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case of silicon, the lowest concentration for which signs
of impurity band conduction of the type discussed in
part II have been observed is about 10"/cm'. This is
not far below the concentration listed in the last
column of Table I, and the germanium results suggest
that it will not be difFicult to account for this.
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For constant scattering time 7 and ellipsoidal energy surfaces, the Boltzmann transport equation reduces
to a phenomenological equation of motion for electrons from which a conductivity tensor is derived. The
calculations for germanium and silicon diQer in the orientation of the ellipsoids. The resistivity tensor is
evaluated in the saturation limit, and explicit expressions for the angular dependence of the magneto-
resistance are elaborated for certain high-symmetry combinations. The theoretical 6ndings are in qualitative
agreement with experiment, thus providing confirmation of the 4- or g-ellipsoid [111]and the 3- or 6-
ellipsoid [100]models of the energy surfaces in I germanium and a silicon, respectively. Essential agree-
ment with energy-dependent v theory is also established.

INTRODUCTION

' 'NDKPEXDENT reports by Abeles and Meiboom'
~ ~ and by Shibuya' have demonstrated that the gal-
vanomagnetic behavior of m germanium is successfully
accounted for by the application of Boltzmann trans-
port theory using the model of eight ellipsoidal energy
surfaces located along the $1111 axis in the Brillouin
zone. Their analyses were formulated in terms of an
energy-dependent scattering time 7 which, in particular,
represented lattice scattering.

This paper describes a di6erent approach to the
problem which was a natural outgrowth of the theo-
retical interpretation of the cyclotron resonance experi-
ments of Lax, Zeiger, and Dexter' in which a constant
v was found adequate. It was thought that a constant-r
theory might adequately describe the observations of
Pearson and Suhl, 4 although such a restrictive assump-
tion is not truly justi6ed over all temperatures. The
advantage of this approach is that the Boltzmann
theory reduces to a relatively simple phenomenological
description. We also by-pass the difficulties involved in

carrying through a precise treatment of the scattering
processes. It is known that there are uncertainties in
the temperature variation of the mass ratio E, the

*The research reported in this document was supported jointly
by the Army, Navy, and Air Force under contract with Massachu-
setts Institute of Technology.

.t Now at Harvard University, Cambridge, Massachusetts.
~ B.Abeles and S. Meiboom, Phys. Rev. 95, 31 (1954l.' M. Shibuya, Phys. Rev. 95, 1385 (1954).' Lax, Zeiger, and Dexter, Physica 20, 818 {1954).' G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951).

validity of neglecting intervalley and interband scat-
tering, ' and the anisotropy of v. Thus, one may not be
much worse off in working with a constant r.

In this light, our theory, while not generally physi-
cally realistic, has the virtue of being the simplest
possible approach. This is not to say that it is entirely
rid of cumbersome algebra; but at least the results can
be more clearly expressed and explicitly evaluated.
While we will initially follow a course which is appli-
cable over all ranges of magnetic field, we will specialize
to the high-6eld saturation limit when taking the in-
verse of the conductivity tensor, and leave the more
complicated intermediate field case for a separate
report. This permits us to concentrate on the magneto-
resistance in this paper, since for B~ ~ the Hall
coefficient RIr is simply (eye) '.

PHENOMENOLOGICAL CALCULATION OF THE
EFFECTIVE CONDUCTIVITY TENSOR FOR

COMBINATIONS OF ELLIPSOIDAL
ENERGY SURFACES

Use of the constant r in the Boltzmann transport
equation leads to the phenomenological equation of
motion 6rst proposed by Shockley'.

L(v+ jco)m+qS&(jv=qE, v=1/7. (1)

The relation describes the forced, damped oscillation
of an electron in a single ellipsoidal energy surface
characterized by the mass tensor m, which is given in

~ C. Herring, Bell System Tech. J. 34, 237 (1955).'%. Shockley, Phys. Rev. 90, 491 (1953).
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the ellipsoidal system by

nag 0 0
0 ns2 0
.0 0 m2.

3
ill= -', P —

I
1+ —bl2 (,

2m+1

The impressed electric field is periodic, E(t)=Re'"';
the dc case simply has co=0.

The conductivity tensor o- for the single surface can
be derived by introducing the unit tensor g so that
Eq. (1) may be written as

1Cy=
1 3 5' E—1—b2b2- -', g—
6; 2E+1 ' 6, 2E+1

1 - E+2 E—1 S2'b, +S2'b2
bi+

i 6; 2E+1 2E+1

where

L(m/m2)+bX~~]v= E,
(2+jr')m2

m2(i+ j(o)

m; 1 E—1
(3) 6;=—det —+bX~ =1+ b'+-

@ ~, E 3E

(Sl'bl+S2*b2+S, 'b,)', (10)

(4) the remaining tensor components coming from cyclic
permutation of Eq. (10). The Sl', etc. , are given in the
appendix.

0 —b3 b2

bXQ= b2 0 bl —.
.—b2 bg 0,

Thus, from 1=0qv it follows that

3E m—+bXQ, E =ml/m2,
0* 2E+1 m2

where

e*(2+jr')

(6)

B. 3 or 6 I 100$ Ellipsoids for Silicon

The mass tensor m~ for the ellipsoids along the k
axis is given by Eq. (2), with m2 and m2 given by cyclic
permutations. The conductivity tensor is again given
by Eq. (9), where now

1 p1 E E 1
+ + +2—bP I,

2E+1 &hi 32 62 ' 6, )
1

Cl=p —b2b2
2E+1

is the ordinary conductivity, and m* is the average
eGective mass given by

tE
dl=

( + + (, etc;
2E+1 (Al 62 62)'

1 m; - 1 E—1
6,=—det —+b X~~ =1+—b'+ b 2. (11)

E m2 E
3/m*= (2/m2)+ (1/ml).

We must now refer the separate conductivity con-
tributions from the various ellipsoids to a common SATURATION LIMIT FOR THE RESISTIVITY TENSOR
reference frame so that they may be summed.

A. 4 or 8 (111$Ellipsoids for Germanium

The ellipsoidal axes for the four sets of energy sur-
faces are given in the Appendix, along with the matrices
8' which transform from these axes to the cubic axes.
With b speciied in relation to the cubic axes, and the
mass tensors given by

m =(8')-'m' C'

In passing to the high-field limit, we expand the
conductivity tensor in inverse powers of B, and the
following form results:

1 1
/ *=-~yy

—-(DXQ)+ -K,
b $2

where A, D, and g take on different values for Ge and
Si, and I3 is the unit vector in the direction of the mag-
netic field. We expand 0=', t'reating the last term as
small.

where m is given by Eq. (2), we average Eq. (6) over
the four sets of ellipsoids. The result can be put in the p (c.y

'
f 1

form —=I —
I

—=
I &I3V—DX& I

p* &~*) & b

C2+d2 C2—d2

0/0 C3 lf2 82 Cl+ll
~ C2+~2 Cl ill G2

(9)
1 t' 1

Ayy —DXg
~

. (13)
b' & b i
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We 6nd

1

! Ayy —Dx3! =
) A(g D)'

x[DD+Ab(II D)(I3x~~)j. (14)

If we make use of the fact that for both cases [Eqs.
(23) and (25) below),

Ii D=3E/(2E+1),
then Eq. (13) becomes

p t'3E+1~' DD —(yx3) @ (yx3)
p* ( 3E ) A

3X+1
+! Ib(yx3). (16)

& 3E
Note that the last term yields, a Hall coeKcient
R~= 1/sgc.

Finally, if e is the unit current vector, we have for
the resistance p and the magnetoresistance Ap/p*:

—=1+—=n —n
P P P

&3E+1&' (n D)'
+(yx ).@ (yx ) . (»)

3E ) A

A. Saturation Magnetoresistance Ap/P for
Germanium

1 )1 E Eq
!
—+ +

2E+1 (A Ap' Ap')

with c&=c2=c3=0.The 6 are given by

(22)

(23)

Then, for the remaining quantities,

A=
2E+1

pg (E 1 1)
d, = + +,etc.

2E+1 ~ Ag' Ap' Ap')
(24)

ANGULAR DEPENDENCE OF ckp/y IN GERMANIUM

The directional sects that have been experimentally
observed may be checked with Eq. (17) by considera-
tion of two special cases.

A. Special Cases B3——0

The expression for p/p* reduces to

p (2E+1)/9E(E+2)
p* (E+2)'—4(E'—1)'PPPpP

B. Saturation Magnetoresistance for Silicon

Here the components of the tensor 5 in Eq. (22)
are the diagonal elements

In the tensor K, Eq. (17),

Q~ c3
Cp ap

C2 Cy

we have for the components

C2

C1

Q3

(18)

X (([(E+2)'—2(E—1)'PpP jnPg

+[(E+2)'—2 (E—1)'PP]npP p)
'

+3(2E+1)(E+2)'[1—(nPg+n2Pp)')

—12 (E—1)'(E+2)P 'P 'n ') (25)
1

Q) =Q2=Q3=Q=g z —
)

1 Then for the following particular current directions the
angular dependence of the magnetoresistance may be
determined.

1. Jypp& np=np=0, ny= 1:S,' (E 1i-
!,q=1, 2, 3.

' A &2E+1)'
(19)

where

Then in the other expressions we have

!
1 ) 3

A (2IC+1)
1 (X+2 q

A (2E+1)pi

(26)
A=-', P For numerical evaluation, we employ the cyclotron

resonance value of the longitudinal and transverse
masses':

nag
——1.4 mp, mp ——0.083 mp, X=16.8. (27)'

In Fig. 1(a) the behavior of Ap/p is depicted as the
magnetic vector is rotated in the (001) plane. The
expected m symmetry is evidenced and the longitudinal
magnetoresistance exceeds the transverse in agreement

1~E—1~+-! !E (Sp'P p+Sp'P p),—(21)
4 E2E+1)

with d2 and da formed from d& by cyclic permutations.

p 2E+1
1 E—1 9EE 2

A =1imA, /b'= +(Sg'Pg+S—p'Pp+Sp'Pp)'. (20)
[(E+2)'—2 (E—1)'Pp']'PP+3 (2E+1)(E+2)'P '

X
(E+2)'—4 (E—1)'PPPpP
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with experiment. The expression for the ratio of longitudinal to transverse hp/p* is given by

E p*), I —, I
=-:(E+2),(p*), (2g)

2E+1 f(E+2)P—2(E—1)'Py,] (Pt~P,)'+3(2E+1)(E+2)'(Pt—P,)'

(E+2)'—4(E—1)PPt2Ppop* 18E(E+2)

which is greater than unity for E)1; in particular, for K=16 it has a value of 12.
2. Jttp, at=no= 1/V2, as=0:

(29)

(Dp) 'Dp~ (E—1)'

( p*),. ~p*) 7 3E(E+2)
(30)

The required ~ symmetry occurs as shown in Fig. 1(b).
Also this arrangement exhibits a transverse magneto-
resistance greater than the longitudinal alignment—
again in agreement with observation4;

p (2E+1) ' 1 (nt+a, )
d+apdp

p* &3E) A V2

-2

((at+no)
+0 1—

~ P+npPp
~

&PPp—(at np)'—
vz )
cp(Pn—p VZP pn—p)(Pap 42P,n—t), (32)

which is always less than unity for E)1, and for
E=16 is 0.26. 3E+1 3E

3. Jpot, at ——np ——0, np ——1: e= A= $(E+2)'+(E 1)(E+2—)P'
3 D

p 2E+1 (E+2) (2E+1) 4(E 1)PP 'P—po-
p* 3E (E+2)'—4(E—1)'PtPPpo

This properly shows the m./2 symmetry as may be seen
from Fig. 1(c), having a maximum value of Bttp with
the minimum at the transverse position S~pp.

toI Jeo Bs ~ 0

4,0—

gl Jool Bs*0
?Oi

8110 BIIO Biio 8110

B. Special Case B& ——82

This corresponds to the magnetic vector in the (110)
plane with Pt=Pp=P/v2. Now Eq. (21) reduces to

—4(E—1)'P'PP],
c 3E(E—1)'

et=co= —= [E+2 (E—1)P']-
v2 D(2E+1)

3E(E—1)'
co= (2E+1—5(E—1)Ppo],

D(2E+1)

d E+1 )c~
VZ 2E+1 Ev2)

E+2 ( ci
dp= aPp

—
i

—iP,
2E+1 (v2)

81oo Bipo B,pp
1.0

Bloo
0 90

Bioo Bolo Bloo

180 270 360

D= PC+2 —(E—1)P&]

X((E+2+(E 1)P']'—8(E——1)'P'Pp'). (33)

B,oo, 8"0
90 180 270 3600

~h

P
Il& QIP 83=0

IdI JIIOBI~B2
2.0

BOO BOOI BIIO Booi BIIO

0 90 180 270 360

tet Jjlo Bl =82

Here the special current directions of interest may be
introduced:

1. Jttp~ at=no=1/V2, no=0:

p j'2E+1q' d—
~

—+(0—cp)Pp' . (34)
pe 43E) A

Bilo BIIO

The angular dependence of ~p/p exhibits m/2 sym-

metry with a maximum at 8=45' and equivalent
minima at Btto and Boot. (see Fig. 1(d).]

2. Jtto, at —— np —1/V2—, np ————0:

Boo Biio 8110

90 180 270 360 0

ebtegreee)

8001 Booi
90 180 270 360

p (2E+1~'
-

f [a 2cPP,+c,P,']-
p* E. 3E

FzG. 1. Variation of Ap/p* for the 4- or 8-ellipsoid model of
n Ge in the saturation limit, as the magnetic ield is rotated
through the angle g. Current directions are as shown, and the
cardinal directions for 8 are indicated.

The behavior of Ap/p* may be seen in Fig. 1(e). The m

symmetry is characterized by a maximum at 8»p and
a minimum at Bppy.
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The expression for p/p* is

ANGULAR DEPENDENCE OF 1k'/ye IN SILICON

A. Special Case B3——0

9E 9E[2E+1+(E 1)'P—sP s]

p (E+2)(2K+1) (E 1)'—(2E+1)[2ntnsPtPs —2(nPPt'+no'Ps') —(E 1)P—t'Ps'(1 —np')]
(36)

1. Jtpp '.

p (E+2)(2E+1)

(E 1)'(2E—+1)[2+ (E 1)Ps'-]P ts—

(37)
9X[2E+1+(E 1)'P 'P ']—

Dp/p* shows the striking behavior depicted in Fig.
2(b). While x symmetry is manifested, the appearance
of an intermediate peak adds an interesting aspect not
encountered in the experimental work; unfortunately
Herring and Pearson' did not study this situation. The
maximum occurs at about 35' for E 5 and the upper
minimum is at Bjrp with the lower one at Bp rp.

B. Special Case B~=B2The over-all behavior of the Dp/p* is illustrated in
Fig. 2(a) which should be contrasted with the result
for germanium contained in Fig. 1; the longitudinal
magnetoresistance is zero, in agreement with Herring p (E+2)(2K+1)
and Pearsonv as is the x symmetry. The curve is
plotted for the data derived from cyclotron resonance':

(E—1)'(2K+1)

9K[2E+1+(K 1)'P'(1——aP')]

mi= 0.98@up, ns2= 0.19mp, E= 5.2. (38)

Joot
'

For this current direction the magnetoresistance is
constant as the magnetic vector is rotated in the or-
thogonal plane:

p (E+2) (2K+1)
(39)

( E 1) n—t+ns P' (nt+ns) '
X ]1+ —P'[ 2 n,PP,—]

2 ) v2 2 ( v2

fnt nsl f3

)

—[(2K+1)—$P'(E—1)]
VZ j 2

—no'Po'[2+0'(X —1)), (41)

Jl to

p (E+2)(2E+1)

and we consider the following current directions:
1. Jato.

p (E+2) (2E+1)

to& J~oo Bs ~ 0 tet Jno Sl *as

(E 1)'(2E+1)[1—PtP—s+ (E 1)PPPs—
(40)

9E[2E+1+(E—1)'P 'Pss]
(E 1)'(2E+1)P'(—1+K—-',P')

(42)
18E[2E+1+(E 1)'P'(1 —-sP')]—

hp
P

tbsp Jpp Bs*o (d& Jno S, =82

Ap/pe shows the angular dependence of Fig. 2(c). The
features of or symmetry, minimum at Bttp maximum
at Bppi are precisely those observed. '

JIto ..

p (E+2) (2K+1)

p* 9E

(K 1)'(2K+1)P'[2X—+1—
os (E—1)P']

(43)
18K[2K+1+(E 1)'P'(1 —-oP')]—

g (degrees)

Fto. 2. Variation of np/p* for the 3- or 6-ellipsoid model of
n-Si in the saturation limit, as the magnetic field is rotated
through the angle 8. Current directions are as shown, and the
cardinal directions for B are indicated.

7 G. L. Pearson and C. Herring, Physica 20, 975 (1954).' R. N. Dexter and B.Lax, Phys. Rev. 96, 233 (1934).

As Fig. 2(d) shows, this reflects vr symmetry with a
minimum at B~~p and a maximum at Bppy.

SUMMARY OF RESULTS

In Table I are summarized the saturation magneto-
resistance for high-symmetry longitudinal s,nd trans-
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4- or 8-ellipsoid model

J and B
vectors

hp/p for
K =16.9

(n-germanium)
p/p+ =1+(&p/p) A-M-S G-R

3- or 6-ellipsoid model
Dp/p for
K =5.2

(n-silicon)
p/p+ =1 + (bp/p) A-M-S G-R

I 100]

t100j
$001]

[110]

$110]
|110j

(2K+1)(K+2)
9K

(2K+1)2

3K (K+2)
(2K+1)~

3K(K+2)
C('K+') (K+')

9K

1 0 0

0.43 0.26 C 0.98 0.759K

0 26 0 26 03'3 033K (K+5)

3.9 3.3 C Q.2Q Q.Q619K (K+1)

3.3 3.3

a See reference 5.
b Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).

TABLE I. Comparison of our results (G-R) with those of
Abeles and Meiboom and Shibuya (A-M-S). The constant
C=32/9s for A-M-S and 1 for G-R. The E values are those
taken from cyclotron resonance'; these have been somewhat
revised. b

saturation values for silicon have not been reported, so
little can be said as yet about the theoretical values.
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APPENDIX. Llllj ELLIPSOIDAL AXES

The 4 sets of energy surfaces have the following
ellipsoidal axes:

verse arrangements of the current and magnetic vectors;
direct comparison with the Abeles and Meiboom' and
Shibuya' results is also made both for general E and

specifically for E= 16.9 in Ge and E=5.2 in Si.
It is evident that the longitudinal magnetoresistance

in the saturation limit is identical in the constant and
energy-dependent 7- theories. The transverse values
differ by a factor of 32/9~, brought in by the h l r
dependence. '" Unfortunately, the experimental data
are not adequate to determine which transverse values
are appropriate for germanium. The experimental

s For a general energy-dependent r this factor becomes r(1/r),
where the average is taken over energy as in the conductivity. !'
This can be seen by averaging 8* in Eq. (12) over energy, noting
that ~ appears in 0* and b.' W. Shockley, E/ectrons and Holes in Sensiconductors (D. Van
Nostrand and Company, New York, 1950), p. 276, replacing
-,'nse' by c.

I
II

III
IV

111
111
iii
iii

iiO
110
iiO
110

112
112
112
112

S2'
S '=S'S '

—1

1

—1
1

—1

Hence, the transformation matrix referring these to
the cubic axes reference frame is

Ss'/V3 St'/V3 1/v3
—Sr'/v2 Ss'/V2 0, (A-1)

'.—Ss'/Q6 —Sj/+6 2/Q6.

where S1', etc., take on the following values:

III IV


