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A perturbation calculation has been made of the inelastic scattering of fast electrons by hydrogen atoms
to the 2S and 2I' states, using for the perturbation only the interaction between the incident electron and
the bound electron. The results are then compared, to leading order terms in the energy, with calculations
by the more customary perturbation scheme. For direct scattering, the results for forward scattering ampli-
tudes are identical using either procedure. The angular distribution and energy dependence are diferent.
For exchange scattering, the symmetric and asymmetric perturbations give diferent results both in the
forward direction and at angles other than zero. However, in the former scheme exchange scattering is
negligible compared to the direct scattering. The calculations for direct scattering are shown to be simplified
by using a somewhat different perturbation scheme (method of altered states).

1. INTRODUCTION

ECENTLY a comparison has been made between
the results obtained for the elastic scattering of

electrons by hydrogen atoms at high energies using two
different Born approximations: (1) the interaction be-
tween the electrons is taken as the perturbation (sym-
metric perturbation), ' and (2) the interaction between
the electrons and the atom is the perturbation (asym-
metric perturbation). " However, the difference be-
tween these results was found to be too small for a
decisive experiment to be possible. In this paper we
have undertaken a similar theoretical comparison of
the results obtained by the two schemes for inelastic
scattering to the n=2 state of the hydrogen atom. As
anticipated, the diGerence in these results is much
larger, and an experimental measurement of differential
scattering cross section is possible in principle and could
determine which perturbation procedure is more
accurate.

In Sec. 2, we give the integrals which must be
evaluated. In Secs. 3 and 5, we discuss the direct and
exchange scattering to the 2S state. Sections 6 and 7

are devoted to the scattering to the 2P state. Section 4
is concerned with a simpli6ed method, which we call
the method of altered states for evaluating the direct
scattering cross sections.

2. FORMULATION OF THE PROBLEM

change-scattered amplitudes by f and g, respectively,
for 25 scattering, and by f' and g' for 2P scattering.

The scattered amplitudes for 2S scattering are
given by4

and
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The notation and system of units is the same as in
those used in I. However, since we now have two pos-
sible final states, we shall denote the direct- and ex-

X IF1( rss 1 2(k r2+k ' r ))drrdrs (2.4)

where ko and k are the propagation vectors of the
electrons in the initial and final states, and

rt1 ——1/iko, rts ——1/ik„

The &F& are conQuent hypergeometric functions. ' The
magnitude of k„ is obtained for given kp, from conserva-
tion of energy

kp2 —k„2=~. (2.5)

' We have taken the normalization of the continuum Coulomb
functions as 1 since that is their limit for k —+ to, which is the only
case we discuss.

~ Reference 1, Chap. III.
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' N. F. Mott and H. S. W. Massey, The Theory of Atonnc Colli. -
szons (Oxford University Press, New York, 1949), second edition,
Chap. VIII, Sec. 2.

2 S. Borowitz, Phys. Rev. 96, 1523 (1954), hereafter referred to
as I.

3 E. Corinaldesi and L. Trainor, Nuovo cimento 9, 940 (1952).
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I NELASTI C SCATTERING OF ELECTRONS

For the case of 2I' scattering, there are three 2I'
states corresponding to the values m =0, &1, where nz

is the magnetic quantum number. Only the states
corresponding to the value m=0 need be considered
because for m=&1 the scattered amplitude is zero.
The direct and exchange scattered amplitudes for 2I'
scattering are then given by

Nordsieck7:

where
XF(1 i—ag, ia2, i,x), (3.3)
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and F is the hypergeometric function of its argument.
The quantity x in (3.5) will generally be of order of

magnitude unity in our calculations. It will be con-
venient, therefore, to define a new variable

.a11d

f I

16m'~

f
exp[i(ko —k .) r&] exp[—2r2]

which will generally be small compared to unity. Using
(3.4), we may express the quantity y in the form

y= [(ko—k.)'+X']/(q'+)3). (3.7)

Xr2cos8g—qFq( —m~, i, i(kore —ko ri))
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Inspection of (3.7) shows y is generally of order 1/k02
except when 8, the angle between kp and k„, is close to
zero. The case 0=0 will be considered separately.

The hypergeometric functions Ii of the variable x
X&F&( +»1 i(k~r&+ ~' ~))dred» ( 8) can now be expressed in terms of hypergeometric

functions of the variable y. ' We shall be only interested
in the approximate form of the hypergeometric function
for large ko. Noting that aq 1/ko, ai —+2 1/ko', r(s)—1/s for small s, we obtain

Xr~cos8~—~F~(—n~, i, i(kore ko ri—))
r12

XgFg(—e2, 1, i(k„r2+k„rm))dred~2. (2.9)

3. DIRECT 2S SCATTERING

We consider now the evaluation of the integral (2.3)
for f, Expanding .1/r~2 in a series of Legendre poly-
nomials' and integrating with respect to dv 2, we obtain

Gy |' Cy
F= F&+( 1+————ib lny —ie& lny ~F2, (3.8)

b E b

where b=a&—a2. Since the argument y is small, the
hypergeometric functions on the right-hand side of
(3.8) may be expanded by means of the standard series
for the hypergeometric function. ' Equation (3.8) then
becomes, if we retain only leading order terms in k,

where

2&2 8I v2 O'I+-
27m N, 9x N, 2 y=;

1I= ~ exp[iq rq] exp[ —Xr~]—

(3 1)
Ii = 1—aga2y —ia2 lny —aga2y lny —aga2y'

+-', (a,a,)y' lny. (3.9)

We see that the leading order terms in BF/N, and
O'F/N. ' come from the first term in lny; hence we may
write (3.9) in the approximate form

P= 1—ia2 lny. (3.10)
X iFi(iui, i, i(kore —ko. r,))

XiF~(iu»1, i(k„r~+k„.r~))dr~, (3.2)

ag ——1/iko, am 1/ik„, ——

and q= ko —k, . The integral I has been evaluated by
~ I . Schi8, QNantens Mechanics {McGraw-Hill Book Company,

Inc. , New York, 1949},first edition, p. 173.

VVe now evaluate the 6rst and second derivatives of
F with respect to ). The calculation shows that the
terms involving the derivatives of the coeScient of Ii

~ A. Nordsieck, Phys. Rev. 93, 785 {1954}.'E. J. Whittaker and G. N. Watson, A Colrse of 3fodern
Analysis (Cambridge university Press, Cambridge, 1946), fourth
edition, p. 281.

9 See reference 8, p. 281.
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are small compared to the derivatives of F. Neglecting
these terms, we obtain" for f, :

32V2ikp(1 —cos8) (q'+9/2)
=C——

S1m (q'+9/4)'
(3.11)

so that f, has the limiting form

16 )v2i q

S1 (kp'p)
(3.12)

where c= 2~/n exp[ —xaij(n/y) '"(y+~/y)-'". For high
energies

2m 4m~a
(q'+9/4)

q'—=2k '(1—cos8) = (2kp sin-,'8)'

4. METHOD OF ALTERED STATES

The symmetric perturbation scheme involves con-
siderable mathematical difhculties because the integrals
to be evaluated contain the product of two hyper-
geometric functions. It is desirable, therefore, to con-
sider possible approximations by which the calculations
may be simplified without introducing too much error.

The work of Schwebel" suggests that an excellent
approximation of the symmetric perturbation scheme
would be to replace the final-state wave function by a
plane wave. That this approximation should not
essentially change the results of the more exact solution
may be seen as follows.

The solution of the Schrodinger equation is the sum
of the unperturbed wave function %0 and the perturbed
or scattered wave O', . The function +0 satisfies the
equation

Hp@'p= 0,
where

( 11'
~o=~i+~o+2) ~+—+—).

r, r,)
Sv2 1t' v2 q

(q'+9/4)' S (kooky')
( 1 ) 4', then satisfies the equation

with p= sin'(-,'8).
The scattering amplitude for 25 scattering f has

been evaluated by Corinaldesi and Trainor, ' who give

(4 1)

This divers from f, in both energy and angular
dependence.

Sma11 Scattering Angles

2
~o+s= —(+o++a)

~12

We now rewrite (4.2) as follows:

(4.2)

The calculation of the scattering amplitude for small

scattering . angle 8 requires an additional analysis be-

cause the orders of magnitude of the various terms in-

volved change. This is most easily done by specializing

(3.3) to the case 8=0. The principal contribution to the

scattered amplitude comes from the terms in I involving

the derivatives of 2m/n. For @=0, the function F=1
and the coeKcients other than 2m/ anre approximately

equal to unity. The scattered amplitude may therefore

be obtained from the approximate form of (3.3):
2x' 4x 4x

1=—=
n q'+X'

(3.14)

Substituting the values of 8I/8X and O'I/8X' into (3.1)
yields

SV2 512v2

(q'+9/4)' 729

This value of f„with q' retained, is exactly the same

as that given by (3.13) for f,. It is of mathematical

interest to note that the approximate from (3.14) of

the fundamental integral I is the same result obtained

by the use of the asymmetric perturbation.

I A more detailed evaluation of this and subsequent integrals
can be found in S. Borowitz and M. M. Klein, Research Report
No. CX-22, New York University, Institute of Mathematical
Sciences, Division of Electromagnetic Research (unpublished).

2 (1 1)
H'+, =—op+2 (

———[~„
~12 (r12 rl)

(4.3)

~"ere ~'=~o—(2/ri) Negle. cting the term in ~, on
the right-hand side of (4.3) and using the Green's
function appropriate to the operator H', we obtain
integrals similar to the integrals I», I2, except that the
Coulomb wave function for the final state has been
replaced by plane waves. "Since our approximation in-

volves only the neglect of a term containing the per-
turbation 0 „the method of altered states should give
the same order of accuracy as the more exact solution.

We consider now the application of the method of
altered states to 25 direct scattering. The integral to
be evaluated is

The integration with respect to g2 can be done immedi-

ately. The integration with respect to 7& can be done

"S.L. Schwebel, Research Report No. CX—15, New York
University, Institute of Mathematical Sciences, Division of Elec-
tromagnetic Research."S.Borowitz and B. Friedman, Phys. Rev. 89, 441 (1953}.

f,=,f exp$iq rij expt- —,Pr,](2—ro)
16m'~

1
Xip]('si1, i(kpri kp ri)) —dridro —(4.4).
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pexp[iy (rl —r,)]
d7 y.

p'

1 1

r~2 2~'~1P1( Rl 1 i(kprl kp'rl))

by expressing 1F1 as a contour integral in the complex 1/r» as a Fourier integral:
plane'.

(5 1)

(45) The hypergeometric functions occurring ln (. ) are~ ~ ~ ~

expo —~i «~—
2mi ~ v I v then replaced by contour integrals in the complex plane

[see (4.5)], and (2.4) takes the form

where the contour in the e-plane encloses the point 0
and —i.

Using this method, we can write (4.4) as

L1+ (1/v)]"'dv
„L,=

2xi (A+Bv)'v"
and

f,= (8/9)V2( ', iko oL—s+9 lLs+12ko oLs—4ko' 1Ls), (4.6) where

where
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In (4.7),

A=q'+9/4 B=2(k P p—ko k„+ssikp)

Jl——
) exp[—(s+ikpv)rl]exp[iK1 rl](2 —rl)drl,

(5.4)

8 t'v2i~

81 Ekpsp)
(4.8)

The integrals, L, Inay be evaluated by replacing the
contour around the points 0, —1 by a new contour
enclosing the singularity of the denominator (A+Bv).
This procedure is justified because the integrals „L,
are of order 1/v' or smaller in the neighborhood of
in6nity. We utilize Cauchy's theorem to evaluate our
integrals, and note that a minus sign is introduced by
use of the new contour. For large ko, a common factor
(1—B/A)"" which occurs is taken equal to unity. "The
principal terms in the expression (4.6) for f, are con-
tributed by pLs and 1Ls. We evaluate f, neglecting all
but these terms; we use the values of A and B in (4.7),
noting that el= 1/ikp, and retaining only leading order
terms; then we have as the limiting form

Js—— exp[—(1+ik„m)rl] exp[ —iKs rs]drs,

here
K,= (1+v) kp+ y,

Ks ——(1++)k.+y.
(5.5)

where

(1+ikpv) 2(-,'+ikpv)'
Jg= 16~

(Al+Blv)' (Al+Blv)'

(1+ik„l)
J2= 8~

(As+Boa)'

(5.6)

The contour variable I has been used to correspond to
r2 and the contour variable v tq correspond to r~.

The integrals J& and J2 may be simply evaluated:

a result in good agreement with (3.12).
It is of interest to see whether the method of altered

states will yield the correct result for 8=0. The principal
contribution to f, comes from the term in 1Ls which
does not contain (A B). Neglecting all bu—t this term
in (4.6) we have

Al ——P'+kos+2kp y+-„',

B,= 2(kps+ko y+-', iko),

As ——p'+2k y+k„'+1,

B,=2(k„'+k„y+ik ).

(5.7)

(5.8)

8%2 842

A' (qs+9/4)'

in agreement with (3.15).

Substitution of (5.6) and (5.3) yields

~ "=16~(lLl'+iko oI s' s 1Ls' —2iko oLs'+—2ko' 1Ls'),
(5.9)J'"=8m (1L1"+s4 oLs"),

5. EXCHANGE 2S SCATTERING

The exchange-scattered amplitude g, is given by
(2.4). In order to evaluate this integral, we 6rst express

' S. Borowitz, Phys. Rev. 96, 1527 (1954).

where the single prime is used to denote the fact that
the quantities A, 8, and ei occurring in the ~L3 in-

tegrals of (4.7) are Al, Bl, and nl, the double prime
means that A, 8, and e& are replaced by A2, 82, and
rI2. The integrals are evaluated by the method of Sec.
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4, and give for g, in (5.2):

g, =—{(1+zzz) L4 (1+zz~) Eoo —(2+3rzg+rzP) Eoo
7r2

+4 (1—zz,)E,(P' —2 (1+Ig) (2—zzg) Egoss

+ (4zko —8+Srzg —NP) Ezo"1+(1—Is)

X [4(1+zzy)Eo& —(2+3Ni+Nx )EoP

+4 (1 rz—g) Egg" 2—(1+la) (2 zz—l)E1P'

+ (4zko —8+5zzg —zzP)Ezg"]), (5.10)

where

f dr~/p'
PQ= (5.11)

& A@As'(Ag Bz)"(Az—Bz)'—
+le shall evaluate (5.10) for high values of ko and

will therefore consider only leading order terms. Be-
cause of singularities occurring in the integrals in

(5.11), their order of magnitude with respect to ko can
not be obtained from simple dimensional considera-
tions. Experience gained in working with these integrals
shows that the leading order terms are contributed by
the integrals E»p", E2p", Ep»", and Ep»". Equations
(5.10) may then be written

g, = (~2/zl') (4E "+4ikoEzo"+4Eo "—2EoP'). (5.12)

The integrals in (5.12) may be evaluated by a method
due to Feynman. "~ The results for the integrals for

g, are
173v2i 173%2z

ga=
16ko'q' 64ko'p

(5.13)

The exchange scattering amplitude g, (see (2.2)) has
been evaluated exactly by Corinaldesi and Trainor. '
The approximate form of their result for large kp, ex-

pressed in our notation, is

v2 ( 1i
g.=—

2koo ( zz'i
(5.14)

This result diGers from that for the symmetric case in

both energy dependence, kp and angular dependence, p.
It is of interest to note that the part of the asym-

metric scattering g, corresponding to 1/r&z is furnished

by the integrals Epp" and Epp", since these integrals
are only ones which would occur if plane-wave func-
tions were used with the symmetric perturbation.
Direct evaluation of these integrals shows, however,
that they are of order 1/kooky' [see (5.14)] and are
therefore negligible compared to the terms we have
evaluated.

If the method of altered states is used for 2S ex-

change scattering, we do not obtain all of the leading

~4 R. P. Feynman, Phys. Rev. 76, 769 (1949).

order terms. Because of the separation of variables
occurring in exchange scattering, no essential simplifica-
tion is obtained, but only a reduction in the number of
integrals to be computed. The method of altered states
will not, therefore, be considered further in exchange
scattering.

g. ~ o o= (40v2/81)(1/ko'). (5.17)

The scattering amplitude given by the asymmetric
method for 25 exchange scattering is therefore negli-
gible compared to that given by the symmetric method
for small as well as large scattering angles. This is in
contrast to direct scattering where the two methods
give similar results for small scattering angles.

6. DIRECT 2P SCATTERING

The scattering amplitude f,' for direct 2I' scattering
is given by (2.8). Because of the good results obtained
with the method of altered states (Sec. 4) for direct
25 scattering, we shall use this method for the present
case. The wave function for the Anal state is replaced,
therefore, by a plane-wave function and (2.8) becomes

V2 1
f,'= exp(izl r~$ expL —3rz/2)ro cos8z—

r12

XqF~(—Nq, 1, i(kore —ko r~))drqdr, (6.1).
Integrating with respect to d72 and expressing the
hypergeometric function»F» as a contour integral

Small Scattering Angles

An examination of the orders of magnitude of the
integrals occurring in (5.10) for 0=0 shows that now
Eoozz and Eoo" are of order 1/ko' while the integrals
previously considered are now of order 1/ko'. It would
thus appear that, as in direct scattering, the plane
wave terms become dominant for small 8. A further
examination of Epp and Epp shows, however, that
these terms cancel to order 1/ko' and that the next
leading order term is of order 1/ko'. The plane-wave
terms thus appear to play a negligible role in exchange
scattering for both large and small scattering angles.

Examination of the integrals in (5.11) for 8= 0
shows that the four integrals previously considered are
leading order terms but that, in addition, the integral
E»p becomes of comparable order of magnitude. The
appropriate form of (5.10) for 0= 0 is thus

Ca= ( 2/zr') (4E~o"—4Elo"+4zkoE 0"
+4Eop' —2Eop'). (5.15)

This gives

g.
~

o=o = (47~2/16) (i/ko'). (5.16)

The result given by Corinaldesi and Trainor for the
asymmetric perturbation, when evaluated for the limit-
ing case 8=0, has the form
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[see (4.5)] yields ring in M& and 3f&') after the integration by use of

v2 64 1 ( 1q"'dv t

f,'== —
) 1+—

~

—
~~ exp[iK r&]

9pr. 27 2pri E v) v J
d)

~, ~+"=
1 ~l&

—iaq
lnl

2ia & Z-&&-ia)

cosHy
X (exp[—ikovr&][exp[ —Eorms]) d7 y

~1

1 t' 1y"'dv &

(
1+-

(
— exp[iK r,)

2vi E v) v ~

~32 1 8
Xexp[—Eor&]~ —+ -+r~—

I cos8&drq,I9r, 3

t" Ml& t'" l&dk (X'+a'p

V+ao & V+&')

Performing the differentiation with respect to k in
(6.5), and noting that

8—(E') =2 (ko—k„cos8+kpv),
Bk I&: =Ao

we obtain

where
M,——;M&'~=—8~ko " &d~[. ,L,(~)+oL,(&)],

0
K= q+kov, &o o+ik——pv

The integration with respect to d7& may be carried
out directly, but, because of the factor cos8, branch
points occur which lead to difhculties in carrying out
the v in e ration. The factor cos0 herefo i elimi-
nate

M&" = —8vko(p gLg+pLp), (6 6)

M"' = —32v ko[o o xLo+ (o+okoo) oLp+oko —iLo)],
tg ~t re s

where o= (1/ikp)(kp —k cos8). The notation L(l&) in-
dicates that the quantities A and 8 occurring in I. are

8 f exp[iK'. r&]~ replaced by Az and Bz. We evaluate the L integrals in
cos81 exp[iK r&]=—

) ~ ~ (6 3) (6.6) as before and, retaining only the terms of highest
order, obtain

where K'= k+vko —k„and obviously K'= K for k= kp.

The form of K' has been chosen to avoid a factor of v

in the differentiation. Equation (6.2) now takes the
form

where

V2 64 32 8
f '= —My ——M&"—-M&'~ —M&'~, (6.4)

2pri 27 9 3

1 t' 1) ""dv 8
Mg=

~

1+-
)

—— exp[iK' ry]
2pri 4 v3 v Bka

d7'1

X (exp[—ikpvr&] —exp[—Epr&])

12v2i(kp —k„cos8) 3&2 i
I

32 k'o'p'q'(q'+9/4)'
(6.7)

16 %2i 8%2i cos8
f,'= (1—o)—=

27 q'ko 27ko' (1—cos8)

4&2i (1—2p)
(6.7)

27k, ' & p

The scattering amplitude f,' [see (2.6)] has been
evaluated exactly by Corinaldesi and Trainor; their
result is

Equation (6.7) differs considerably from our result;
the energy variation is of order 1/kp' instead of 1/kp',
and in addition, the angular variation with the asym-
metric perturbation is opposite to that given by the
symmetric perturbation.

A detailed analysis" of f,' for 8=0 indicates that the
principal contribution comes only from the plane-wave
terms. The result, then, is in exact agreement with
(6.7) with 8=0, namely,

1 f 1)"'dv 8
M&"& =

I 1+—
I

—— exp[iE' rt]
2~i E v) v 8k'

dv]
Xexp~ —ltori~; (6.5)

k is to be set equal to ko after the di6erentiation.
The integrals with respect to v.

& may be readily
carried out if we use the integral

12&2i (ko k„cos8) —1536
Zko.

q'(q'+9/4)' p=p 728
(6.8)

dx t'k )
(e '*—e *)—=in( —[.

x Eai
V. EXCHANGE 2P SCATTERING

0 IThe scattering amplitude g, for 2I' exchange scatter-
It is convenient to eliminate the logarithmic form occur- ing is given by (2.9). The procedure for evaluating the
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where

v2 (dr,
f8 = JO) IJ(2)

322r4 p'
(7 1)

integrals is very similar to that used in 25 exchange
scattering. Replacing 1/r» by its Fourier integral and
the hypergeometric functions by contour integrals Lsee

(5.1) and (4.8)] yields
2(ko'+&o y)

Ag'

kp8 (1)
2 Bko (A,2)

(7 9)

Then we have

The integral F2o" is identical with the integral E2o".
To evaluate (FoP')', we first remove the factor ko y from
the numerator by means of

1 ( 1q "'dv
I

1+-
(

—Ji'
2~z E v&

Ji' ——)I exp/ —(-,'+ikov)ri]

(7.2) (FoP')'

kp 8
t

drv kp pj

FoP' (7 10)
2 47kpJ P'A 'A, (A,—82) 2 Bkp

XexppiK1 ri]r, cos&idri. (7.3) We can therefore evaluate (FpP')', using Feynman's
method. "The results are

32~i(-', yzkov) Lkoo(1+v)+ &o y]
Jg'=-—

kp (A 1+Biv)'
(7 4)

The integral J""then takes the form

J&2& is defined by (5.3). The integral J&" has been
evaluated previously. To evaluate J&"' we 6rst remove
the factor cos8& in J&' by the method explained in Sec. 6
[see (6.3)].We obtain for Ji'.

F 12—2 (~2/k 4')
(Fpi")'= 1'p~'(ko'/k- Y).

(7.11)

45 v2i
gs =

8 kp'q'

45 v2i

32kp p,

(7.12)

Substituting these values into (7.8) for the scattered
amplitude, we have

J&»'= (32mi/ko) t
-2'(ko'+&o y) 11.2' The exchange-scattered amplitude g, ', that is, (2.7),

has been evaluated by Corinaldesi and Trainor. The
+zko(kp'+ko' y 2zko) pL 2 +zkp —1J 4 ]~ (7 5) approximate form of their result, for large ko, is

where the I. integrals are identical with those in (5.9).
Evaluating the L integrals, we obtain for g,

'

V2 i
g

'=——( (1+&2)E(1+&1)(2+~1)(Foo")'
~' &o

—2 (1—zzP)Foo +3rzi(1 —rzi)Fio' +-(1+zzi)

X (1—2iko)Fio + (1—zzi) (2—zzi)F2o —(1—zzi)

X (4ko'+4iko 1)Foo"]—+ (1—rz2) t (1+241)(2+Ii)

X(FoP')' —2(1—zzP)FOI +3zzl(1 zzl)F11

+2 (1+zzi) (1—2iko) Fii"+ (1—zzi) (2—zzi) F11"

v2i t 5 p
g.'=—-( 32 ——).

8kp' E f42)
(7.13)

Small Scattering Angles

Examination of (7.6) for 0=0 shows that Fzp" and
(FpP') remain leading order terms but that, in addition,
the integrals (Fop")', and Fip" and Fio22 become of
comparable order of magnitude. The appropriate form
of (7.6) for 0=0 is then

This result divers from that for the symmetric method
in both energy and angular dependence.

where
W2 i

g.'= —,—2(F»")'
~' &o

—(1—rz,) (4kpP+4zko —1)F21"]), (7.6)

dr„/p'F.,
" AivA22(A, —Bi)"(A2—82)' 2(Foo22 4i—kpFip" —4k p'Fzp"+—2 (Fpi")') (7.14).

2(ko'+ko p)dr /P'
(F„vo)

A 1 A2 (A 1 ~1) (A2 +2)

(7 7)
These integrals can again be performed by Feynman's
method, '4 and we have

A consideration of these integrals shows that the
leading order terms in (7.6) are contributed by the
integrals Fop" and (FpP')'. Equation (7.6) has, accord-
ingly, the approximate form

z

g.'=——(—4ko'Foo" +2 (FoP')').
m' k'o

(F»")'= (32/125)(8/5)'(~'/ko')
F«"= (8/35) (8/5)'*(~'/ko'),

F,p"——(10/3) (zroz/kpz), (7.15)
Fooio = (5/2) (zr2/k p4),

Fo "'= (5/48) (orzko2/k„4).
7.8

The integrals (Fpo")' and Fop22 contribute an amount
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TABLE I. Summary of results.

Type of scattering

2S direct

2S exchange

2P direct

2P exchange

f8

f8

I
g8

Symmetric method
k2p,))1

8 %2i

81 kp'p,

173 @2'
64 kp'p

4 %2z(1 —2~)
27 k pap

45 v2i
32 kp'y

—42
512
729

47 ~&zi

16 kp'

1536.
ikp

85 v2i
24 kp'

fc

/
ga

Asymmetric method
k&p)) 1

1 V2

8 kp'p'

3K2

32 kp p3

—v2
512
729

4092 1

81 kp4

1536.

32 V2i

27 kp'

small compared to the other integrals and will be
neglected. Substituting the values of the other integrals
into (7.14) yields

(7.16)

The result given by Corinaldesi and Trainor for g
'

when evaluated for the limiting case 8=0 has the form

(7.17)

Equations (7.16) and (7.17) agree with regard to energy
dependence for 8=0 in 2I' exchange scattering. This is
in contrast to the result for 0=0 in 2S exchange
scattering.

8. SUMMARY AND DISCUSSlON

The results obtained in the present investigation are
summarized in Table I.

In contrast to the results obtained using the asym-

metric perturbation, we see that the present results for
direct scattering are much more important than ex-
change scattering for all energies. This arises from the
fact that the direct-scattered amplitude is much larger
when one uses the symmetric perturbation than when
one uses the asymmetric perturbation. Since the results
are so diGerent, it is conceivable that some experiment
may be done which would tell us which of the per-
turbation procedures is the more accurate. In doing such
an experiment, one would have to measure the di6eren-
tial scattering cross section. Measurement of the total
cross section would not be useful, since it would be
dominated by the scattering in the forward direction,
and for this scattering there is nothing to distinguish
the two cases.

The identity of the results in the forward direction
for direct scattering leads us to the conclusion that the
Born approximation using the asymmetric perturbation
gives the correct amplitude but an incorrect phase for
the direct-scattered wave. For exchange scattering,
however, the symmetric perturbation scheme is a more
natural one.


