.185 —2.053 0289 0.75 0.579
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A =1, indicating breakdown of the shell model (or
only of jj-coupling). These cases were excluded from
the least squares fit and were not taken into account in
the calculation of the rms deviation. The best values
of the coefficients for the various shells are listed in
Table II along with the rms deviations. The large
difference in the values of ¢ and b between the py/s, s1/2
shells and the other shells is not surprising in view of
the difference in their meaning in the two cases. It is
worth while to note that the deviations in the ds/2 shell
(and also in the fy/s shell) show a marked regularity.
In the middle of the shell all the experimental binding
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energies are bigger than those calculated whereas both
in the beginning and the end the situation is reversed.
This may be associated with the effects of deformation
(or possibly of configuration interaction) not considered
here. Positions of some excited levels (usually only
position of averages) can be calculated with the param-
eters obtained, and are found to be in fair agreement
with the experimental data. It is hoped to report soon
on this and related problems. It seems to us that it is
interesting and rather surprising that the simple
Jj-coupling shell model is so adequate in this region of
nuclei.
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A fixed-frequency cyclotron in conjunction with millimicrosecond time-of-flight techniques has been used
to study elastic and inelastic neutron scattering from iron and carbon in the Mev range. The elastic angular
distribution from iron exhibits an optical diffraction type pattern, and the inelastic angular distribution
proves to be primarily isotropic except for a slight asymmetry around 90 degrees. The elastic angular distri-
bution from carbon is in essential agreement with previous work.

INTRODUCTION

HE dynamics of excitation of low-lying nuclear
levels is of interest in the study of nuclear
structure. Some details of the structure may be in-
vestigated by bombarding the nucleus with neutrons
and studying the reaction and scattering processes.
For most nuclei the energy of the first excited state
ranges from ~20 kev to ~2 Mev. Until recently,
identification of various neutron groups from neutron-
out reactions in the Mev energy range has been difficult.
In the present work this identification was accomplished
by determining the flight time for the scattered neutrons
over known distances.

Neutrons of 1-Mev energy travel with a velocity of
approximately 1.4 cm/musec. In order to measure the
energy of 1-Mev neutrons to 29, with a flight path
of 1 meter, the times of origin and detection must each
be known to ~1 musec. This may be accomplished by
using millimicrosecond techniques for scintillation
detection together with the short pulse of neutrons
obtained from the natural phase bunching of particles
accelerated in a fixed-frequency cyclotron.! These tech-
niques were applied to the study of elastic and inelastic
neutron scattering from iron and carbon.
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Elastic and inelastic angular distribution measure-
ments were made for Fe at 1.66, 1.58, and 1.48 Meyv,
and for C at 1.66 Mev. The elastic distribution exhibits
an optical diffraction type pattern, and the inelastic
distribution shows a slight asymmetry about 90
degrees.

EXPERIMENTAL PROCEDURE

For this work the 18-in. cyclotron at the Brookhaven
National Laboratory produced a 2.454-0.03-Mev
external proton beam. About 60 ua of the external beam
were focused on a %-in. diameter target 12 ft from the
cyclotron by using a pair of double-wedge magnets.
The natural phase bunching? of the machine resulted in
a 2-musec pulse of protons striking the target every
54.1 musec (rf=18.4 Mc/sec).

Neutrons were obtained from a thin target (~50
kev) of Zr-T on a water cooled copper backing. Three
different primary neutron energies (1.66, 1.58, and
1.48 Mev) were obtained by positioning the scatterer
at 0, 20, and 30 degrees with respect to the direction
of the protons incident on the target. The target design
(see Fig. 1) allowed for very little scattering material
in the direction of the forward beam. The targets
used showed only a negligible loss of tritium over a
50 000 pa-hr period.
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