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The tunneling process is considered as a partial explanation of observations by Reynolds and Zucker on the
reactions N'4(N'4Nis)N's and Ni4(Ni' C")0 is The theory of reactions of this type is first formulated in
reasonably general terms, employing a classical mechanics treatment of the motion of the colliding nuclei
and of the reaction products. The starting point is a set of adiabatic (fixed centers of mass of heavy aggre-
gates) wave functions, which is transformed to a related system of functions insuring a better initial con-
vergence of the iteration procedure. The anisotropy of transfer inherent in the p-nucleon eigenfunctions is
taken into account but finally eliminated by the consideration of extreme j-j coupling shell structure eigen-
function assignments, as well as the spin and statistics of the nuclei. The effect of antisymmetrizing the
wave function with respect to neutrons and protons in the incomplete shells is worked out. The relation of
the angular distribution problem presented by the case of dominant Coulomb effects to a popular form of
stripping theory is discussed, with the conclusion that the classical dynamics approximation to the motion
of the colliding nuclei is adequate. The dependence of the total cross section on energy and of the differential
cross section on angle, when compared with experiment, indicates the presence of another reaction mechanism
participating especially at the lower energies.

I. INTRODUCTION"UCLEAR transfer reactions have been observed
by Reynolds and Zucker, ' %alker, Chackett,

and Fremlin, 2 and by I'arragi. ' The first of the three
papers just quoted contains an account of quantitative
measurements on the reactions N'4(N'4, N")Nis and
N"(N'4, C")0". In the other work referred to above,
the general nature of the reactions is ascertained or
made probable, but the larger energy spread of the
incident beam makes comparison with theoretical
prediction more dificult. In the present paper special
attention is given, therefore, to the two reactions
resulting from the bombardment of N" by N".

It has been pointed out by Breit, Hull, and Gluck-
stern4 that the transfer of a nucleon in reactions of this
type should give information regarding the nucleon
density at the nuclear surface, and the process con-
sisting of the tunneling of nucleons through the region
of negative kinetic energy beyond the nuclear surface
should be amenable to reasonably precise calculation.
The work reported on below has been carried out in
order to see to what degree the tunneling process
represents the whole situation. The combined evidence
of the observations of the variation of the total cross
section with energy and of the character of the angular
distribution at diferent energies will be seen to leave
little doubt about the insuSciency of the tunneling
mechanism as an explanation of the whole phenomenon.
The reaction yield does not depend on energy nearly
as critically as the tunneling picture suggests, nor does
the angular distribution show the expected sharp dip
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at 90' scattering angle. It has to be concluded therefore
that another process is taking place in addition to the
leakage of neutrons. or protons through the regions of
negative kinetic energy. The possibility that virtual
state formation is responsible for the discrepancy will

be discussed in another publication. '
The transfer of a nucleon between the two nuclei is

treated in the semiclassical approximation' which has
been successful in giving an approximate account of
Coulomb excitation. v The validity of the approximation
is understandable as a result of the relatively large
mass of the N" nuclei which makes their wavelength
short in comparison with the distance of closest
approach. The work on Coulomb excitation shows
furthermore that the agreement between classical and
quantum-mechanical integrals is very much better than
simple considerations on the basis of the JWKB method
would lead one to expect. There are in fact compensa-
tions in the distribution of quantum-mechanical and
classical densities which, when combined with the rela-
tive smallness of the distance penetrated in the region
of negative kinetic energy as compared with the distance
of closest approach, contribute to the generality of this
phenomenon. This expectation is corroborated by the
presence of analytically established connections' between
the integrals entering the theory of Coulomb excitation
for cases of large angular mornenta, as well as by the
direct numerical comparison' which has partly been
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already mentioned. In the Coulomb excitation problem
the principal error of the SCT (semiclassical treatment)
lies in the employment of classical rather than quantum
values of weighting factors, the errors in the radial
integrals being of the order of one percent in typical
cases. There appears to be no essential reason for
expecting the present problem to diGer from the case
of Coulomb excitation in this respect, since the values
of the parameters are no less favorable.

The transfer reactions in Ni4+Ni4 are characterized
by the special circumstance of nearly equal binding
energies of the last neutron in N'4 and N" and of the
last proton in N" and O". The differences in these
binding energies are only 0.3 Mev. The treatment of
the transfer has to be adapted therefore to the calcu-
lation of coupling effects which are peculiar to such
cases. The calculations have been made by the following
methods: (a) potential-well models for binding the
nucleons, employing the method of a previous paper, "
with identical and nonidentical potential wells, (b) a
treatment involving no specializations regarding the
character of the forces to which the nucleon is subjected
inside the nucleus, but relying instead on the employ-
ment of information regarding the radial logarithmic
derivative of the wave function at the nuclear surface.
The two treatments give nearly the same energy de-
pendence. Treatment (b) will be presented first.
Numerical results based on a potential-well model
treatment will then be given.

In Sec. II adiabatic functions suitable for the present
and allied problems are introduced. Two transfer
functions called h+, h are defined for neutrons and the
transfer equations are worked out in terms of general
properties of the wave functions. Quantities I'~, P
interpretable as potential barrier penetrabilities are
defined in this connection. The special circumstance of
approximate equality of binding energy of the trans-
ferred neutron and the associated resonance phe-
nomenon are then considered. In Sec. III the appli-
cation of adiabatic functions to the transfer problem is
discussed together with the role of anistropy caused by
diGerent barrier penetrabilities of the sublevels of
degenerate states. The convergence of a calculation
based on adiabatic functions is then examined with the
conclusion that for the resonance case it is often poor.
Derived functions 8, 8 having more pronounced space
localization and insuring more rapid convergence of
iterations are introduced. The resultant equations
describing transfer are interpreted in terms of the
energy matrix in the reference system of the localized
functions. These could have been set up at the beginning,
but the relations of the method to that of adiabatic
functions would not have been clear and the possibility
of introducing the transfer functions h+., h would have
been more dificult to discuss. In the presentation as it
stands, the starting point is concerned with stationary

"6. Breit, Phys. Rev. 102, 549 (1956}.

states for fixed positions of the centers of mass of the
heavy aggregates and the remainder of the discussion
involves straightforward transformations. The reduc-
tion to the energy-matrix type of equation such as Kq.
(11) involves dropping a small term considered in rela-
tion to Eq. (10.4). Complications arising from the
rotation of the anisotropy axis with respect to the
laboratory system are not discussed because the special
values of spins and the extreme j-j coupling nucleon
configuration assignments make the transfer function
isotropic, as shown in Sec. IV.

Here the spin-orbital combinations are considered in
detail and so is the eGect of the antisymmetry of the
wave function in the neutrons of both nuclei. The rela-
tive probabilities of the transfer taking place from
incident states of total spin 1 and 0 are also worked
out here. It is found that the transfer functions are
isotropic even though they would have been anisotropic
for the transfer of a single p-neutron bound to a spinless
core in the initial and final nuclei. The dependence of
the barrier penetrability on the distance between the
colliding nuclei turns out to be the same as though the
neutron were in an s state, as is seen in Eq. (15.7). The
role of the identity of the colliding nitrogen nuclei is
taken up next and the e8ect of antisymmetry on wave
functions 4';~ unsymmetrized with respect to the
valence nucleons which are contained in the two nitrogen
nuclei is considered. This is done in relation to Eq.
(16.4). The effect is found to be represented by a factor
2 in the cross section and is related to a similar factor 2

arising in the fictitious case of two C" nuclei considered
as having, first, nonidentical, and second, identical C"
cores. The section ends with taking into account wave
function antisymmetry on the general form of the
angular distribution function in terms of that for non-
identical particles.

In Sec. V the angular distribution of the reaction
products is calculated in an approximate manner. The
characteristic differences between the heavy-particle
case of the nitrogen reactions and the light-particle
case of (d,p) reactions are first considered. It is shown

that the forward pattern of usual stripping theory is of
minor importance in the heavy-particle case. On the
other hand, there appears a maximum in the backward
direction in the case of nonidentical particles. The rela-

tionship between the matrix element type of calculation

employing ingoing and outgoing wave modifications of

the incident and final waves to the semiclassical theory
is examined, and the eGect of the strong Coulomb repul-

sion between the heavy particles is brought into evi-

dence in connection with Eqs. (17) to (18). After this

justification of the employment of the semiclassical

approximation, the relationship of the two methods is

considered in more detail for the special case of the
Coulomb field in relation to Eqs. (18.3) to (18.8) and

from a more general standpoint in Eqs. (19) to (19.4).
The semiclassical method is adopted from here on, and
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the angular distribution is worked out as in Eqs. (20)
to (23.1).

In Sec. VI the final reductions for comparison with
experiment are made, the variation of yield with energy
is worked out, and the angular distribution is calculated.
The comparison between neutron and proton transfer
is made here on an approximate basis. It is concluded
that the tunneling process is insufficient as a complete
explanation of the observations.

Notation

The following is a list of the more important symbols
in approximate order of occurrence.

x, y, s= coordinates of nucleon (neutron or proton) with
respect to left nucleus.
(xo+yo+ so) —',

R= distance between heavy particles.
S=surface of nucleus.
(x',y', s') =coordinates of nucleon referred to right

nucleus.
r'= (x"+y"+s")l.
h and h+= radial parts of nucleon wave function.
u= nucleon wave function outside the nuclei (u= A+0+

+A h).
Ii+—dkl+/h, +dr; 4 = dho /ho dr. —
I'+ &i+/&&+, I'—— && /hi . =
n; is defined in relation to (6—nP)/= 0.

~ JII

0!=0,'& lI Ay=%2=cl3.
q=aR.
),=[8(r, -t,)/8( )], (.=.„).
X2 ——[8(Io+—4)/8(n')], (n=noo).
pi= —(&i+/hi-) (ti+—&i-)/&i
po = —(ho /ho+) (Io —I~)/)~o.
g=

~
[i4(n, oo —nmo)+p']'*~.

a+=A~Po &, a =A Pi *'.

p=(p~.)'
8 is defined by tan8=a+/a
x= (nio'-n~o')/(2p).
pi= (Ii —Ii~)/4, yo ——(lop —I2 )/'Ao.

P„=wave function corresponding to u.
q, g~, q„, q„+, are general coordinates.
Pi, Po ——wave functions for isolated nuclei (Pi for N'4,

Po for N").
4'= wave function of the whole system.
oui

——wave function of residual nucleus (N").
4tio ——wave function of capturing nucleus (N") before

neutron entry. I

Ei Xo X„,N„=normalization factors for +, fi, fo,
Q) V.

u=lc —vs, s=sin8.
8=us+ac, c= cos8.
g„, f„=functions f corresponding to u and 8.
a„, a„=coefficients of u and ii appearing in f.
E„, E„E„,E„=energy eigenvalues corresponding to

Q) V) 'Q) 5.
I;, I~=total spin of incident and product nuclei, re-

spectively.

AL;, ALJ=relative orbital angular momentum before
and after the collision.

m~, i~= p& wave functions of proton and neutron, re-

spectively.
z &=spin functions of jth nucleus, m indexing the

component along the s axis.
(1),Oo = spin 1 and spin 0 functions for the initial state.
S, So= spin 1 and spin 0 states of two neutrons.
6, „, S „=antisymmetric and symmetric combinations

of orbital wave functions.
=unsymmetrized initial and final state wave

funct1OnS.

Ny =symmetrized initial and final state wave
functions

BR=factor of exponential in Coulomb wave.
k=2m times the wave number of the appropriate par-

ticle, as indicated by a subscript.
I' subscript refers to N" part of incident particle.
D subscript refers to whole bombarding particle.
T subscript refers to the target (N") nucleus.
$= internal coordinates of N" or target.
r, s„=spatial and spin coordinates of neutron.
)t=functions describing internal relative motion [in

Eq. (17.4)].
0= scattering angle in c.m. system.
e, @=parameters of the classical orbit for the initial

state.
g= e'/Av.
x', y', x~', yy'=coordinates convenient for the descrip-

tion of the classical orbits of initial and final state.
E.=minimum bombarding energy for contact of nuclei.
~(o=Eu Ev.
qo ——coordinates of nucleon transferred [in (26)—(27)].
fI =radial factor of wave function occurring in (7.1),

not necessarily for eigenenergy.
(QP)e= average value of wave function on S.
~= 2m times the wave number of particle in the nucleus.

r„, o„=total cross sections for the transfer of proton
and neutron, respectively.

II. ADIABATIC FUNCTIONS

The calculation will be made in terms of adiabatic
wave functions corresponding to stationary positions
of the heavy particles and a neutron or proton tunneling
between them. Recoil actions on the heavy aggregates
are neglected. The only adiabatic functions taken into
account are those corresponding to the ground states
of the colliding nuclei before collision and to the reaction
products after the collision. It will be seen that the
calculation is very similar to one in terms of the energy
matrix referred to unperturbed initial and final states.

The adiabatic functions will be introduced first for
a simplified case in which the spins of the particles are
not considered. The two heavy fragments, a distance R
apart, are exchanging a nucleon, the displacements of
which from the centers of the aggregates having centers
at 0 and 0' are denoted, respectively, by r and r'. For
large values of R, and neglecting the effect of the
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Coulomb field on the nucleon the p-nucleon wave
functions outside the left nucleus have the form

(xyz) 1 1

Er r r) .ar (ar)'

where 0. is determined by the binding energy of the
nucleon as will be discussed more fully later. The
direction of the s axis is from 0 to 0 as in Fig. 1. As
0' approaches 0, this wave function becomes aAected
by the proximity of O'. For any R, there are three
eigenstates arising from the three functions listed in
(1) in the process of adiabatic transformation. For any
one of these states, the system of nucleons moving
about the fixed centers 0 and 0' has a definite energy.
%hen the neutron is at a point such as g in Fig. 1 in
the space between the heavy nuclei, the latter are in
their ground states, such as the ground states of N"
and N" in the transfer of a neutron from X" to N",
and their energy is well dedned. The neutron energy is
thus well defined also as the difference between the
total energy and the sum of the ground state energies
of N" and of X".The wave equation for the neutron in
the space between the heavy nuclei thus has the form

(6—aP)/=0, (i =1, 2, 3) (1.1)

where the o.; have, in general, diferent values for the
states arising from the three functions listed in Eq. (1),
the d.iRerences in the o,, arising from the energy dif-
ferences of the three states. Each of these three functions
can be analyzed in terms of spherical harmonics on 5',
and therefore in terms of solutions of Eq. (1.1) corre-
sponding to definite values of the orbital angular
moment about O'. Calculation shows that the p parts
of such an analysis are, respectively,

1 1 (x')
aR (aR)' I Er' j

t ir ) i I;(ar') -
1

E2 ) aR(ar')' aR (aR)')

q=oR,

h *(5')= —3(~/2)'P-;(«')/(«')'3
&& i(1/I)+(2/9')+ (2/0') 3~ ' (1 3)

and also

h+ (5') = h+" (5') =h+'(5')

I
= —+ exp( —ar'), (1.6)

cxf' 0,'t'

h+*(5)=h+"(5)=3( /2)'P;( )/( )'j
&& L(1/C')+ (1/C') l~ ', (1.7)

h+'(5) = —3(~/2)*'P;(«)/(«)'3
&& 5(1/9)+(2//)+ (2/9') 3~ ' (1 8)

The designations S, S' show at which surface the ex-
pression is convenient to use. The priInary definition of
the h is in Eq. (1.3), that of the h+ in (1.6). Equations
(1.3'), (1.7), (1.8) are not literally correct but are
restricted to the coupling of p states.

If the coupling takes place without changing the
configuration assignment of the particles inside S and
S', then the neutron state between S and S' can be
described as a linear combination of h and a corre-
sponding h+. The boundary condition at r= ~ is
satisfied by this choice provided the primary meaning
of h or h+ is understood. At S and S' the linear com-
bination must now be joined smoothly to the internal
functions. The form of the conditions on the linear
combinations obtained in this manner is independent
of whether one is dealing with h, h&, or h' and the
specification of the h, h+ pair of functions may be
omitted therefore for the present.

The combination of radial factors at S and S' may
thus be written symbolically in the form

(2)

and the conditions on the radial logarithmic derivatives
I at 5 and 5' give

2 2
1+ +

aR (aR)'
Ri

&r') .
/~+ = —(»—i+/hi-) (Ii+—Ii)/(Ii- —Ii)

(h2+/h2 —) (f2+ In)/(Ip —I2), (2.1)

The three p sta, tes of 0 thus become coupled to three p
states of O'. There are accordingly six adiabatic states,
one pair of such states arising from each pair of states
characterized by angular functions x/r, x'/r' in the
decoupled condition. It is useful to introduce the coef-
ficients of the angular functions x/r and x'/r' as follows:

1
h ~(5)=h i(5)=h z(5)= —+ exp( —ar) (1.3)

.Al' CXt'

h,+=h+(r), h, =h (r), (at S) (2.2)

h,+=h+(r'), hp ——h (r'), (at 5') (2.3)

Ii+= dhi~/hi+dr, , Ip ——dhg /h2 dr'. (2.4)

The quantities Ii, I2 are, respectively, the logarithmic
derivatives of the radial function with respect to r at S
and r' at 5'. From Eq. (2.1) it follows that

(Ii —Ii) (12~—12) E+E (Ii+—Ii) (12 —I2), (3)

h (5') =h "(5')=3(ir/2)'P;(ar')/( r')'*j

XL(1/C')+ (1/C') je (1 3')
where

Pe=hip/h2p, P =h~/hi (3.1)
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The quantity I'+ is a measure of barrier penetration
for a wave function starting on the right nucleus, while
P' is a similar measure for a function starting at the
left nucleus. The logarithmic derivatives Il and I2 are
determined by the boundary conditions for the other
nucleons and by the energy. It is supposed that the
wave function for which two nucleons have left the
interior of S and are interacting with the nucleons
inside S' is negligible. The reason for doing so is that
the penetration factors enter to a higher order for such
interactions. It is also supposed that the tunneling
effect is sufficiently weak to make it unnecessary to
take into account more than first order changes in the
logarithmic derivatives with energy. The energy of the
coupled states is determined by Eq. (3). If the nuclei
are very far apart, I'+=8 =0 and there are then the
obvious solutions corresponding to Il= Il and I2 ——I2+.
For the first of these the nucleon is attached to S, for
the second to S', and the values of o. are accordingly
those corresponding to a neutron escaping from S with
an energy equal to the binding energy of the neutron"
leaving S.

In the case of the N"+N" transfer reactions the two
roots of Eq. (3) are close together, the binding energies
of the last neutron being nearly the same in N" and X".
There is therefore a non-negligible resonance eGect
between the states originating in the conditions I1=I1
and I2=12+. The adiabatic wave functions are also
affected by this type of resonance and approximations
to these wave functions may be worked out as follows.
When one drops higher than first-order effects of energy
changes on the I, Eq. (3) becomes

(u ulo ) (u u20 )llll12:+++—(11+ Il) (I2— I2) y (4)

Introducing

Pl= —(kl~/hl ) (Il+. Il )/Xl

P2= —(h~/h2~) (IP -12~)/X2,

(4.5)

(4.6)

a~ ——A+p2 i, a =A pl '*, (4 7)

(u ulo)(u u 0) P 0 (5)

According to the second of the two forms for P in Eq.
(4.9), this quantity is reasonably sensitive to u since
it contains the barrier penetrabilities. It is nevertheless
useful to solve Eq. (5) for u', treating P as a parameter
because an approximate value of u can be used in P
and the result improved by iteration. The roots of Eq.
(5) for u' will be called u12 and u22, the choice of sub-
scripts being made such that as p2 decreases to zero, u12

approaches e&0' and o,2' approaches o.&0'. Explicitly,

while

ul 2 (ulo +u20 )+~)
(ulo )u20 )

u2 =2(ulo +uoo) —+,

ul 2 (ulo +u20 )
(u20 )ulo )

u2 2 (ulo +u20 )++.

(5.1)

(5.2)

(5 3)

the joining conditions expressed by Eq. (2.1) take the
folm

(u20' —u2)a~+Pa =0, Pai+(u, o' —u')a =0, (4.8)

with

P=(P1P2)'; 0 =(~+~-/&1~2)(11+—Il-)(I2-—I2+). (49)

It follows from Eq. (4.8) that

where

and n&o, +20 are determined by

With these definitions, Eq. (4.8) gives

a+/a = tan8, (u=u, )

a+/a = —cot8, (u=u, )
with

(5 4)

(5 5)

Il—Il ——0, (u=ulo)

I2—I2+= 0. (u =uoo).

(4 3)

(4.4)

28 = arctanL2p/(ulo' —uoo') j. (5.6)

All conditions of coupling are represented by varying 0
in the range —2r/4(8(or/4. These ranges correspond
to the forms

z

S

with

tan8= —X+ (1+y2)', (ulo')uoo')

tan8= —y —(1+y )&, (ulo (uoo )

X= (ulo' —u20')/(20)

(5.7)

(5 8)

FIG. 1. Sketch illustrating choice of coordinates. Here r and r'
are the position vectors of the neutron I relative to the centers of
the nuclei, 0 and 0', respectively. The nuclear surfaces are desig-
nated by S and S'. The nuclear centers lie on the s axis, and are
separated by a distance E.

"The binding energy (= —tightness of binding), is used hpre
g,s a nega&ivt; number for a stable nuit;uq,

21(r') Il+ —I,

y, (r) f2+—I2

Il+
—Il 1 Il —Il—p

l2+ —I2 &+ ig —I2
(6)

The angle 8 is the angle of rotation of the principal axes
f01 o.2.

Without approximations the ratio of the radial wave
functions at the nuclear surfaces, N(r')/N(r), may be
represented by
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Since i~ —12 involves P+P when I,—I, , the last of
these forms shows that in this case u(r')((u(r) for weak
penetration. In the approximation of Eqs. (4) to (5),

u(r') (y2P ) ' y2 tan8+p

u(r) Ey2P+) P tan8+yg
Q=Qy (6.1)

with

u(r') (y~P q
-'

y2 —p tan8

u(r) t y2P+] P—yg tan8
Q=Qg

7,=(l, —I„)/~„~,=(I —I )/&.

(6.2)

(6.3)

For 8=2r/4, the root n& gives a symmetric function
in the sense that a+= a, while Q2 gives an antisymmetric
u. For 8= —2r/4, the roles of the symmetric and anti-
symmetric functions with respect to Q& and Q2 are
reversed.

The normalization of the wave function is determined

by the integrals over the configuration space of all the
particles. It is impractical to calculate it on account of
the diKculty of the many-body problem, However, it
is possible to introduce the integrals for isolated nuclei
as parameters and to express the normalization integral
of the adiabatic wave function in terms of the nor-
malization integrals of separated nuclei. The latter are
of the same type as those which enter the theory of
reactions caused by neutron bombardment, but the
energy is so diGerent in the present case that a truly
quantitative use of data on neutron-induced reactions
is also very difficult. In the space outside both S and S'
and for Q=Q~,

u=N [(y2/P+)'*(h~/h2+) sin8

+(y&/P )&(h /hg ) cos8j. (6.4)

The corresponding formula for Q=Q2 is obtained by the
replacements u —+v, tV —+N„, 8~ —,'2r+8. It is im-

portant to use here the primary meaning of h and h+,
viz that of E.qs. (1.3) and (1.6) rather than the values
which are convenient for joining purposes only, such as
in Eq. (1.3'). The wave function corresponding to u is

P„=N„[(y2/P+) *'(x'/r') (h+/h2+) s-in8

+ (y&/P )l( /xr) (h /h2 ) cos8j, (6.5)

a specialization to one of the three directions of the p
state having been made. The part of the above ex-
pression containing h /h& would join smoothly to the
internal function inside S if it were not for the changed
energy. For reasonably large E this change is small and
may then be neglected. For isolated nuclei the wave
functions will be denoted by f& and f2, the function f&
referring to the nucleus containing the neutron before
capture (N") and p2 to the nucleus which the neutron
enters after capture (N"). The coordinates of the
neutron will be denoted collectively by q, the coordi-
nates of other nucleons in the first nucleus by q&, q2,

~ ~ ~, q, and the coordinates of other nucleons in the
sqqond gucleus by q~~, q~2, . -, q~, The wgve fgnq-

tions p& and f2 will be normalized by

f, dqdq&dq2 . dq„
aJ

=~ A dqdq-+~dq~2 . .dq-+-=1 (7)

+=+(q; q~, q2, " q-; q-+2, ".,q-+-),

and it has to be normalized by

(7.3)

(7 4)

Since the nuclear surfaces S and S' do not intersect,
the configuration space can be divided into three parts
according to the three possibilities:

(I) r&a~, (II) r'&a 2(III) r)a&, r')a . 2

Region (I) corresponds to the condition before escape,
II to that after capture, III to the tunneling stage. In
accordance with Eq. (6.5), one has for region III,

+=$22gq 2, (in III) (7 5)

where by f is meant the expression in Eq. (6.5). The
two parts of f corresponding to the two terms in
brackets in Eq. (6.5) give rise to two parts of 4 which
can be joined smoothly to constant multiples of $2222

and of f2p2, respectively, making use of Eqs. (7.1),
(7.2). One has thus

@=(N/N, )(72/P )i cos&p~222, (r &a,)
(7.6)

(N/N2) (r2/Pp) & sin+2 22~. (r' &a2)

The normalization condition on S is accordingly ob-
tainable by direct substitution of + into the normaliza-
tion integral by means of Eqs. (7.5) and (7.6). In this
calculation, there occurs the integral of

(x/r)2p22[h (r)/h2 $'

Considering the wave functions with angular depend-
ence x/r and x'/r', and extending them beyond the
nuclear radii by continuation employing the Schroe-
dinger equation for each nucleus, the functions f2 and

p2 assume the forms

0'2 N1(x/r) [h-(r)/hi-] 222 (qi, ' ',q-), (r& ~1) (7.1)

N2(x /r') Lh+(r')/h2+j~2(q~~, ' ' ',q~-)
(r'& ~2) (7.2)

the first of which applies when the neutron has left the
first nucleus, the second when the second nucleus has
been dissociated. The nuclear radii for nuclei 1 and 2

are denoted by a& and a2, respectively. The wave
function of the residual nucleus (N") left by the neutron
is called q ~, while q 2 is the function of the capturing
nucleus (N'4) before it has been entered by the neutron.
The wave function of the whole system is
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1/,V'= (yi/Xi'P ) cos'8+ (yo/Eo'I'+) sin'8

+2(gizmo/8+I' )' sin8 cos8

(xx'h~h /rr'ho+h, )dq, (g)

where subscript III on the integral means that it is
extended over r&aj and r') a2, the space outside both
S and S'. The normalization conditions on fi and 1t o give

Xi = 1 ] Pi dqdqi' ' 'dq~
I

(xh /rhi )'dq, (8.1)

fo dqdq~i dq~
II

over the region outside both S and S'. Since the main
interest is in appreciable nuclear separations R and
since r is the distance from the center of S to the
neutron, this integral may be approximated by extend-
ing the integration over all of the space outside S.
Similarly the integral containing (x'/r')' can be ap-
proximated by extending the integration over all of the
space outside S'. These approximations result in the
occurrence of the same combinations as occur in
integrating fi' and fo' over their configuration space.
The energy of the adiabatic state is only slightly dif-
ferent from the energies of the isolated nuclei, and
therefore only a small error is made by replacing the
combinations by unity. The normalization condition
thus becomes

system and in the coordinate system whose s axis
rotates with the internuclear line. If the transfer were
that of a spinless neutron uncoupled to other nucleons,
the distinction between the two coordinate systems
would have been important. (c) The probable nuclear
configurations of N" and N'5 on the j-j coupling model
re-establish isotropy of the transfer as will be seen
presently.

For these reasons, the details of distinctions between
stationary and rotating systems for anisotropic transfer
are not needed for the immediate application. It is
necessary, however, to discuss the solution of the
equations resulting from expressing the wave function
in terms of adiabatic functions. According to Eqs. (5.4)
and (5.5), there are two adiabatic functions arising out
of the two states being coupled by tunneling. The
radial factor for one of them is as in Eq. (6.4). That for
the second is obtainable by changing 8 —+ -', m+8 and is
therefore

o=&.Pbo/&+)'(h+/h~) cos8
—(y,/P )&(h /h, ) sin8). (6.4')

This expression is symbolic oddly, the angular dependence
being omitted. The corresponding wave function in the
space between the nuclei is

0'= &.L(Vo/&+)'(x/r) (h+/h~) cos8
—(y,/P )&(x'/r')(h /h, ) sin8$. (6.5')

The difference in the energy of P„and P„produces only
a slight effect on the space dependence of h+/ho+ and
h /hi and will be neglected. It will be assumed that
for any R one may approximate

(x'h~/r'ho+)'dq. (8.2)

Here the subscripts I and II refer to the regions defined
just before Eq. (7.5), and the integrals in the de-
nominators of Eqs. (8.1) and (8.2) are taken over the
space outside S and S' respectively. Since the integral
in Eq. (g) vanishes for large internuclear distances and
since its value depends on the existence of an overlap
of h+ and h, the first two terms are usually a good
approximation to the value of 1/1P.

III. TRANSFER IN TERMS OF ADIABATIC
AND FIXED FUNCTIONS

So far the adiabatic functions have been considered
without bringing in the changes which occur as a result
of the relative motion of the nuclei. The following
special circumstances enter. (a) The particle transferred
is in a p; state. The functions h, h+ of the preceding
section differ for the three possible p states. There is
thus an anisotropy of transmission depending on the
orientation of the axis of angular dependence with
respect to the internuclear line. (b) On account of the
anisotropy, it is necessary to distinguish between the
adiabatic wave functions in the laboratory coordinate

i.e., the entrance of other states is assumed to be unim-
portant. Substitution of P into the wave equation gives
two simultaneous equations connecting a, a„da /df,
and da„/dh Before t.he collision, while the neutron is in
nucleus 1 and while 8=0, a, =0. One would be tempted
to solve the equations on the assumption that

~
a„/a

~

&&1

throughout the collision. Such an assumption is not
justifiable, however, in the general case. An obvious
exception to it is formed in the case of complete de-
generacy for which Bio=Goo so that 8=or/4. In this case

. the adiabatic functions p and ip„do not correspond to
localization of the neutron in one or another nucleus.
For any other case, however, R —+ ~ gives P=O and
localization results according to Eq. (5.6). Nevertheless,
if the nuclei are close enough to make

the adiabatic functions become essentially like those for
exact degeneracy and the neutron is not even approxi-
mately localized in one of the nuclei. This condition can
be obtained even if P is very small by making

~

nio' —0.'ao'
~

small enough. If ~a„~ were —1 during the collision,
one would obtain, therefore, a practically 50% prob-

/
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ability of transfer close to the perihelion which would
decrease again at the end of the orbit. This is obviously
not the case, and the assumption ~a

~

—1 cannot be
generally applicable therefore. Accordingly

~
a„~ is not

in general ((1, and successive approximations arranged
with u, =0 as the starting approximation do not neces-
sarily converge rapidly. These circumstances enter only
if there is approximate resonance and the important
parameter is x. Estimates show that in the case of the
N"+N'4 reaction, ~a„/a ~&&1 for E=10 Mev but that
this approximation is not applicable for E=15 Mev.
For these reasons, the successive approximations will
be arranged in terms of such linear combinations of
adiabatic functions as to make them correspond to the
nucleons being mostly in one or the other nucleus
throughout the collision. This part of the calculation is
appreciably simplified if it is assumed that

(9.2)

obtains

and hence,
Bv/B8= —u, (u, Bv/B8) = —1, (10.3)

Bv y ( Bv Bvi ( Dv)
+Rl u, l=l u, R —8—&=I u, R I, (10.4)

BR) ( BR B8/ 0 DR)

1

da„/dt+ [(E)+', (E—„—E„)-cos28]a„

Z

+ (E„—E„)—sin28a„=O,
2A

(10.5)

where Dv/DR takes into account variations of the adi-
abatic function taking place apart from 0. Since this
leaves only the slight changes in n and 8 caused by
energy dependence, these terms are very small and will
be neglected. One obtains thus from (10.2)

'b

+ (E„E„)si—n28a„=—O,
2h

Since in the application one would have difEculty in da./«+ —L(E)—2(Eu Ee) cos28]av
assigning values to diGerences of these quantities, the
more complicated general formulas will be omitted.
Instead of I and e, the functions

with
u=uc —vs, P=us+vc,

s= sine, c=cose

(9.3)
(E)= (E„+E„)/2.

(94) Employment of Eqs. (5) to (5.3) in (10.5) gives

(10.6)

will be used. The u and 8 correspond to the neutron
being very nearly in the left and right nuclei, respec-
tively. The functions f corresponding to u and v will
be called P and f„res pecti vely. Instead of (9), one has

4 =aA„+aA„,
so that with

fd i p iA
+ E„ ia„——P—a =0,

ddt A ) 2M

a„=a c—a„s, a„=ass+a„c. (10.1) E = —(A /2M)n 0 E = —(ft /2M)Q90 (11.1)
Substitution in the wave equation gives

. ( Bv) i
da /dt+8a„+R~ u, ~a„+—(E„—E„)sca„

E 'BR)

Z

+—(E c'+E„s')a =0,
A

. ( Bvp i
da„/dt 8a„R~ u, —

~

a—„+—(E„s'+E„c')a„
& 'BR)

(10.2)

z
+-(E„—E„)sca =0,

A

where E„and E, are the energy eigenvalues corre-
sponding to the adiabatic functions Iand v, respectively.
The orthogonality of I and e has been made use of in
obtaining (10.2) to set (u, Bv/BR) = —(Bu/BR, v). Both
u and v have been taken to be real since the p functions
can always be chosen in this manner. From (9.3) one

where P is as in Eq. (4.9). Equation (11) suggests the
interpretation that the energy matrix in the reference
system of u and 8 has the diagonal elements E„and
E„, its nondiagonal element being —(A'/2M)P. Equa-
tion (11) is simpler to use than corresponding relations
in terms of adiabatic functions. The reason for intro-
ducing the latter is that they give a derivation of P and
also that it appeared useful to demonstrate that a
consistent use of adiabatic functions combined with
consideration of convergence leads to the consideration
of the energy matrix with respect to unperturbed
functions in separate nuclei. It should be pointed out
that the choice of the f„, g„ in preference to f, if„has
been made without a real proof regarding the functions
P„, P„being the best for securing rapid convergence, the
considerations being largely intuitive in this con-
nection. The usefulness of the adiabatic functions in
deriving P has been that considerations regarding
joining of functions are natural in a calculation of
energy levels for stationary nuclei and that these
considerations simplify the calculation of P.
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In extending Eq. (11) to the case of spin coupling
and coupling to other nucleons in the two nuclei, it
will suKce to consider the modifications in the energy
matrix caused by the introduction of these changes in
the wave function. It may be noted here that a treat-
ment in terms of adiabatic wave functions constructed
from the integral equation, as proposed previously, "
leads to the same final results. This treatment will be
discussed in a separate publication. "

Iog 0

Even L;

0

Odd L;

0 L;
2 L&2, L;

Lf
Lf

I;, L;—2 Lf+1
L+2, L; Ly
L+2 L Lf 1

1 L;
1 L;)L;—2

L;
L;+2, L;

TAsLE I. Values of Lf allowed by conservation of J
and of parity.

Ly
Lf+1

Lf
I.f—1

IV. EFFECT OF SPIN AND OTHER COUPLINGS

Since N'4 obeys Einstein-Bose statistics, the initial
states have total nuclear spin I;=0 or 2 for even I.;,
and spin 1 for odd I.;. Here 1.;A denotes the angular
momentum of relative motion of the nitrogens before
the collision. Denoting similarly the relative orbital
angular momentum after the collision by I.~A and the
total spin of product nuclei by If, combined require-
ments of conservation of total angular momentum JA
and of parity restrict the possibilities to those listed in
Table I. The general selection rules are seen to allow
changes of relative orbital angular momentum I. by
AI.=O, &2. The possibilities are more severely re-
stricted if a specific model for the nuclei is used. Referring
to protons by the letter m. , to neutrons by v, to p
single-particle functions by p, and designating the total
angular momentum in units A by a subscript, it is
convenient to introduce single-particle functions

Here subscripts + and —refer to the sign of the pro-
jection on the axis of quantization of the angular
momentum of a particle in a p; state The p.

-shell
neutron configurations of N", N", and N" will be taken
to be (P,)', (P,)'P;, and (P~)'(P;)o, respectively, and a
similar assignment of proton wave functions will be
used. This assumes that transfer takes place to the
ground state. It appears very probable" that pure j-j
coupling does not apply to these nuclei. The qualitative
features of the angular distribution curve, ~is. , the
strong peaks in the forward and backward directions,
should not be affected by intermediate coupling since
they are caused primarily by the presence of the factor
expL —2n(E —2a)7 which is present for all tunneling
processes, and do not depend much on the powers of
1/R which are affected by assumptions regarding the
coupling. Disregarding particles in closed shells, the
incident conditions of the two nuclei are described by
the functions

(x yqx o)g y) = (ol ~yv~yq tt7t'+v~ +7l ~ v~+]/v2) 'Ir~ v~ ))
(j= 1,2) (12.1)

"M. E. Ebel (to be published).
'4 D. R. Inglis, Revs. Modern Phys. 25, 390 (1953);B.Jancovici

and I. Talmi, Phys. Rev. 95, 289 (1954).

corresponding to spin 1 for each N". In the final state
the neutrons in N" form a closed shell and, referring to
N" as the second nucleus, the N" contains the.proton
~' while N" contains x', v', and v'. For fixed centers of
mass of the nitrogens, there are four final state functions

(~'~~'+, )or'+or' +m' 7r'~]/v2, m' n' )
X LF+v'——P-v'+]/v2= (Vx, 1 o, 1r—z), (12 2)

I ~+s — m —m +](v+v'——v'—v'+)/2=0~o, (12.3)

the first three giving total spin 1, the last spin 0, and
spin projection being indicated by a subscript. Since
the functions v'+, v' refer to diRerent situations before
and after collision, the functions after collision are
denoted by v, Since the nitrogen nuclei are heavy in
comparison with the neutron, the exchange of linear
momentum when the neutron is leaving or is absorbed
by a nucleus is relatively small and the orbital angular
momentum of the heavy particles is approximately
unchanged. Formally the same may be seen from the
fact that the Hamiltonian of three mass points with
masses mo, ((M&, M& and potential energy V&(r»)
+V(roo) commutes with the relative angular mo-
mentum operator of M~ and M~. On account of the
presence of R&—R& in the physically important operators
representing relative motion of M~+mo with respect
to Mo and of Mq with respect to Mo+mo, these operators
do not exactly commute with the Hamiltonian and
some exchange of orbital angular momentum is ex-
pected for the more distant collisions. In these cases the
large lever arm increases the importance of the small
exchange of linear momentum. Since the tunneling
e8ect decreases rapidly with distance, this angular
momentum transfer will be neglected. The conserva-
tion of total angular momentum now implies that
the sum of nuclear spins be conserved because it
commutes with the Hamiltonian in the same approx-
imation. It is unnecessary to consider therefore the
states with initial nuclear spin 2 because this spin
cannot be reproduced by the final available values
of 0 and 1. It may be noted, however, that at
low bombarding energies the approximation used is
more questionable, distant collisions being then rela-
tively more important, and that the arguments given
do not exclude the possibility of an increased importance
of incident states with total spin 2 at low energies.
Estimates indicate, however, that for 10-Mev bom-
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A.P.
A.p.

(1),=or'+or'+(v'+v' —v' v'+)/2,

(1).=[( .' + ' ',)/v2)
X (v,v' —v' "„)/2, (12.6)

A.P. (1),=or' or' (v'iv' —v' v'+)/2,

A.P. (0)0——(V3/4) (or'+n' —or' ~'+)

X (v'+v' —v' v'~). (12.7)

The oG-diagonal energy matrix element between the
initial and Anal states contains firstly factors arising
from the combinations of F '+ with v'+, v' with
which are the same, and secondly factors arising from
the scalar products of the antisymmetric parts of the
(1); and of Op with the 1f; and 0~0~ The form of the
functions listed for the three functions of spin 1 in Eq.
(12.6) and for the function of spin 0 in Eq. (12.7)
shows that these oG-diagonal elements vanish except
for the combinations of (1);with 1f, and of (0);with O~p.

On comparing (12.6) and (12.7) with (12.2) and (12.3),

barding energy such eGects are not serious. The
incident-state spin functions are

(1)1=(X'1X'o—X'0X'1)/~2i (1)o = (X'1X'—1—X'—1X'1)/V23

(1)-1=(x'px'-1 —x'-1x'0)/~, (12 4)

(o)0= (x'1X'-1—x'px'0+x'-1X'1)/~, (12 3)

the values of the spin and its projection being indicated
in parentheses and as a projection, respectively.

The assignment of configurations to the particles does
not imply that the wave function is described .by such
combinations as in Eqs. (12.2) and (12.3) ~ Since it is
not practical, however, to calculate corrections to these
functions arising from interactions within the same
nucleus, these functions will be used in a literal sense.
Interactions between wave functions of the same con-
figuration have no oG-diagonal elements between the
functions describing space degeneracy. Central forces
spoil j-j coupling and the self consistency of the model,
which is admittedly imperfect in this respect.

It is seen from Eq. (1.2) that the coupling of the
orbital functions by tunneling action is anisotropic, the
wave function with a lobe along the internuclear line
OZ being transferred differently from the two other
functions. The anisotropy complicates the consideration
of transfer, which will be made, therefore, in two steps.
In the first the effect of equal coefficients of x'/r',
y'/r', and s'/r' will be considered, in the second the
eGect of coupling through s alone will be taken into
account, and the total eGect will be obtained through
the superposition of the two effects. The transfer
depends on the oG-diagonal energy matrix element. The
form of Eqs. (12.2) and (12.3) shows, therefore, that
one needs only the antisymmetric part of the wave
function obtained by considering the transfer of the
orbital functions.

For the isotropic type of transfer, one obtains for the
antisymmetric parts

the coe%cients multiplying the factors coming from the
v and v energy elements are seen to be

(1/V2, 1/v2, 1/V2, v3/2). (12.S)

R'r'dr = 1. (13.1)

In terms of these,

v1+ ——(01011—VZN1P')/K3, v1 = (&2N 1n—N08)/Vj, (13.2)

where n and P are the usual spin functions. On account
of anisotropy, the energy matrix elements of No in one
nucleus with the No of the other differ from those for
I& and I & ~ This eGect may be represented by the
changes

v'p —& v'p+AN'pn', v' -+ v' —AN'pl ' (13.3)

in the p*, states of the transferred nucleon, which cause
corresponding changes in the y';, ~i2

(x'1,x'o, x'-1) ~ (x'1,x'o, x'-1)
+A~10(111orl [ Plorl +alorl )/~2 P1orl ) (13 4)

These changes give rise to changes in the (1);and (0)p
functions which have the following parts antisymmetric
in the two neutrons:

[~~(1)1)= [A/2(6)'3
X{S1 +S p(S01, 0

—Soap, 1)},
A.P. [&~(1)0]=[A/2(6)'j

X{So +S 0(S1+0,-1+S 100,1)}, (14)
A.P. [Ag(1) 1]=[A/2(6)l7

X{S—1 +S~p(SO+—1, 0+Spado, —1)},
where

(S1Sp S 1)= (111110 [~1po+'110pq/1/g p1po) (14 1)

Sp = (n P —n P )/v2 {14.2)

are spin states of the two neutrons corresponding to
resultant spins of one and zero, respectively,

(S 1,S o,S 1)
= (or'year'y, [or'+or' +m' or'yj/K2) 1 ' or' ) (14.3)

are functions of angular momentum 1 arising by vector
coupling of the py protons,

S 0= (m'd'or' —m' m'+)/V2 (14.4)

is similarly the function of angular momentum zero,

=S180,—1
—So&0, o+S—181,0 (14.5)

The orbital neutron functions may be written as

(N1,gp)N 1)= (3/41r)'

X[—(x+iy)/V2r, s/r, (x—oy)/V2r jR(r), (13)

with the normalization
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with

The neutron function of the final state can be expressed
as

S"p——(v'~v2 —v' v2+)/v2=[O'o, 1S,+8 1, ,So

++1,6' 1+(&1, 1
—-'2&o, o)So)/3. (14.8)

It readily follows from Eqs. (14) . . (14.8) that

(S"o, A.P. Dg(1)1)=[A/(6)']S;, (j=1,2, 3) (15)

(S"p, A.P. 6~(0)p) = (A/2)S"p. (15.1)

The changes in the functions m'; corresponding to Eq.
(13.3) are, according to Eq. (13.2),

(u', )uo', u', ) ~ (u', ) (1+v3A)u'o) u' 1), (15.2)

the isotropic part being now included. According to
Eqs. (15) and (15.1), the inclusion of the anisotropic
part thus changes the coefficients listed in (12.8)
through the addition of

A (1/Q6, 1/Q6, 1/Q6, -', ). (15.3)

Combining the two, there results the set of coefFicients

(1/W2) [1+(&3A)/3](1,1,1,-',Q6), (15.4)

where the result is expressed in terms of V3A since
this combination enters Eq. (15.2). It is seen that the
eGect of the anisotropy does not change the ratios of
the matrix elements between the initial and final states.
In the notation of Eqs. (1.7), (1.8) the isotropic part
corresponds to the factors [1/q'+ 1/q'$e 2, while 1+%3A
corresponds to the factor

1 2 2
1+v3A ~

g g g

1 1 1 3 3= —+—e ' -+-——+—e '.
q' q'- -v

(15.5)

corre-

(15.6)

(15.7)

On the same scale, 1+(%3A)/3 of Eq. (15.4)
sponds therefore to

and the net eGect is as though

(X y S) 1 1 (or/ '
+ — " —

I

—
I L;( ')/(n ')'j

Er r r) (nr) (nr)' E2)

8 =u' u' —u' u', 8 =u' u'„+u'„u', (14.6)
I

the superscripts denoting the two neutrons, as pre-
viously. It is also found that

A.P. gg(0)o ——(A/12){S p
—S 1(SoQ, Lo+So&o 1)

+S o(S1+o, 1+S 1+o, i)
—S 1(Son,, o

—SoSo, l)}. (14.7)

instead of Eq. (1.2). The special circumstances regard-
ing nuclear spins and con6guration assignments thus
resulted in making the dependence on R which enters

q such as applies to an s state. It will also be noted that,
according to Eqs. (12.6), (12.8), (15), and (15.1), the
part of the energy matrix responsible for the coupling
of the states of one nucleus to the other has elements
only for the 1r; coupled to the (1),, with the same j,
and for (Yo to Oo. For the first three, one deals with a
constant times the unit matrix as is seen from Eqs.
(12.8) and (15). As the nuclei pass each other the
coordinate system of Fig. 1 is rotated, and the energy
matrix has been considered above with respect to this
rotating system. On account of the simpli6cations in its
form, however, it remains unchanged on transformation
to the coordinates of the center-of-mass system since,
for both submatrices referring to angular momenta 0
and 1, the matrix undergoes a similarity transformation
and, being in both cases a constant times a unit matrix,
it remains unchanged. The complexities of anisotropic
transfer combined with the rotation of the axis of
symmetry thus do not enter the present problem.

The colliding nitrogen nuclei can be represented by
wave functions of the following types:

x x [41(rl)42(r2)+0'l(r2)42(rl)]/~~

[(x'-x',+x'.x'-)/~2j
x[4'1(rl)42(r2)+A(r2)42(rl)7/~2, u/212, (16)

(1)'[0 (r )A(r )—0 (r )A(r )1/v2,

where the f(r) refer to the space behavior of the
centers of mass of the colliding nitrogen nuclei. In the
interests of simplicity of notation, the symbols pl and
$2 are used here in a different sense from that employed
in Eqs. (7), (7.1), and (7.2), the chance of confusion
of the two meanings being small. %hen one takes

the wave functions represent one nitrogen nucleus in
the location of $1 colliding with another nitrogen
nucleus in the location of $2. The collision of two un-
polarized sets of nuclei is describable as a statistical
mixture with equal probabilities of the above set of 9
functions. By forming linear combinations of the first
six functions, the spin functions can be made to give
angular momenta 2 and 0 and the system is describable
as a statistical mixture with equal probabilities of 5, 3,
and 1 states with total spins 2, 4, and 0, respectively.
The space factors multiplying the spin functions are
the same as correspond to the collision of two spinless
identical particles with symmetric and antisymmetric
space functions. The five states of spin 2 cause no
reaction within the approximations of the present paper.

The calculation of transfer for identical particles can
be reduced to one for nonidentical ones. It turns out to
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be incorrect, however, to neglect the fact that the
colliding nuclei contain particles in which the wave
function is antisymmetric. For states of total nuclear
spin 1, the initial unsymmetrized state may be written
as

e &= (i),(i,i, i 2,2,2)
= [$,(oui(1)~o(2))So(vi(1)v, (2))

+So(ma(1)m o(2))$,(vi(1)vo(2))]
Xf( (C )—(C ))/v2, (16.1)

where in the (1),(1,1,1; 2,2,2) the entries in parentheses
before the semicolon give in order, from left to right,
the indices of the x, v, and C (here C stands for the
C" core) which are grouped in one nucleus, while the
entries after the semicolon similarly give the indices of

x, v, and C grouped in the other nucleus. The factor

P(r(ci) —r(co)) represents the relative motion of the

two C" nuclei which corresponds to the factors.
Pi(ri)fo(ro) in Eq. (16). On the right side of (16.1),
the index of C" to which the x or v is attached stands
in parentheses of that m or v, while the x and v them-

selves are identified by subscripts. The function of Eq.
(16.1) has to be made antisymmetric in vri and or&, as
well as in v& and v&, but it must be made symmetric in

C~ and C2. Antisymmetrizing in vj and v2 is accom-

plished by forming

[1,(1,1,1; 2,2,2) —1,(1,2,1; 2,1,2)]/v2.

In a similar manner this function can be antisym-
metrized in x& and x2 and then symmetrized in C& and

C2. The result is

~ {[S,(ori(1)~o(2))—S,(~o(1)~i(2))]
X [So( (1) (2))—So( ,(1) (2))]
+[So(m i(1)mo(2)) —So(no(1)vri(2))]

X [$,(.,(1).,(2))-S;(.,(1) (2))])
X [P(r (Ci)—r (C,))—P(r (Co)—r (Ci))]=e,.

(16.2)

The unsymmetrized final state, i.e., the result of
solving the wave equation starting with an unsym-

metrized initial state as the unperturbed solution and
subtracting the initial state, is of the form

++=$, (~i(1)pro(2))So(vi(2) vo(2)) q (r(C,) —r(C,)).
(16 3)

Here the factors multiplying y are normalized to unity
in the same way as f in (16.1) is multiplied by an
internal motion-spin factor which is normalized to
unity. The factor q gives the relative motion of C~

with respect to C2 after collision in the same convention
regarding sense of direction as f gives it before col-
lision. The final-state function in (16.3) is already anti-
symmetric in v& and v2. For this reason, there is one
less power of 1/v2 entering the preparation of the
properly symmetrized final state than in the corre-

sponding step for the initial function. The Anal sym-
metrized function is

+f~ =', [-5,(7i i(-1)pro(2)) —$, (~o(1)ori(1))]
X[S,(v, (2)v, (2))y(r(C, ) r(C,))

—$,(.,(1).,(1))&(r(C,)—r(C,))]. (16.4)

The consideration of the matrix element of an inter-
action energy taken to be symmetric in v& and v2, m&

and m2, C~ and C2 shows that 0'; and %f can be
replaced by effective values

(+i )eff Sj(%1(1)7I2(2))So(vi(1)vo (2))
XP(r (Ci) —r(co)), (16.5)

(+f ) i& Si(it'1(1)pro(2))[So(vl(2)vo(2))
X &(r(C )—r(C ))—So(

X oo(r(co) —r(Ci))]. (16.6)

In this reduction, the additional assumption is made
that all interactions with the two protons m-& and m-& may
be disregarded in the calculation of neutron transfer.
This assumption is made in order to simplify the right-
han, d sides of Eqs. (16.5) and (16.6), making it possible
to omit the second term in square brackets in Eq.
(16.1). It is not essential to the correctness of the final
comparison of probabilities with symmetrized and un-
symmetrized functions.

The wave functions f and q used in the present cal-
culation of the matrix element have to be normalized
to unity in the fundamental volume in order to make

0 f k ', and +f suitable eigenfunctions for the
calculation of matrix elements. The plane waves which
these functions approach asymptotically give the direc-
tion in which C~ moves with respect to C2 in the case
of the unsymmetrized function which applies to non-
identical particles. The symmetrized functions do not
identify the C& and C2, as has been clear in connection
with Eq. (16). Nevertheless the 4fs of Eq. (16.4)
describes the final state as one in which the C2 carries
an extra neutron if its r occurs with a minus sign in q

and C~ carries an extra, though de'erent, neutron if its
r occurs with a minus sign in q. Since the function y
corresponds in the present consideration to a modified
plane wave, both parts of the quantity in its second
set of square brackets describe a N" receding from a
N" in the same direction, which is the same as the cor-
responding direction for the unsymmetrized function.
In the symmetrized case, the transition matrix element
is a sum of two parts resulting from the use of the two
terms in the square brackets of Eq. (16.6). The first of
these has the same structure as the matrix element
between Nf and O', . The second has the form which
corresponds to the ejection of N" at an angle which is
the supplement of the angle for the first term. If the
first term corresponds to a large-angle collision with a
neutron leaving C~, the second corresponds to a small-
angle collision with a neutron leaving C2. Both result
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in the occurrence of N" at a large angle, in the 6rst
case by stripping of a nucleus that suffered large-angle
scattering, in the second by the stripping of the other
nucleus which suffered a small-angle collision. These
types of matrix elements combine linearly according to
Eq. (16.6), and there is therefore an interference effect
between the large- and small-angle scattering in the
case of identical particles. Since the calculations below
are concerned with tunneling action only and since
transfer at small angles is very small in the applications,
further consideration of the interference term appears
to be unnecessary for the immediate purpose.

Disregarding the interference term and making q

correspond to large-angle collisions, comparison of Eqs.
(16.5) and (16.6) with Eqs. (16.1) and (16.3) shows

the presence of an extra factor v2 in the former. The
transition probability for identical particles which have
been considered, in comparison with the states%';U and
4~~ of the nonidentical particles, is therefore twice as
large. The origin of this difference may be described as
follows. Whenever the symmetrization or antisym-
metrization in a pair of particles calls for the intro-
duction of a 1/K2, in the initial and final state function,
as is the case for m» and x2, there is brought in a factor

~ in the transition matrix element which is compensated

by the doubling of this element resulting from con-
tributions of the two terms having the original as well

as the reversed order of the arguments. The antisym-
metrization in v» and v2 does not call, however, for an
extra 1/V2 in the final state since in this state the
function is antisymmetric in v» and v2. On the other
hand, the removal of —So[v2(1)vi(2)) and doubling
of S0 [vi(1)v2(2)) is justified by (vi, v2) interchange; the
interchange of C» and C2 then justifies the replacement

Sp(v] (1)v2 (2))[f(r(Ci) r (C2)) P(r (C2) i'(C i)))
~ [So(vi(1)v2(2))+So(vi(2)v2(1)))P(r(Ci) —r(C2)).

A second consideration of v», v2 interchange then shows
that the removal of S0(vi(2) v~(1)) can be compensated
for by the introduction of a factor 2 in the matrix
element. The step from the symmetrized functions to
the equivalent forms of (16.5) and (16.6) thus involves
one factor 2 from (m. ip.2) and two factors 2 from the
combined consideration of (Ci,C2) and (vi, v~) inter-
changes, resulting in a factor 8, while the normalization
factors are -', each for xi, vr2 and Ci, C2 and 1/K2 from

vi, v2, giving a total factor 1/(4&2) from normalization
and a net factor K2. The latter corresponds to the factor
2 in intensity mentioned previously. This factor is with
reference to probability of transfer calculated for non-
identical neutrons on nonidentical carbon nuclei. It is
the result of interference of final states obtained from
C» loosening v» with those in which C» loosens v~, and
of states in which C2 loosens v2 with states in which it
loosens v».

This fact is readily verified by considering a fictitious
case of fixed nonidentical C nuclei each having a neutron

attached to it at time t=0. If initially the neutrons are
in. the state [v'+(1)v (2)—v' (1)v'+(2))/v2, the transfer
to the state [v'~(2) v' (2)—i ' (2) v'~(2))/K2 takes place
at half the rate of that for a wave function antisym-
metric in the neutrons and normalized to unity. In both
cases there is a neutron at t= 0 at one of the centers of
force, but the antisymmetrized wave function produces
the 6nal state in two ways which interfere construc-
tively. The probability of transfer to the state of
interest is therefore twice as large for the symmetrized
function. Equations (16.5) and (16.6) show also that
the integrand of the matrix element contains the
combination

*(r(C,) r (C,))y(r (C,) r (C,))
in addition to the combination containing C» and C2
in the same order in f"and p. As a result, the scattering
amplitude contains the combination f(0) f(~ 0)—, —
where f(0) is the angle-dependent part of the scattering
amplitude in direction 0 for nonidentical particles. In
addition to the 6nal state of total nuclear spin 1, there
is the state of total spin 0 which can result in a transfer.
A similar consideration gives for it also a factor 2 on
account of neutron identity, but the sign in the com-
bination f(0)+f(m8) occu.—rs in place of that for the
state with total spin 1. The combined effect of particle
identity is. then to replace the

I f(0) I'+
I f(~ 8)

I

' from-

Eq. (15.4), with allowance for observation of recoils
but without consideration of particle identity, as
follows:

If(0) I'+I f(~—»I'~2((2/9)X3I f(0)—f( 0) I'
+/I f(0)+f(~ -0) I'}=2(Iy—(0) I'+

I f(7r 0)I'—
l&f*«)f(~—0)+f(0)f*—(~ 0)7) (16—&)

The factors inside the curly braces arise as follows: In
the incident wave, the relative probabilities of the four
relative spin orientation substates are equal. According
to Eq. (15.4), therefore, the three substates with I=1
and the state with I=O occur in the final wave with
relative probabilities having ratios 1:1:1:-'„respec-
tively. Assuming that the reaction occurs, the a pos-
teriori probability that a given substate with I=1
should occur is therefore 1/(1+1+1+-',) =2/9. Since
there are three such states, the If(8) f(m 0)I' oc—curs. —
with the coefficient (2/9)X3. The relative probability
of formation of I=O is, on the other hand, (3/2) X (2/9)

3 which is, accordingly, the coefficient of the com-
bination

I f(8)+f(~ 8) I
2. —

The factor 2 in front of the curly braces takes
account of the eGect of neutron identity derived in
Eqs. (16.1) to (16.6). The other factors inside the curly
braces have been adjusted as though one dealt with
elastic scattering. The reasons for doing so are as
follows. The cancellation of (1/V2)', resulting from the
1/K2 which occurs with the space functions in Eq. (16),
takes place as in the familiar elastic scattering problem
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when one sums over the possibility of finding either of
the two particles in the same final direction. Since N"
and N" are distinguishable, this doubling of the final

probability does not take place. On the other hand, the
neutron can be transferred in either direction and so

the factor 2 appears again, provided it is agreed to
make comparisons with calculations in which the
neutron transfer is counted in one direction only, i.e. ,

the transfer is counted from I to 8 only.
For nonidentical particles, the ratio of cross sections

at 8=~/2 and 8=0 is

2
~ f(~/2)/ f(0)

~

', (nonidentical)

since
( f(7r)(«) f(0)) in the applications. On the other

hand, according to (16.7) the corresponding ratio for
identical particles is

(4/3)
~ f(x/2)/f (0)

~

'. (identical)

The ratio of the two values is 3.
In order to show the relationship to elastic scattering

formulas, the quantity in curly braces in Eq. (16.7) was

written omitting the factor consisting of a sum of

statistical weights of the initial spin states multiplied

by the probability of finding the final spin state in the

initial wave function. This factor will be explicitly

stated later.
Instead of going through (16.7), one could calculate

directly the statistical weights of I=O and I= j. as
—', and 3, the spin content factors from (15.4) as 43 and

—,'; the resultant products are ~'~ and 6 in place of —', and

occurring inside the curly braces of (16.7), and

amount to a common factor 4. Multiplication of the

right side of (16.7) by ~~ gives, therefore, the quantity

by which
~
f(e) ~.'+ ~

f(~ 0) ~' shou—ld be replaced in

order to take into account spin, particle identity, and

associated statistics.

V. ANGULAR DISTRIBUTION

The angular distribution caused by tunneling action

is very diRerent from that expected according to the

theory of the (d,p) stripping reactions. " In the latter

there is a large probability for the proton to keep on

moving in approximately the original direction, which

is, however, aRected by the recoil of the neutron in a

relatively minor way. In doing so it gives rise to the

angular distribution pattern of the proton. The eRect

of the neutron on the angular distribution of the

proton depends on the orbital angular momentum of

the neutron after it is captured. This process is some-

'~ S. T. Butler, Proc. Roy. Soc. (London) A208, 559 (1951);
Bhatia, Huang, Huby, and Newns, Phil. Mag. 43, 485 (1952);
P. B. Daitch and J. B. French, Phys. Rev. 87, 900 (1952); F. L.
Friedrnan and W. Tobocman, Phys. Rev. 92, 93 (1953); W.
Tobocman, Phys. Rev. 94, 1655 (1954); W. Tobocman and M. H.
Kalos, Phys. Rev. 97, 132 (1955). In the latter two references the
eBect of a strong Coulomb field is considered. Here, as well as
in the experimental paper of W. W. Pratt, Phys. Rev. 97, 131
(1955), the proton maximum shifts toward 180' for cases of
strong Coulomb effects.

what similar to the diffraction of a wave -by a sphere,
with the difference that the nucleus formed after
neutron capture singles out a particular orbital angular
momentum l as well as the fact that the deuteron is
broken up in the process. It will be noted that the
maxima in approximately the forward direction, dealt
with in the theory of the (d,p) reactions, correspond to
distant small-angle collisions. The wave function repre-
senting the relative motion of the proton and neutron
in the deuteron aGects the result and contains in it a
kind of tunneling eRect. It will be noted, however,
that the exponential factor representing the decay of
the probability of finding the neutron away from the
proton does not appear in the 6nal result. The reason
for this is that the Coulomb repulsion between the
proton and the bombarded nucleus is neglected. All
distances of the proton being equally probable, the
exponential decay of the neutron probability matters
only in the way it combines with an oscillatory factor
in the transition matrix element which is associated
with the change in the proton momentum. Accordingly,
the "deuteron factor" of Bhatia et al. varies relatively
mildly with angle, leaving the diRraction eRect as the
principal one.

The tunneling action in a reaction like that between
N" and N" is, on the other hand, strongly selective in
favor of close and, therefore, large-angle collisions. The
tunneling factor makes the probability of small-angle
events negligible and the main mechanism of the usual
stripping theory is absent. The N" may appear, how-

ever, in the forward or backward direction as a result
of the close collisions, the two possibilities corresponding
to pickup and stripping events. The distinctions between
the heavy particle and deuteron cases will now be
considered more concretely. In doing so, the target
nucleus will be supposed to be diRerent from the
bombarding N" so as to be able to distinguish between
pickup and recoil events.

The X" part of the projectile will be referred to by
the letter I', this nucleus being a generalization of the
proton in the (d,p) case. The whole bombarding nucleus
will similarly be referred to by D. All distances will be
taken with respect to the center of mass. The con-
sideration below is along the lines of the Bhatia et al."
paper for the (d,P) reaction. The initial wave function
of relative motion has the form of

+n'=~(&D' (ko rD')/kD, kD)—exp(ikD rD'). (17)

Here rL '= r~ —ry, with rD and rz standing respective]y
for the coordinates of D and of the target 1.The wave
number kD/2~ refers to the relative motion of D and T.
The factor multiplying the exponential is w'ritten for
the special case of the Coulomb field. The notation 5K

is used in order to indicate the connection with the
conQuent hypergeometric function, frequently denoted

"Bhatia, Huang, Huby, and Newns, reference 15.
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r&' ——ri —(M„/Mr) r„—rr (17.2)

is the displacement vector from the center of mass of
the residual nucleus with mass My to the particle P,
and k~'/2w is the wave number of relative motion of
the reaction products. ln Eq. (17), the factor OR will

be arranged to give an outgoing wave modification of
the plane wave; in Eq. (18.1), the form of the factor OR*

will secure the desired" occurrence of the ingoing wave
modification for the final state. In the transition matrix
element there occurs the factor

exp( iki —rr'+ik~ rn')
=exp{ i(kp—Mi—kD/MD) ' (rg r )

+i (kD M,kp/M~) r—„}, (17.3)

where Mp and M~ are, respectively, the masses of P
and D while 3f; and M~ stand for the masses of the
target nucleus and the nucleus formed by adding a
neutron to 3II;.The r in the above phase factor becomes
R, the vector distance of e from the center of the target
nucleus when one introduces" an interaction energy on
the surface of a sphere of radius E. There appears,
accordingly, a J&+y ( ~

kz& —M,ki /Mr
~
R) diffraction factor

as a result of integration over the neutron coordinate.
On the other hand, the first part of the right-hand side
of Eq. (17.3) contains ri —R, the vector from a point
on the interaction shell to the N" of the nucleus to be
stripped. In the discussion of Bhatia et al. , this factor
is multiplied by the internal deuteron function and
gives rise to the so-called deuteron factor. The inte-
gration is then carried out including the whole range of
values of

~
ri —R~ from 0 to ~. Since small values of

~ri —R~ are improbable on account of the strong
Coulomb effects, this procedure obviously needs modi-
6cation. In the matrix element there occurs the integral
sum

I=K xr*(r-,~- kr)x~*(&)+~~*(k~,r~')

Xe,(k,r ')dr„dr, d~,d~ . (17.4)
A. Sommerfeld, Ann. Physik 11, 257 (1931).

'8 A. Sommerfeld, Atombae Nnd SPektral/iniety (F. Vieweg and
Son, Braunschweig, 1939), Vol. 2, pp. 457 and 502; G. Breit and
H. A. Bethe, Phys. Rev. 93, 888 (1954); see the last-named
reference for a review of other work.

by M, by means of which 5R can be represented. ' The
special form of this factor will be seen, however, to be
immaterial for the qualitative part of the present dis-
cussion. In the final state, the relative motion of the
stripped projectile with respect to the final nucleus is
represented by

%rr OR*(r——I'+(k~ rp')/ki, ki ) exp(i' ri'). (17.1)

Here

Here the x stands for functions describing internal
relative motion, while the 0 are as in Eqs. (17) and
(17.1); 2' stands for target, ri for neutron, $ for the
internal coordinates, and the summation is understood
to be over the neutron spin coordinates s„.The function
XD contains barrier penetration effects, while the inter-
action potential V is supposed to have appreciable
values only for r —R. Since in the present problem
both 0 pf and kD j have very small values when rp is
close to zero, the zD begins to count only when rp is
larger than the value allowed by the factors 5K of Eqs.
(17) and (17.1), which will be seen to correspond to the
distance of closest approach in the classical treatment
of the relative motion of the colliding particles. The
factor XD under the integral thus introduces the value
of xi' for R—(ri).~. ,». which is seen to be in quali-
tative agreement with the value used in the SCT cal-
culations. The further correspondence of the transition
matrix element method to the semiclassical one will be
discussed presently. Before doing so, however, the
change in the role of the diffraction maximum has to be
discussed.

The consideration of XD has shown that the distant
collisions, which correspond quantum-mechanically to
large values of the relative orbital angular momentum
I., are not important. H they were, the diffraction
maximum would appear because the functions 5K
would not be important, in consequence the %~; and
+pf couM be approximated by plane waves, and there
would appear the usual Bessel function of the argument
=

~
kD —k~

~
E; this approximation corresponds to R

being multiplied by an effective k which is the absolute
value of the vector difference between the initial and
final heavy-particle k. For a bombarding energy of
10 Mev, 1/hid ——7.7X 10 '4 cm, and for 8=3.4X10 "
cm the argument of the Bessel function is 8.8 sin(8/2),
where 0 is the scattering angle in the c.m. system. For
8=42' this quantity becomes nearly x, and for smaller
values of 8 it has values which do not vary too critically
with E in their effect on the value of the Bessel function.
The reason for this is the relative smallness of

~
k~ —kD

~

.
If, on the other hand, one attempts to use the Bessel
function for large 8, a much greater sensitivity to E
results. For 8=+, one has approximately

~L~I —k ~Z)= ——,'(~e)'(k Z).

For lN= 2, the change in the argument is, accordingly,
—0.31. The Bessel function factor is not significant
therefore unless R can 'be defined to the fractional
accuracy 0.31/4.4=0.06. Such a close specification of
the radius of the equivalent interaction shell is highly
improbable. Since the shell doubtless has a larger
thickness than the amount arrived at above, the em-
ployment of the Bessel function with a fixed E for the
close collisions would be meaningless. The value of rM

used in the estimate is comparable with the whole
width of the angular distribution curve calculated on
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one of the orbits is the same, as is illustrated in Fig. 2.
The common orbit is the orbit of the semiclassical
theory approximation and the direction of the plane
wave propagation vector of the 6nal state is the 6nal
direction of the common orbit if this orbit is considered
as an orbit of the initial state. For the incident state,
it is convenient to introduce axes x' and y' related to
the orbit as in Fig. 2. The classical orbit can be repre-
sented parametrically by

x'=a'(»+coshw), y'=a'(»' —1)& sinhw,

r =a'(1+» coshw), t= (a'/v) (w+» sinhw),
(18.1)

FIG. 2. Sketch showing orbits for the scattering. Here Z is the
direction of incidence, and Z is the direction of scattering, 0 being
the scattering angle. The envelopes for the initial and final states
for orbits of a given energy are the parabolas illustrated. The
excluded region between the envelopes is shaded and includes
the region of nuclear interaction bounded by the circle of radius
g1+a2. The coordinates x' and y' convenient for describing the
initial state are also shown.

a semiclassical basis for tunneling and one may
assume, therefore, that except for cases in which high
accuracy is needed, the variation of the Bessel function
factor may be neglected.

The connection between the matrix element type of
calculation and the semiclassical treatment may be
seen by employing a classical dynamics approximation
to the wave function. Representing any wave function
as

/=exp(iS/A), 5=5'+ (A/i)5'+ ~

one may interpret"

exp(2S')

as the density of classical systems represented by S'.
The comparison of the quantum and classical results,
neglecting terms in the expansion of 5 following 5',
will be discussed here. This approximation amounts to
neglecting barrier-penetration e6'ects of the heavy par-
ticles in the present application. When the incident
wave is represented by means of Eq. (18), the trajec-
tories obtained by classical dynamics form a set of
hyperbolas which are tangent to a paraboloid of revo-
lution. The interior of the paraboloid is excluded
according to classical dynamics. The final state in the
matrix calculation is the ingoing wave modi6cation of
a plane wave, and its associated classical orbits are
also tangent to a paraboloid, which is not the same as
the 6rst paraboloid. The orbits of N~; and of 0'~~ do not
coincide in the general case. If, however, one neglects
the energy difference between the initial and final states,

'9W. Pauli, Etuedbuch der Physik (Verlag. Julius Springer,
Berlin, 1933},Vol. 24, 1, p. 166 ff.

pg
——(»e "/(»e —e /»)$'*

Xexp( (ipva'/0) [ 1 —w+ e"—/»+ 1n»]+i kz},

(—~ (w&w»); (18.2)
f2= $»e "/(e"/» —»e )]&

Xexp f (ipva'/h) L
—1 w+—e~/»+in» j+ikz},

(wo(w& ~). (18.3)

Here mo is the value of vv for contact with the para-
boloid, and p, the reduced mass for the collision. The
function P& represents the condition for approach, P2
for recession. Removing from P~ and $2 the factor

exp( —ika' —ig 1nrt),

one obtains in the case of P& directly the asymptotic
form of the quantum-mechanical plane wave part of
the wave function; and in the case of P2 the outgoing
part of the hypergeometric function solution is repro-
duced provided the Coulomb phase shift 0.0 is approxi-
mated by its asymptotic value for large p, viz. ,

O.
p v/2+g in' —g.

Since g is large in the present problem and since the
factor of absolute value 1 is immaterial for the con-

clusions, the above representation is seen to contain
the characteristic features of the quantum f. The coor-
dinate z occurring in Eqs. (18.2) and (18.3) can be

expressed as
z= a'( —1+» sinhw —e"/»). (18.4)

For the final state there is another set of axes x~', y&',

z~ and another orbit parameter zv~. The zy axis is the
direction of the 6nal plane wave and x~', y~' are
obtained from x', y' by a rotation, with the convention
that they coincide with x', y' for the common orbit.
One obtains the representation of orbits in the 6nal

where e is the eccentricity, a' one-half the distance of
closest approach, and v the relative velocity at in6nite
distance r. Referring to the figure, m varies from —~
to ~ as the point moves up. In the approximation of
Kq. (18) including S' and 5' only, one Ands, by a
straightforward application of classical dynamics with
S as the action integral,
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state by

ur' ——u'(p+coshwr), yt' ———a'(c' —1)& sinhwt,

r =u'(1+ «cosh'). (18.5)

One has a convenient interchange of the forms of the
two parabolic coordinates in terms of the parameters
m~ and zv, and one obtains the ingoing modification of
the plane wave from the outgoing one without a
separate calculation, For the common orbit, . com-
parison of (18.5) with (18.1) shows that

(18.6)

Upon making this change, it is found that for the
common orbit the final state is represented by

ppi ——[pe"/(pe" —e "/p))&

Xexp{ i (tiza—'/A) [ 1+w—+e "/p+ln p]+ikzy},
(wpr&w& ~); (18.7)

pp= [pz /(8 /p pz )]'
Xexp{—i(tiia'/0)[ —1+w+e /p+inp]+ikzt},

(—~ &w&wpt). (18.8)

Here mo~ is the value of m for contact with the second
paraboloid. In Eqs. (18.2) and (18.3), the factors
occurring in addition to exp(ikz) give an approximation
to 5K of Eq. (17); in Eqs. (18.7) and (18.8), the factors
occurring in addition to exp(ikzt) represent the OR*

of (17.1). If one were to disregard the difference in the
phase of the initial and final states which arises on
account of these representations of BR and 5K*, one
would be dealing with a combination exp[i&(z —zr)]
which gives rise to the diffraction maximum of ordinary
stripping theory. Neglect of the additional phases is not
justifiable, however. In fact, the phase of Pp~ for points
on the common orbit is obtainable from Eqs. (18.2),
(18.3), (18.7), and (18.8) as

Phase(/pe*) =2ka'[1np —2], (19)

use having been made of

zt=a'(1+p sinhw+e "/p). (19.1)

The fact that the phases agree within a constant is not
peculiar to the present problem. Each phase can be
obtained as

outgoing spherical wave, which gives an added reason
for believing results of the semiclassical approximation.

In addition to the phase being the same on the
common orbit, the changes in phase vanish in first order
in its vicinity, as is seen from an expansion of the
difference of the two S'.

so so'=—c+Z, (p, p,')—&q+" .. (19.3)

and hence the first-order effects vanish in much the
same way as in a proof of Hamilton's principle. The
common orbit is, therefore, surrounded by a volume
within which only second-order variations of the phase
are important. This volume contributes especially well
to the value of the matrix element. In the limit of very
short wavelengths one obtains, as will be shown else-
where, a description by the matrix element which
degenerates exactly into the classical orbit description.
But even in the present case it is seen that the main
contributions come from the vicinity of the classical
orbit, and that this circumstance is inseparable from
the disappearance of precisely the phase difference
which is responsible for the appearance of the diffraction
pattern. The latter is caused by parts of coordinate
space which have little to do with the common orbit
as is seen in the case of undistorted plane waves, for
which there is no common orbit except for the trivial
case of no deflection. This type of process is strongly
modified, however, by the expulsion of the wave func-
tion from the interior of the paraboloids. It is thus seen
that in the heavy-particle case, the essentials of the'

angular distribution should be obtainable by considering
motion in orbits on a classical mechanics basis.

Employing the parametrization of Eq. (18.1), the
transfer probability amplitude is obtained by inte-

grating P of Eq. (4.8) over the orbit and is, therefore,

proportional to

Here C is the constant phase difference referred to in
Eq. (19), while Dq, is the displacement of a point from
a point on the common orbit. The term p, —p is
obtained by employing the relation P, =BSP/Bq;. For
the common orbit,

(19.4)

P p;dq;+const, (19.2) (e "/R)dt= (2/v) ~ exp{—na'(1+p coshw)}dw.
~0

the integral being taken along the orbit. While an
appeal to Eq. (19.2) would have been sufficient from a
logical viewpoint, the results of the calculation verifying
this conclusion in detail have been given above because
they show some of the conditions needed for making
this application of classical dynamics valid. Thus it
shows that a large value of g is essential and that the
agreement between classical and quantum formulas for
Rutherford scattering is associated with an agreement
of relative phases of the incoming plane wave and the

(20)

Here the disappearance of higher powers of 1/q which

had led to the derivation of Eq. (15.7) is used, and the
r of Eq. (18.1) is replaced by R of Eq. (1.2), the two

symbols being used in the same sense. From Eq. (20),
it follows that

(z "s/R)dt= (2/z)Ep(aa'p) exp( —na'), (20.1)
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will be referred to as 8. It is related to e by

c' sin'(8/2) = 1,
which gives

(21.1)

ede= —
~ sin 4(8/2) sin8d8,

L1/sin'(8/2) ]PE,(oa'/sin (8/2) )j',
while with it the eGect is proportional to

(23)

L1/sin'(8/2)] exp L
—Zna'/sin(8/2) ). (23.1)

(21.2)

the factors having been arranged so as to bring the
solid angle subtended by 6nal directions into evidence.
The factor in front of the solid angle is seen to be pro-
portional to the Rutherford scattering per unit solid
angle. The relative number of transfers per unit solid
angle of final directions follows from Eqs. (21) and
(21.2). Without the use of the asymptotic form of Eo
it is

0. a

60

8 c,m.

I20'

where E stands for the Bessel function of an imaginary
argument of the second kind. The asymptotic expansion

1
&o(&) ( I

e 'I 1——+ (
(20.2)

EZx) 4 Sx 128m' )

gives the approximation

(e ~/R)dh I (Zm)—:/v] (na-'—e)

Xexp) na' —na'e—j, (20.3)

e~ = 1+(pm/a'~)

from which it follows that

(20.5)

which can also be derived directly from Eq. (20) by
approximating the integral as the integral of a Gauss
function. The angular dependence enters here through
e only, and for intensities it may be represented by

jexp( —Znea') j/(nea'). (20.4)

The eccentricity c is connected with the impact param-
eter p by

The angular distribution function is seen to be inde-
pendent of the value of the assumed nuclear radius.
This circumstance follows directly from the fact that
R occurs in Eq. (15.7) only through q and that the other
quantities in (15.7) are independent of the orbit.
Qualitatively, the absence of the nuclear radius b in the
angular distribution formula may be considered to
follow from the fact that a decrease in the assumed
value of the nuclear radius adds the same amount to
the distance through which the neutron must penetrate,
independently of the value of the impact parameter. By
means of Eq. (23.1) there is obtained the angular dis-
tribution plotted in Fig. 3. Comparison with the experi-
mental curves shows no similarity. The fact that the
theoretical result does not involve b appears to be sig-
niicant in this comparison. The theoretical curves are
plotted neglecting particle identity but including the
effect of recoils. According to Eq. (16.7), the theoretical
curves should be lowered by a factor 2/3 at 8=90' as a
result of particle identity. The disagreement between
tunneling theory and experiment is essentially un-
changed by the inclusion of this factor.

VI. COMPARISON WITH EXPERIMENT

The considerations of nucleon transfer made here
have assumed that the colliding K"nuclei do not come
into contact. If the nuclear radius is written as

ede =pdp/a". (20..6)

When one considers all collisions in an annular region
between p and p+dp, the probability of transfer is
seen to be proportional to

then this condition demands that the laboratory system
bombarding energy be less than E„where E, is given
for the N'4+N'4 collision by

exp(-Znea')de. (21) E,= (29.2/ro) X (10 "Mev-cm).

In the applications of these formulas which are made
below, the terms in Eq. (20.2) which have been
neglected in obtaining (20.3) are not important and
the approximation of Eq. (21) will therefore be used.
The scattering angle in the system of the center of mass

For ro ——1.4X 10 " cm, corresponding to a radius
3.38&(10 " cm, this energy is 20.9 Mev. The experi-
mental cross-section curve as a function of energy
begins to level off above about 16 Mev, which appar-
ently indicates the onset of compound nucleus forma-
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tion. The comparison with experiment will be limited
to the energy region below E,.

The total cross section for neutron transfer may be
obtained quite readily from the various formulas now
available. The procedure is to calculate P from the
second of the forms (4.9), and to use this result in. Eq.
(11) to obtain the probability of transfer for a par-
ticular orbit of the heavy particles. This result is then
summed over all possible orbits. The e6ects of spin are
shown in Eq. (15.4), and of the identity of the particles
in Kq. (16.7).

As has been demonstrated in Eq. (15.7), the factor
1+2/V3 in Eq, (15.4) has the effect only of replacing
the h2 of Kqs. (1.3) and (1.5), and the hi+ of Eqs. (1.7)
and (1.8), by effective h's:

h2- —(s /2)'*[I:(«2)/(«2)'*] (~ '/v),

& =—( /2):LI:( )/( )']( '/0) (24)

Using these expressions in Eq. (3.1) and then substi-
tuting in Eq. (4.9), one obtains in succession

Ii /n = —(2/s) —s/(1+s),

Ii~/n = —(2/s)+ (s sinhs)/(s coshs —sinhs),

+1~1
(1+s)[sinhs —s coshs]

I
a. (+ ) I'= (~/2~)' e '"'Pd/ (24.2)

in which h~= E„—E„is the energy difference of the two
states m and 8. The factor e '"' contributes only cos~t
to the integrand, the singlet part vanishing on integration
since P is an even function of t. Numerical estimates
indicate that in the case of N"+N" collisions, the
replacement of cosset by 1 leads to an overestimate of the
total cross section by only about 2%; accordingly, this
simplification will be made here. The particular classical
orbit chosen for the motion of the system enters
through the relation between E. and t. These quantities
are conveniently expressed in terms of c and m by Eq.
(18.1). If the variation in a due to the change in P over
the orbit is neglected, the substitution of Eq. (24.1) in
Eq. (24.2) and the subsequent integration over orbits
leads to the result

Ia.(+ )I'

(A)' 1 ( «i q'/ «2
(3A i XiX2 &1+«ij &1+«2)

Xexp( —2n(a' —a&—az) }[E,(«'&)]'

a first-order calculation of the probability of transfer
yields

and similarly for y2) 2. Also,

sinhs —s cosh'
P~ = (a,'/ai')—

(1+s)V

exp[—q+na2]

mph'' 1 ( «i q'( aa,

2 &Mv) Xih~ (1+(xai) E lyua, )

Xexp&2n(a, +a,—a' —a'~) }. (25)

p = (1/'Ai'A2) '[«i/(1+«i)][«2/(1+«2)] (1/R)
Xexp( —n(R —a,—a2)}. (24.1)

Here the nuclear radii are denoted by a1 and u2, and E
is the distance between the centers of the nuclei. The
factor (1/XiX2)&, which depends only upon the proper-
ties of the isolated nuclei, is the only place in which the
internal wave function of a nucleon in the nucleus
enters. Thus a separation between properties of the
nucleus and of the dynamics of the collision has been
achieved. The expression for P is not exact, since
powels of 0! 0!1p or cP—Q2p higher than the first have
been neglected. The exact expression is of the same
form, but with ) & and ) 2 replaced by similar derivatives
evaluated at an energy intermediate to the energy of
the nucleon in the isolated nucleus and the actual
energy. Since ) 1 and ) 2 are found to be relatively insen-
sitive to changes in energy of this magnitude, the use
of the approximate form of P introduces no appreciable
error.

With P determined, Eq. (11) may be solved to find
the probability of transfer. If the system is chosen to be
in a state characterized by

Ia I
=1, a„.=O at ~= —~,

The second of these forms is readily obtained directly
from the orbital integral without the use of Bessel
functions of imaginary argument.

The change in e corresponding to a change of A in
the relative orbital angular momentum is small com-
pared with 1/(«') for close collisions. The total cross
section may be obtained, therefore, by integrating Kq.
(25) over all orbits and multiplying by the proper
factors to take'account of effects of spin and of particle
identity. These factors have been discussed previously;
the consideration of spin gives a factor

-', X (1/v2)'+-', X (v3/2) = -'

the —', and —,
' being the statistical weights of triplet and

singlet states, the 1/v2 andv3/2 being the amplitudes
with which these spin functions are contained in the
initial state function. Thus, as has already been seen
right after Eq. (16.7), the right-hand side of that equa-
tion should be multiplied by 4 to give the number of
N" nuclei per unit solid angle. Neglecting the relatively
small interference term in (16.7) and applying the
factor ~, there is left P f(e) I'+2

I f(s 0) I' which is-
equivalent to

I f(e) I' for total cross-section calculation.
The latter quantity is, however, the intensity per unit
solid angle which would be obtained if one used P of
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0'g, =21la t ~ap~ ado
J~

(25.1)

which gives for a final result

Eq. (24.1) and calculated transfer between nonidentical
nuclei taking into account only the I~ 8 process, i.e.,
neglecting the possibility of right to left as well as left
to right transfers. This calculation is just what has been
done in Eq. (24.2). Remembering that the annular area
2~pdp, with p standing temporarily for the impact
parameter, may be written as 2+a"&de, the total cross
section for neutron transfer becomes

t pi dqidqo ' 'dq. =1,
J

(26.2)

interacting with the parent nucleus, the function fi may
be factored as in Eq. (7.1). On account of the employ-
ment of energies differing from that of the bound state,
the function' h cannot be used, however. In fact,
imposing the boundary conditions on q~, q2, -, q
defines the radial factor occurring in (7.1), and except
at the eigenenergy this factor will not vanish at ra= ~
as h does. The radial function thus defined will be
referred to as I) (ro), and from here on the subscript 0
of ro will be dropped. Employing the normalization

~'( @ l'( 1 l ) nai l'(
2 (Mv) Ln9. iso~ (1+nail (1+nao)

one obtains for the term displayed in Eq. (26.1) a value
in terms of a difference of the logarithmic derivative of

which, when introduced in Eq. (26), gives, on going
Xexp{—2n(2a' —ai —ao)}. (25 2) to the limit E=E',

Pi'(q, E)dqodqi dq . (26.3)X
Jr&ay

This form is readily obatined from Eq. (25) by employ- B)BI) /g Brj=—(2M/A') (3/1Vp) (1/4map)
ing the second of the two forms for ~a„(+~) ~'. It is
also possible to do the integration over orbits exactly,
employing

Introducing the mean over the hypersurface corre-
sponding to r =ai in the 3(n+ 1)-dimensional space, vis. ,

The quantity EP(na') —Eoo(na') replaces then the
factor [n/2(na')'j exp( —2na') present in Eq. (25.2).
The quantity 1/X& of Eq. (4.1) may be expressed in
terms of the mean value of pp on the nuclear surface as
follows. Denoting q of Eq. (7) temporarily as qo, all
coordinates collectively as q, and designating the value
of E as an additional argument of Pi, one has from the
wave equation

jP n

E div L4i(q, E')&Bi(q'E)
2M (}

lPP(q, E)dqodqi ' 'dqo
Bli "r&ai

with
B(n') 4- '(~').

(26.4)

(4P)8= (&P/3) v»'(qi q.)dqidq2 'dq '"i /3

(26.3')
and observing that

B/B(n') = —(A'/2M) B/BE,
there results

A(q E)~A'i(q E )j (E E )4'i, rA'1, E" (26) Ii=Bfj /I) Br (26.5)

For simplicity, the designation of the spins and the
occurrence of spin operators are not indicated here.
The equation will be integrated over the portion of
configuration space restricted by r(a~ but not subject
to other restrictions. Sy Green's theorem, the terms
with j=1, 2, , m in Eq. (26) give no contribution
since Pi vanishes at infinitely distant points of the
three-dimensional spaces q&, q2, , q„. The left side
thus gives

dq&dq~ dq-~" [gi(q,E') Bgi(q, E)/B«
2M J

BIi

B(n')

lPP(q&E) dqoaqi

4- '(~').
(26.6)

From Eqs. (26.4), (26.6), and (4.1) there follows"

—1/Xi ——'4~aP(PP)sj PPdqodqi dq„, (27)

which corresponds to the meaning of Ii in Eq. (4.1).
On the other hand, one obtains similarly, making use of
the radial equation for h,

1//'(q E)BI(i(q E)/BrojdS, (26.1)

where dS is the element of area on the spherical surface
t'O=Qy. Since at ro&a~ the transferable particle is not

"The integral containing $12 is extended over all space and is
very similar to the analogous integral occurring in the calculation
of partial widths of well-defined resonance levels as in G. Breit
and F. L. Vost, Phys, Rev. 47, 508 (1935); 48, 203 (1935);
G. Breit and E. signer, Phys. Rev. 49, 519 (1936); G. Breit,
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which is the probability of finding the particle within
a spherical shell of unit thickness at the nuclear surface.
In the case of a potential well model, this relation
becomes

B'=10 Mev Z'=iS Mev

Tsm, E II. Neutron transfer cross section O.„in cm'
for the N'4+N'4 reaction.

—1/X~= [a~R(a~)]' R'(r)r'dr, (27.1)
Theory (using a=3.38X10 "cm) 1.29X10 "
Theory (using a=4.0X1,0 "cm) 5.86X10 "
Experiment 5.0 X10 "

8.40X 10-~'
3.79X10 '7

9.0 X10 "
with 8 designating the radial function. The exponential
factor is just the usual probability for penetration
through a barrier of length 2a' —a~ —a2, the minimum
distance between nuclei. Finally, h/Mm is the wave-
length of a nucleon moving along with the nucleus
at a velocity n. The factors Lna~/(1+na~)$' and
Lnus/(1+na2)]' are peculiar to the transfer of nucleons
in p-states and do not occur in analogous calculations
for the transfer of an s nucleon.

Estimates of the neutron cross section have been
made at laboratory system bombarding energies of 10
and 15 Mev, using a square well potential to determine
X~ and ) 2. These energies are below the point at which
the experimental cross-section curve begins to turn
over. For such a potential, the parameter ) appearing
in the cross-section formulas is readily found from Eq.
(27.1). The result is

Xg ———(ag/2)L(~'+n')/2)(1+nag) '
&( (3+3na, +n'aP), (27.2)

where I~., 2m times the wave number of the particle in
the well, is determined by the matching condition

K / (KGy CotKGy 1)= Q / (1+nag) . (27.3)

The radius of each of the nuclear wells was chosen to
be equal to 3.38X10 " cm, which corresponds to a
constant ro= 1.4X 10 "cm for A = 14 in the usual A'~'

formula. The depths of the wells were chosen so as to
give the proper neutron binding energies, and turn out
to be 33.6 and 33.0 Mev for X" and N", respectively.
The value of n used is that appropriate to an isolated
nucleus, i.e.,

o=oio —7.28X10&2 cm—&

if 1 designates the nucleus giving up the neutron. If the
maximum value of p encountered, the value at the
perihelion of the c=0 orbit, is used to calculate a new o.

from Eq. (5.1), there results for 15-Mev bombardment

o.=7.31X10"cm '.

This value, if used in Eq. (25.2), decreases the cross
section by less than 1 j~, and hence the neglect of the

Phys. Rev. 58, 1068 (1940). This connection is a natural one
since the escape probability of a particle into free space must be
related to the probability of its transfer into another distant
nucleus. The quantities entering in the present paper are similar
in form to the reduced widths of E. P. Wigner, Phys. Rev. 70, 606
(1946) and E. P. Wigner and L. E. Eisenbud, Phys. Rev. 72, 29
(1947), but di8'er from the latter through a different meaning of
the word level and the related employment of a different region
of integration.

variation, of n over the orbit is justified. The change is
much smaller at 10 Mev. The smallness of this effect
may be understood by recalling that the only way for
the shif t in n to be large is for, p itself to be large, imply-
ing that the penetration factor e &/q is large and R =q/n
is small. However, the change in n will not in turn
affect P appreciably just because R is itself small, so
that the change in q is not appreciable.

The results of the calculation are given in Table II,
together with corresponding values using a larger
nuclear radius a=4.0X10" cm, which has been sug-
gested for the N" nucleus. Experimental values" of the
cross section are also given. It will be noted that the
absolute values of the cross section are riot completely
out of line with experiment, but that the ratio of the
cross section at 15 Mev to that at 10 Mev is about 36
times as large as that observed. This discrepancy, which
is unaffected by the use of the larger nuclear radius,
appears to be particularly significant since according to
the considerations outlined here, the energy dependence
should be contained only in 1/v' and in a', the distance
of closest approach. It would seem difficult to explain
this difference without introducing an additional
process which would be relatively more important at
lower energies. In all of the work it was assumed that
transfer takes place to the ground state. Any transfer
to excited states would give a dependence on incident
energy which is even more rapid than the already too-
strong dependence obtained under this assumption.

The treatment thus far has assumed that a neutron
is transferred between the heavy nuclei. If, on the
other hand, a proton is transferred, then special circum-
stances enter because of the Coulomb interaction
between proton and nucleus, and the preceding treat-
ment must be modified. Thus, for example, the wave
function of the proton in the region between the two
nuclei no longer satis6es Eq. (1.1), but instead must be
a solution of the Schrodinger equation in the field of
two point charges. The simple functions of Eq. (1) may
no longer be used; in fact, the energy eigenfunctions
now will. not correspond to definite values of the orbital
angular momentum about O'. It is true that it still
would be possible to define adiabatic functions which

approach functions of definite angular momentum
about 0' as the separation of the nuclei increases. These
functions could be analyzed in terms of a-set of similar

functions centered about 0, and the method of the
energy matrix outlined previously could then be applied.
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In practice, however, it would be di%cult to construct
these functions.

An estimate of the relative cross sections for proton
and neutron transfer can be obtained from a considera-
tion of the tunneling probabilities on a simplified one-
dimensional model. For this, the transfer is considered
to occur only along the line joining the centers of the
two nuclei; hence, the barrier to penetration may be
replaced by a one-dimensional barrier of width equal
to the distance between the nuclear surfaces along this
line. The previous considerations in. connection with
Eq. (25.2) show that the quantity of significance is the
probability of finding the neutron originally associated
with one nucleus at the surface of the other nucleus,
i.e., the probability for a neutron penetrating the barrier
between the two nuclei. The ratio of proton to neutron
cross sections is then just the ratio of the penetration
probabilities for proton and neutron. These proba-
bilities may be calculated for the simple one-dimensiona1
model proposed by the JWKB method; the result is

proportional to the integral over orbits of factors

f
exp —2 (2M/A') l (V—8)'«

in which the integral extends over the distance between
nuclear surfaces and the integrand is to be evaluated
for the potential V and nucleon energy E applicable
for proton or neutron transfer. The eGect of the transfer
of p nucleons may be considered by including in V the
centrifugal barrier. The integral of such factors over
the orbits would in general be rather complicated;
however, use may be made of the fact that almost all
of the transfer occurs at the perihelion of the orbit.
Then the ratio of the proton cross section to the neutron
cross section may be approximated by

o~/o „=exp —2
"a

The quantity V —E appearing here is just the negative
of the binding energy for the neutron in N". The rela-
tionship between this approximation and the previous
treatment is clear, since the neutron factor may be
mrritten as

2Q —Q

exp ' —2
j

=exp( —n(2a' —2u) ), (28.1)

mrhich gives the dominant dependence of the cross
section for transfer upon the energy of the state
involved. The various other factors, involving the

probability for the nucleon being outside the nuclear
surface, may be assumed to be approximately the same
for neutron and proton, if the transfer of a p nucleon
is involved in both cases. The various factors due to the
spins of the nucleons and nuclei are exactly the same,
of course.

For proton transfer, the potential V„must include
also the Coulomb part of the potential produced by
each nucleus. One additional circumstance must be
kept in mind for the proton case. The energy E„appear-
ing in. the integrand is not the energy of the level in the
isolated nucleus, but rather the energy of this level in
the Coulomb held of the other nucleus. The raising of
this level is, to 6rst order,

hE, = (Z'e')/(2a') (2S.2)

while experimental measurements indicate that this
ratio is about 0.294. This result is not too surprising,
since the crude estimate above has neglected the three-
dimensional nature of the barrier and the possibility of
transfer at points other than the perihelion of the orbit.
The height of the Coulomb barrier decreases in direc-
tions away from the line of centers, and also as the
separation of the nuclei increases. The above estimate
has thus been made with the maximum Coulomb
barrier present, and more re6ned estimates should
enhance the probability of proton transfer. It may be
mentioned that these results are relatively insensitive
to the value of the nuclear radius, since the total
Coulomb barrier is almost of constant height.

At 15-Mev bombarding energy, corresponding to
near contact of the nuclei, the neutron and proton cross
sections are estimated to be about the same, in sub-
stantial agreement with experiment. The variation in
the Coulomb barrier with path of transfer and separa-
tion of the nuclei might be expected to be of less
importance for this case.

The e8ects upon the transfer cross section of possible
static distortions of the nuclei during the collision have
been estimated, and found not to change the cross
sections significantly. The considerations, which follow
those given elsewhere, ' are based upon a liquid drop
model. The change in the length of the neutron barrier
due to a distortion of the nucleus proper is found to
reduce the total neutron cross section by a factor vary-
ing from 6 to ~ at 15 Mev, and from —', to 4 at 10 Mev,
depending upon the amount of distortion assumed. The
ratio of the cross section at 15 Mev to that at 10 Mev
could be reduced at most to ~ its previous value. The

where Z' is the charge of the nucleus receiving the
proton.

If one uses a=3.38)&10 "cm as the nuclear radius,
the logarithm of the ratio of proton to neutron transfer
cross sections at 10-Mev bombarding energy is

loglo (0,/o. )=O. &94,
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change in the height of the Coulomb barrier, and the
distortion of the proton wave function, give essentially
negligible changes in the ratio of proton to neutron
cross sections at 10 Mev.

It is thus seen that the dependence of the total cross
section on energy, as well as the dependence of the
differential cross section on angle, indicate the presence

at low energies of an additional process, possibly virtual
state formation.
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The u-particle model for C"has been re-examined. In addition to correlating the 0+, 2+, and 0+ states at
0, 4.43, and 7.65 Mev, respectively, two possible identi6cations are given for the 9.61-Mev level: 1 or 2 .
These levels completely determine the model, and the position and character of all levels up to 15 Mev are
given. The main defect of the model is its prediction of a 3 state at 5.53 Mev which has never been observed.
The separation of the 0. particles in C is 3.7)&10 "cm and the mean zero-point kinetic energy per vibra-
tional degree of freedom is about 2 Mev.

HEN the o.-particle model was first discussed, it
was impossible to evaluate in detail its pre-

dictions of level schemes for light nuclei because of
insufhcient experimental information. This situation
is now greatly improved. Dennison, ' for example, has
correlated a considerable number of states in 0" with
this model. To determine whether the agreement is
restricted to just this nucleus, the n-particle model for
C" has been re-examined. The physical basis of the
n-particle model will not be discussed here, ' although
it is certainly open to question, nor will its position in
the over-all theory of nuclear structure be evaluated.

In the O.-particle model of C" the equilibrium con-

6guration is an equilateral triangle of side s with the
e particles at the vertices. Only small displacements
from equilibrium are considered and it is assumed that
rotation and vibration are separable. The potential
energy is

i =-: (e"+e"+e')+p(e e.+e e+e.e), (1)

where the internal coordinates Qr, Qs, and Qs are length

changes of the sides of the triangle. The constants n and

p will be determined from the observed energy level

spectrum. The frequencies of the familiar normal
vibrations are

co '= 3 (cr+2P)/M~) ross= ss (n —P)/M, (2)

where the subscripts specify the degeneracy and jII is
the o.-particle mass. The rotational motion is that of a

' D. M. Dennison, Phys. Rev. 96, 378 (1954).
s A. Herzenberg PNuovo cimento 10, 986 and 1008 (1955)g has

recently restudied some of the fundamental problems.

symmetric toP (I&——Is ——sI,=-,'M s'). Only those quan-
tum states are allowed which satisfy Bose statistics for
the n particles. Wheeler' has listed the number of
allowed states as a function of e~ and n2, the occupation
numbers of the vibrational modes, J, the total angular
momentum, and E, its projection on the figure axis.
The parity4 of a level is determined solely by the rota-
tional wave function and is (—)~. Since ~K~ &J, 0
states do not occur. Finally, the excitation energy is

E=$J(J+1)—-', E'j6+rtr5r+rtshs, (3)

~ J. A. Wheeler, Phys. Rev. 52, 1083 (1937).
4 Professor L. Rosenfeld has kindly informed us that his list of

"parities, " Table 13.21 in Nuclear Forces (North Holland Pub-
lishing Company, Amsterdam, 1948), gives the behavior of the
wave function under reflections in a side of the equilateral triangle.

with 6=5'/2Ir, 5r = A&sr, and 5s = 5&o2. As Wheeler
pointed out, the requirement of Bose statistics elimi-
nates a considerable number of states, particularly low-

lying ones. Thus 1+ states involve a minimum excitation
of the degenerate mode co2 of three quanta, and the first
state of this type will not be found until the excitation
energy is above 20 Mev. Table I gives the eigenvalues
for the allowed states of low excitation. The non-
degenerate mode co& is not included since its symmetry
(even) and parity (even) are independent of rt&. Hence,
additional states are obtained from those of Table I by
exciting this mode by amounts e&b&, where m& is any
integer. The present simple description of the n-particle
model states of C" is, of course, restricted to low ex-
citation. Above 7.4 Mev the virtual nature of the levels


