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ortho-positronium in superconducting lead'~ and if its
three-quantum decay rate were the same in super-
conducting lead as in. vacuum (1/)is=1.4X10 ' sec),
then the ortho-positronium must have a mean life

'5 In most substances which show a long-lifetime component,
about 30/~ of the positrons are responsible for it. LSee R. E. Bell
and R. L. Graham, Phys. Rev. 90, 644 (1953).j

(r=1/Xs) greater than SX10 M sec in order for us to
observe an eGect.
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For most purposes, the wave furictions of a crystal with an
electron trapped at an impurity are approximated by the product
of two functions, one involving the lattice coordinates and the
other the position of the electron. The electronic function may be
determined for the equilibrium position of the lattice (static ap-
proximation) or one may assume that the electronic wave function
continuously adjusts itself to the instantaneous position of the
lattice (adiabatic approximation). The author relates the wave
functions to Hamiltonian operators which do not have some of the
most common operational properties. A comparison of the two
approximations is made using the variational principle. The static

underestimates the kinetic energy and overestimates the potential
energy, while the second does just the reverse. Although the
formal treatment is quite general and includes all the e8ects for
harmonic vibrations, the actual terms were evaluated for a simple
model. The calculations show that for extremely shallow traps the
static approximation may be slightly superior, while for deep traps
the adiabatic approach should be used. For traps of depths less
than 0.1 ev the methods are essentially equivalent; in any actual
calculatioos, other approximations must be made and they are of
greater importance than the slight difference between either of
these approaches.

1. INTRODUCTION

GREAT many papers have appeared concerning
electronic transitions which involve more than one

phonon. The problem resolves itself into three parts.
First, one must know what perturbation causes the
transition; this requires a detailed knowledge of the
electron-nuclear wave functions used. It is at this phase
that one distinguishes between multiphonon and single-

phonon processes. Second, we need to know the number
of vibrational modes which enter into the transition;
this depends on the energy distributions of the electrons
and phonons. Finally, one must sum up the various
individual probabilities.

In recent years progress has been made in the third
phase of the problem' by assuming the validity of cer-
tain electron-nuclear wave functions. The calculations
of Kubo' and VasileR' use the so-called Born-Oppen-
heimer, or adiabatic approximation, which is presumably
based on a paper of Born and Oppenheimer. ' A search of
the literature revealed, however, that the exact ap-
proximation first appeared in 1940.' The word "exact"

r K. Huang and A. Rhys, Proc. Roy. Soc. (London) A204, 406
(1950); R. Kubo, Phys. Rev. 86, 929 (1952); M. Lax, J. Chem.
Phys. 20, 1752 (1952);R. C. O' Rourke, Phys. Rev. 91, 265 (1953);
H. D. Vasileff, Phys. Rev. 96, 603 (1954), 97, 891 (1955).See also
the work of S. I. Pekar Uspekhi Fiz. Nauk. 50, 197 (1953)
(English translation by M. D. Friedman of W. Concord, Massa-
shusetts) and references therein.

2 M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).
3F. Seitz, The Modern Theory of Solids (McGraw-Hill Book

Company, Inc. , New York, 1940), p. 470.

is of utmost importance since one must. know (in
principle at least) precisely what wave functions are
being used to carry through a multiphonon calculation.
On the other hand, O' Rourke, ' Frenkel, ' Moglich and
Rompe4; and Goodman, Lawson, and Schiff4 used a
second approach, originally formulated by Born and
Oppenheimer. ' The most appropriate name for the
second approximation seems to be "static."' '

There seems to be some feeling that the adiabatic ap-
proximation is "exact" (see Lax), and certainly superior
to the static. With the possible exception of the book of
Born and Huang, ' the author has found nothing in the

4 J. Frenkel, Phys. Rev. 37, 17 and 1276 (1931);F. Moglich and
R. W. Rompe, Z. Physik 115, 707 (1940);and Goodman, Lawson,
and Schi6, Phys. Rev. 71, 191 (1947).' Strictly speaking, one need not assume that O' Rourke used the
static approximation. In the notation to be developed, one need
only assume that (p, (R) ~M~ y„(2t)) is not a function of the
nuclear coordinates. M is the electric moment operator for the
system. This is not quite as restrictive as the static approximation.
The above assumption is referred to as the Condon approximation.
As will become evident shortly, the static approximation always
leads to london's; the adiabatic may also in very special cases.

' Other names have been used in place of static, namely "har-
monic" by Born and Huang' and "Hartree" by Lax.' One should
not in any way relate this problem with the usual many-electron
ones, where another Hartree approximation appears (reference 3,
p. 234). The term "adiabatic" can have more than one meaning;
the one used here agrees with Kubo, Vasileff, and Huang and
Rhys. It does not agree, however, with the one used by Born and
Huang.

~ M. Born and K. H. Huang, Dynamical Theory of Crystal
lattices (Oxford University Press, Oxford, 1954), p. 166.

'M. Lax, I'hotocondectivity Conference (John Wiley and Sons,
Inc. , New York, 1956}.
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literature to justify this feeling. Frenkel' in 1932 showed
clearly that the adiabatic approach is only an alternate
approximation which need not be superior.

One object of this paper is to place the approximations
in juxtaposition, so as to focus attention on the two
ways to handle the problems involving electrons and
nuclear wave functions. Then a short analysis of the
properties of the wave functions and the associated
Hamiltonian operators is made. The treatment is then
redeveloped for an impurity center; it shows in a
general manner, why the equilibrium positions and the
vibrational frequencies are affected by electronic transi-
tions. ""In the following sections, the variation principle
is applied to show when the adiabatic approximation is
superior. These calculations are general, although a
simplified model is used to obtain numerical results. The
author does not believe this to be more extreme than the
oft-quoted calculations of Pelzer and Wigner. I2 Finally,
attempts are made to estimate the order of magnitude
of the shifts in the equilibrium positions and in the
frequencies.

A. General Solution

In a solid, one is allowed to disregard the six external
coordinates; this greatly simplifies the problem in com-
parison to the rotating molecule. "Further, the problem
will be simplified by disregarding the spins. Hence, the
complete Hamiltonian H, for the monatomic solid of Xp
atoms with nuclear mass M, is

H=T, +T+V(R), (2.1)

where T, is the kinetic energy operator for the electrons,
T is the kinetic energy operator for the nuclei, V is the
total potential energy, and R stands for all the positions
of the nuclei. The components of R are X (k)
(n = 1, 2, 3; k = 1, 2, Es) Thus, .

2. STATEMENT OF THE PROBLEM

In this section, we shall write down in juxtaposition
the two types of solutions generally used in these
problems. Next, some of the properties of the operators
and eigenfunctions will be explored.

latter is not explicitly stated, for reasons which shouM
become clear as we develop the paper.

In general, one cannot solve directly for the wave
function 4 associated with H. One may assume that the
complete wave function is of the form

+N g n, v +ivneipnxnv (2 2)

k„(R„)= 7'+-',
psr'. ,BX, , (k)BXp(k') x

XdX (k)AXp(k'). (2.4)

R„ is the fixed value of the nuclear coordinates, where

ae„/ciX. (k) =0 (2.4a)

for every n and k. Further, hX (k) =X (k) —X '(k).
LX '(k) is a component of R„.j

To complete the notation to be used throughout this
paper, we also define

(2.5)

Here, q „x„„is a solution of a modi6ed Hamiltonian Hp,
and EIi is defined so that (Ps+Hi)y x,=Hy x,. The
a's are so determined that %~ is an eigenfunction of (2.1).
In practice v stands for a set of eigenfunctions related to
the vibrational energy, e„of the nuclei, while e stands
for a set related to the electronic eigenvalues, e„.E is a
quantum number associated with the eigenvalue E~ of
the whole system. Hp can be formulated an infinite
number of ways leading to different e„, ~„and a~„,. In
principle, as long as the y„x „form a complete set in the
coordinate space of all the electrons and nuclei, any
formulation will give correct%"s.

To define the approximations actually used it will be
convenient to define two auxiliary operators: First,

k, (R) = T,+V(R). (2 3)

We require the eigenvalues, e„(R) and eigenfunctions

q (R), of k, for a fixed value of the nuclear coordinates,
R.

The second operator is

—O'

2M & 2iM, & BX '(k)
(2.1a)

where the integration is over all positions of the
electrons, and

A being Planck's constant over 2x. V depends on E. and
the position of the electrons. The dependence of the

(x-" lolx-}= x-"*ox-dR (2.6)

9 J. Prenkel, Z. Physik U.S.S.R. 1, 99 {1932}.
MOn occasion, these shifts are assumed to be "phenomeno-

logical" (O' Rourke)' or derived from specialized Hamiitonians
which indicate that one type of shift is independent of the other. "
This conclusion is not supported by our calculations.

D K. Huang, "Phenomenological equation of motion for simple
ionic lattices, " British Electrical and Allied Industries Research
Assoc. Leatherhead Surrey, England, reference I/T 239, 1950
{unpublished}.

'2 H. Pelzer and E. Wigner, Z. physik. Chem. 158, 445 {1932}.~ Reference 7, p. 172.

Q is any operator. It will be omitted when 0= 1.
For the static approximation:

II,(S)=k, (R„)+k.(R.), (2.7a)

a, (s) = v(R) —v(R.)——;

BX.(k)BXp(k') z

XhX (k)AXp(k'). (2.7b)
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The eigenfunction in this case is assumed to be in the
form q„(R„)x„„.On the other hand, in the adiabatic
approximation:

Hp(A)p (R)x =x h (R)p (R)+p (R)Tx ., (2.8a)

Hi(A) v -x-= LZ 2~"'-2'
~.x..+x..'"".]; (2 8b)

i.e., this approximation assumes that for Ho, q„(R)
permutes with T. The corresponding eigenfunctions are
e -(R)x-.

Terms in (AX)' are neglected. An elegant method of
arriving at (2.7) has been given many years ago by Born
and Oppenheimer. ' This treatment is reproduced in a
simpler form by Born and Huangv who have also found a
systematic way to obtain the adiabatic approximation.
Their y s in the adiabatic case, however, contain higher
order anharmonic terms and therefore are not equivalent
to (2.8a) and (2.8b).

To obtain the eigenvalues of (2.8a), we may proceed
as follows:

Only in very special cases would one expect that
&q „(R ) I y„(R„))=0 for every n'(iiAe') .Hence, in
general the y„(R„)'s do not form an orthogonal set.

2. The adiabatic eigenfunctions form an orthonormal
set for

{&v.(R)x." I v.(R)x-.)}
={x-"&~"(R) I v -(R)&x-}

={x., l~.. Ix..}=~...}I}... (2.»)
where 8 is the Kronecker delta.

3 {&~"(R)x." IHi(A) I ~.(R)x..&}

{&y.*(R)x..*lHi(A)
I q. *(R)x..*)}. (2.»)

This is not the same as stating that Hi(A) is Hermitian,
for we are here greatly restricting the functions on which
Hi(A) operates. Since T is Hermitian, in general (2.13)
will hold, if T Hi(A) is—Hermitian with respect to the
eigenfunctions of Ho(A). The proof is divided into two
parts: When eWe',

{&~.(R)x." I2'—H (A) I ~.(R)x-)}
={&~-(R)x-"I v (R)h. (R-)x-)}

=e„„{&y.(R)x„„.l y„(R)x„„&}=0, (2.14)
Ho(A) ~-x-= v. (R)L"(R)+~3x-

= q „(R)[e„(R„)+h„jx„„
= L~-(R-)+'-]v-(R)x-, (2.9)

where we have used the fact that

{x-"(~- (R) If(R) I v -(R))x-}=0

where (2.4) and (2.4a) have been used. The eigenvalues for eWN'. f is not a function of the electronic coordi-

of (2.7) and (2.8) are identical for nates. When a=n',

HO(S) p-(Rg)xny= I tn(Rn)+Std jpa(Rg) gwx. (2.10) {&~.(R)x- I ~-(R)Tx-&}
—{&~."(R)x..*l ~.*(R)2'x., *)}

B. Proyerties of the Harniltonians = (~..—c-. ){x.. Ix..}=o. (2.1~)

The method of splitting II into parts is based on
physical intuition and the fact that the nuclear mass is
much heavier than the electron mass. Mathematically,
the splitting has an unfortunate aspect, since some of
the nicest mathematical properties do not hold for the
Hp s. Hp(5) does not de6ne an orthogonal set of func-
tions while Hp(A) and Hi(A) do not lead to a Sturm-
I ionville equation since, in general, they are not
Hermitian. This in no way is a violation of some
quantum mechanical principle because Ho(A) is not
associated to a real variable. Since the usual proof
of the method of the variation of parameters assumes
Hermitian operators, it does not apply to Ho(A). What
restriction this puts on the problem of finding q and
the author is not ready to state. We shall now derive
some of the properties of these operators.

1. The static eigenfunctions q„(R„)x„„donot form
an orthogonal set.

y„'(R„') is not an eigenfunction of h, (R„). q „(R„.),
however, is a function of the coordinates of the electrons
and can be expanded in terms of q „(R„);thus,

We have added and subtracted {&p„(R)x„„.le„(R)
—e„(R„)I q „(R)x„„)}to go from the first to second step.

This property assures one that laws of detail balance
will hold for both approximations. The probability of
emitting m phonons during a downward electron jump
equals the probability of absorbing e phonons during an
upward jump. Of course, this statement does not include
eGects due to the Boltzmann temperature factor.

4. It can be shown that'4

BU&n
~-(R-)

BX,(k) a„BX(k).a„

C. Impurity Center

The foregoing calculations will now be applied to an
impurity center. Consider the case where we have one
electron trapped at an imperfection. Here, T, consists
of one term while V can be split into two parts. The first
part, V&, consists of the potential energy between the

14 See reference 7, p. 189; also R. P. Feynman, Phys. Rev. 56,
~- (R- ) =Z'&~- (R- ) I ~'(R.)&~;(R.) (2.»»4II (t939l.
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atoms. "For a simple ionic crystal this part of t/' includes
the Coulomb and the repulsive (Born-Mayer) terms as
well as the higher order terms, such as the Van der Waal
forces. In a pure homopolar crystal, such as diamond or
germanium, it will be composed of the potential which is
related to the position of the atoms. U2 includes the part
which is related to the position of the electron. When an
electron is very near an atom, it is no longer correct to
average over the position of the bound electrons; these
corrections, however, will be neglected.

We may thus rewrite (2.1) in the form:

H = ( A'/2rr—s) V'+ T+V i(R)+ Vs(R, r), (2.17)

(e„(R)+Vi(R)g =0.
c)X (k) R

(2.19)

3. The nuclear motion (in this case ionic or atomic)
is governed by the equation

where r is the position of the electron while here R is
related to the atoms.

The static approximation is obtained as follows:
1. y„ is a solution of the equation

L (—fr'/2rl) V'+ V,(R„,r) e„(R—„)gy„(R„)=0. (2.18)

2. E„is determined from the condition

82
2'+s (e.+V,) ~X.(k) ~Xs (k') -e.„y„„=0.

c)X.(ie) c)X&(k')
(2.20)

The appearance of e„ in (2.19) and (2.20) is of con-
siderable importance. e„sects the equilibrium position
through (2.19), and the atomic frequency through
(2.20). In general, there is no theoretical justification for
considering these eBects separately, although cases may
occur where one type is more important than the other.
This separation, however, occurs in several of the
published treatments.

The adiabatic approximation is obtained from (2.18)
and (2.20) except that y„ is evaluated at R, not R„, i.e. ,
the wave function is io (R)x„„.

3. EIGENVALUE SPACE—CRITERION FOR
BEST APPROXIMATION

For illustrative purposes we consider the hydrogen
atom where for simplicity the eigenstates will be defined
only by n and l. We may describe any state by a
"distribution" in quantum number space —that is, n
and i are plotted along the x and y axis and a~„i(m, l) of
Eq. (2.2) along the s axis. If only one a&„& is diferent
from zero, 4' would be an eigenstate of Ho as well as H.
The above idea may be expanded by imagining a space
where all the v's and n's are coordinates. The eigen-
functions 0 ~ are distributions. As long as the y's and
p's form a complete set, any selection is permissible; and
one may go from one approximation to another by a
transformation from one eigenvalue coordinate system
to another.

Any actual state in the solid will be represented as a
"wave packet" in the above eigenvalue space. If the
cp's and y's were selected so that H~=0, the value of the
c's would be independ. ent of time. We are assuming, as
is done in Eq. (2.1), that the system does not interact
with its environment. Unfortunately, when the p's are
pure harmonic functions and the q's pure electronic
"The word "atom" will include the ionized state as well as the

neutral state. The splitting of the potential is not a necessary step
in the derivation. In a subsequent paper, the author will start with
Kq. (2.1) and by usIng the technique of Born and Oppenheimer
arrive at (2.17).

functions, H~WO. Then a~„,varies with time, indicating
that some electronic energy is transformed into vibra-
tional energy, or vice versa. For many problems,
mathematical simplicity requires one to assume that an
initial a~„, equals one, and since the yy's are nor-
malized, all the other a's are zero. Further, from the
work of Born and Fock,"one may assume that the time
dependent perturbation theory can be used only when
the rates of change are slow.

Since, at present, no way is known to fu1611 this re-
quirement, one may make the assumption that the
better y's and p's are selected, the more closely will 4&
be represented by a single product, and the smaller will

H~ be. Hence, the variational principle suggests that the
choice between two approximations can be made by
calculating,

((~.x- l
&

I ~.x.,));
the more negative being superior. Unfortunately, this
criterion only states which of two is superior. It does not
justify the use of the perturbation method nor the use of
a single product. In this paper we shall neglect these
last important points.

Born and Huang arrived at these approximations by a
method which suggests that the adiabatic is always
superior if nonharmonic terms are included. This occurs
because the adiabatic approximation includes additional
terms in their expansion. The author feels that the
criterion suggested is superior than simply including
additional terms without a careful study of the con-
vergence.

One may present a physical argument to show that
the adiabatic approximation is not necessarily superior.
y„(R) at all times gives the minimum value of e„; to
achieve this, however, the electron has to acquire a

"M. Born and V. Fock, Z. Physik 51, 165 (1928). See also P.
Guttinger, Z. Physiit 73, 169 (1931);R. C. Tolman, Principles of
Statistical Mechanics (Oxford University Press, Oxford, 1938), p.
395 ff., or I . I. Schiff, QNantlm Mechanics (McGraw-Hill Book
Company, Inc. , New York, 1949), p. 207 6.
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In view of (2.19), the last term of (4.2) can be written
as:

(p„x„„'AVgdRdr )—x „')De„+AVr AV—r jdR. (4.4)

Using the properties of the Hermite function, i.e.,

{x-I»-(k)
I x-}=0, (4 5)

FIG. 1. Plot of UI and VI+&„against XI,. Note the shift in
the minimum.

slightly additional kinetic energy of readjustment. In
the static approach the electron does not adjust itself to
the position of the nuclei, hence acquires additional
potential energy. The question as to what is larger de-
pends on the depth of the potential well and the
amplitude of the vibrations, which are determined pri-
marily by V&. We shall make detailed calculations on a
simple model in Sec. 5.

4. COMPARISON OF THE TWO APPROXIMATIONS

In this section, we shall calculate the integral

{(qXIHI ~)} for both approximations, using the im-

perfection model. The criterion suggested in 3 can
then be applied.

A. Static Approximation

Using (2.17) (but denoting the kinetic energy of the
electron by T, and omitting the argument R„of p) and
the eigenfunction associated with static approximation,
we obtain

@a {(Pnxyyv I
If

I Pyyxnv)}

we may write expression (4.4) in terms of two factors,
namely:

~'(~-(R-)
I V2(R) I ~-(R-))

S,
Bx (k) Bxp(k')a, P, k, k'

x{x„.I»„(k)»p(k') Ix.„} (4.6)
and

c)'(e„+Vr) O'Vg
S2=-',

, p, ),)' Bx (k)Bxp(k') c)x (k)Bxp(k') z„

X{x„I» (k)»p(k')Ix„„}. (4.7)

(c)'(e.+V&) ) f' c)'Vr
$2 ( Bx '(k) ) z„(BX'(k)] z„

x{x..I
».'(k)

I x..}. (4.8)

The first part is just the average potential energy of the
ion along X (k), for c)'(e,+Vr)/Bx '(k) equals 4~'Mv„'.
Since the average square of the displacement is
-', (2e+1)/y (where y=27r3fv„/A), 'r the erst term of
(4.8) equals 4 (2@+1)hv . To evaluate the second part of
Sq, we refer to Fig. 1, where e +Vr and V) are plotted
against X (k). It follows that

First, let us consider the meaning of S2. We consider
an Einstein model of a solid and pick one term in the
sum; namely,

~
~„*X.„*[T,+T+V,+V

Now adding and subtracting

c)'(e +Vr)
AX.(k)»p(k')

M, P, ),)' BX ( )kXc)(p)kz.
to the operator, it follows that:

~(»v)3 c)'Vr/Bx '(k) =4m-'Mv', (4.9)

where v is the frequency when the imperfection is
ionized. Actually, in (4.8), O'V&/Bx '(k) is evaluatecl at
R„determined by (2.19), not from BV&/Bx (k)=0.
Since this shift is very small, it will be disregarded.
Hence, the second term of (4.8) is 4 (2t)+1)hv'/v„and,
to a good approximation,

+(PM{XMv I
ke

I Xyyv} 'Pn)

where
s2 ——-', (2t)+1)hv(),

5= (v„—v)/v.

(4.10)

(4.11)

t)'(e„+Ur)
+(y. x- &y+&ys —-'*x

a, p, ):,)y' ()X (k)c)xp(k') a„ sg= (~hv+kT)b, (4.12)

Above the Debye temperature, the average value of this
expression becomes

where
6V;= V;(R)—V;(R„).

"This statement can be checked by referring to the develop-
XAX (k)SX (k) y„y, y„), (42) tbyM. M g 1 G. M. M yhy, Th M M

Physics end Chemistry (D. Van Nostrand Company, Inc. , New
York, 1943), pp. 122 and 342. In the notation of that book, Kq.
(11 41), (x„,~aX '(k) (x,}= 1'4'(x)X'dx=-,'(2v+1)/y. We have

(4 3) replaced their P by &.



M ULTI P HONON P ROC ESSES 593

where T is the temperature and k in this equation is
Boltzmann's constant.

On the other hand, S1 contains the additional po-
tential energy which arises because p„(R„) does not
follow the motion of the nuclei.

Substituting (2.18), (2.20), (4.6), and (4.7) into (4.2),

H, =p„(R„)+Vg(R„)+e.+Sg—Sp. (4.13)

e~ (ev)

13.6
1.36
0.236

1
0.326
0.1

$1
(v =0)

0.22
0.0022
0.000022

Sy
(v =1)

0.66
0.0066
0.000066

St
(v =2)

1.1
0.011
0.00011

TABLE II. Values of SI for various binding energies.

2M»4 v -*(R)x-*(R)

Further,
XPV~y. V~x .+x .Va'v ]«dR (4 14)

H, =p„(R„)+Vg(R )+) x .* T+
a, P, k, k'

8'(p +Vg)
~

~X.(k)~X, (k') x..dR
(BX (k)BXp(k')) z

Now consider the adiabatic approximation. Here

H.=((~-x-I ~.+2'+V (R)+V (R) I ~-x-))
=&x I .(R)+V.(R)lx-)+&x I~lx-&

gs g
q ~(R„,r) = —exp r-—

(vrap') '* cp
(5.1)

on several previous occasions. Indeed, Pelzer and
Wigner" based their often-referred-to calculations on it.
Of course more elaborate calculations would be desirable.

We assume that the impurity is a foreign nucleus
whose effective charge is qe (q will be varied so as to
change the binding energy of the center) and whose
mass is 30 M„(M~ is the proton mass). Further, the
impurity is assumed to vibrate along the Z axis about a
rest position at Z=O. The rest positions of the sur-
rounding ions are determined from (2.19).They appear
implicitly in the value of q.

Consider first the static approximation. The nor-
malized wave function of an electron in the ground state
is

q„Vg y„dr dRf
2M I

where a=@'/me', the Bohr radius, and r is measured
from R„.Substituting into (4.6)

S =l(x .l(~Z)'Ix .)
p *Vga„dr dR. (4.15)x„„*VI,x„„.

M
—eq

pP(r) d7.„ , (5.2)
2BZ Lx+y+(s Z) $If y„ is real and normalized, J'q„*V~@„dr=0;hence,

the last term in (4.15) drops out. Finally, one obtains where dr, is an element of volume in r space. Substi-
the desired expression, tuting s1 for s—Z, we obtain

where
H= p„(R„)+Vg(R„)+p,+D,

f
D= x„„' p„*Ty„dr dR

(4.16)

(4.1"/)

8
S,= —-', (AZ') „„qe'

mao' BZ'~ ~ r

Xexp—
—2g

$x'+y'+ (s~+Z)')~ 2nr' sinMOdr

Equations (4.13) and. (4.16) are exact for harmonic
vibrations, so one needs only to evaluate D and the S's,
to use the suggested criterion. This will be done in the
next section for a very simple model.

Qp

2 e'q4
=——(2 Z')A,

3 boa

- Z=O

TABLE I. Values of SI for various o's.

(~z')Av

1/2y
3/2y
5/2y

(~Z &A 4.
0.058
0.10
0.13

S1 (ev)

0.22''
0.66''
1.2q4

5. SIMPLIFIED MODEL OF AN IMPURITY CENTER

A. Evaluation of the 8 and D

We shall use a "hard hydrogenic impurity" to
evaluate the S and D. This crude model has been used

=65q4(AZ') A, . (5.3)

In the final expression, S1 is in ev, while dZ is in
angstroms.

One may obtain the results given in Table I for S1 by
using an average square displacement. For our model,
v =5X10' sec 'andp=148A .Thebindingenergyof
the center is given by e„=13.6q' ev. Hence, the relation
between $1 and e„ is as shown in Table II.

The author believes that one is justi6ed in setting
S&——0 for the reason that the s's of Eq. (4.8) are sma, ll
and of both signs. The wave function (5.1) is too crude
an approximation to show this. We shall shortly return
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to this problem in an attempt to justify this statement.
Hence, 5» of Table II gives the

difference
between

P, and s„(R„)+s„+Vg(Z„).
We now turn to the adiabatic approximation. To

evaluate D of Eq. (4.17), Eq. (5.1) is replaced by

IONIC CRYSTAL

q
y = exp Lx'+y'+ (s—Z)'j . (5.4)

(~as') ~ a'

It continuously adjusts itself to the position of the ion.
Substituting into (4.17):

—5'q' i' —
qD= y., dZ ' exp Lx'+y'+ (s—Z)']'* t

2g a, ~ la, t

Q2 g
X p' - L*'+y'+ ( —Z)']' (5 5)

aZ ta,

Sy the proper selection of dr „one may evaluate the
expression by elementary means, and one obtains

D= s(e/as)(m/M)q'=8. 3&(10 'q' ev. (5.6)

C5

W

LU

I

DISTANCE FROM IMPERFECTION

It may seem a little surprising that D is independent of
the quantum state of the vibration energy. This

seems to arise because we are using a hard hydrogenic
impurity, and thus (q„(R) t WPt q(R)) is independent
of R.

In Fig. 2, we have plotted D and 5» against q or e„.
We shall discuss the curves in the conclusion of the
paper.

0

F'o. 3. Plot of (p&t Vlt p&) and (8/BR k)(q»

Vasty&)

against Rq
for an ionic crystal. The lower curve indicates that 8 changes signs
for small q's.

B. Equilibrium Position and Frequency Shifts
for Ionic Crystals

An attempt will now be made to estimate the shifts in
the equilibrium positions and in the frequency caused
by the trapping of an electron at an imperfection. The
calculations will be limited to ionic crystals.

Consider a negative ion located at a distance R J, from
the center. It is convenient to subdivide V2 further into
V3, the potential caused by this ion, and V4, the
potential resulting from all the other ions. Using (2.16),
we may write

CQL
lal

lat

O
tO
O

«4 o'F~' 8 BV» 8V3
(s-+ Vl) = + p1 p1

BRk BRI, M J,

8U4
+ p' —pt (5 7)

aR,

-IO

BINDIMG

LOGIOq ~ -2

ENERGY ~ 0.0000I58
IN eV

O.OOI38 O.OI38 (Ll36 LIB

FIG. 2. Plot of log&051 and log10D against logq.

Since only radial displacements are going to be con-
sidered, X (k) is replaced by Es. The last term is zero,
since V4 is independent of RI,. The first term should be
evaluated when the surrounding ions are at their equi-
librium positions; hence, it depends on p„and varies
with the state of the electron. To obtain an order of
magnitude value, we shall ignore this variation. If the
dependence of q on R~ is also neglected, we obtain the
following relation for the equilibrium position of the
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kth ion: and make no allowances for changes of q~ with R.
Hence,

(5.8) 82
8 ~BV~q

BRA, (BR) By 4~'Ml v'(1+5)' —v']=

(peal

V3I pg), (5.15)
BRk2

(~il V3l v i)
Sm'v2M 8E.A.

'

g2f $2f
q'—= 15.8q3

8~2v2~g 3 gp2 gp2
(5.16)

(~~ I v3I ~~)= (q~/«)f(qR/«)

for our model, where

(5.9)

In Fig. 3, we have plotted (y~IValy~) and (&'/8Ra')
X(&p~l Val y~) against Rq for a negative ion. Equation
(5.16) and Fig. 3 indicate that for large q's, 5 is always
positive but may have either sign for smaller q's and
R's. Figure 4 gives 6 as a function of q for several values
of Ryg.

Returning to Eq. (4.12) and assuming that only the
radial modes vary, the following equation is obtained
for 52.'

1
f(~) =-L1—(1+p)e "j.

p
(5.9a)

Using a very simple Einstein ion model, where one of the
ion's vibrational modes is radial, we obtain

V~ ——~cVcv'(hRq)'+const. (5.10)

The left-hand term is evaluated at the rest position in or for
the trapped state.

Equation (5.1) reduces the evaluation of (y I
Va

I y )
to an electrostatic problem of calculating the potential
at a point in a nonuniformly charged sphere. The
calculations give

—q' e' Bf Bf
r k = ——= —1.6.7q2—,

Mco Go Bp Bp
(5.11)

in angstroms. The value of f(p) does not depend critically
on very small displacements; hence, it can be evaluated
at the equilibrium position of either the trapped or
ionized states.

Next, we would like to evaluate 5 of Eq. (4.11).From
Eq. (2.20):

$2 V

AR~ is the radial displacement from the equilibrium
position for the ionized state. It follows from (5.8) that
the shift in the equilibrium position, rA, , is

S2——(-', hv+kT)Q g 6A, (5.17)

where k is summed over all the ions. In Table III, we
give 5 and g 5 as a function of R~ for q=0.316.

Equation (5.16) applies to a negative-ion and a
trapped electron. The table assumes that an electron is
trapped at a negative-ion vacancy (F-center); hence,
the ions in the sites 100 are positive, This is the reason
for the negative sign. The last column is the product of
the number of ions times the 6's. The sum of all the 6's
shown is +0.032. If we include all the 280 positive and
negative ions within a radius of g(17), the sum is

and

4X2V2M = (5.12)

4m'vPM= (Vg+e ).
BRg2

(5.13)

Now 8'c„/BR~' is composed of two effects. One arises
because the 4th ions move relative to the center, while
the second occurs because the electron wave function
changes with changes in R~. Accurate estimates of
B~e&/BR&' thus require detailed calculations. As a crude
estimate, we shall set

0.0

R~2
52

R~5

lp I
V

I p,),
BEk l9Ey

(5.14)

Ion No. of ions

TABLE III. Values of 8 for ions surrounding a center.

-044.
—I.4

BINDING

ENERGY

1St eV
O.I56 I+OS

-LO LO61oq ~ -CL5

l5,6

100
110
iii
200

6
12
8
6

—O.GN
+0.047—0.032
+0.023

—0.410
+0,560—0.257
+0.139

FxG. 4. Plots of frequency shift against binding energy for
various Ry,. The curve marked R= 1 is for the nearest neighbor.
The curve marked 8=2 is for the 200 ion; there are 32 ions within
this distance. For simplicity 8 has been assumed to be positive for
large binding regardless of the sign of the ion.
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O.R5
NON IONIC CRYSTA{.

X

o O.I5

I
R

OJO
DISTANCE FROM IMPKRFKCTIOht

R~3
l22

I4 -I.O LOG(o q -05 0.0

BINDING,

ENERGY

IN eV
O.I36 L36 t3.6 ~g

I

M
Ia0

FIG. 5. Plots of displacements of ions during trapping against
binding energy for various R&. The notation and sign convention
is the same as in Fig. 4. The relative displacement is the displace-
ment in distances of nearest neighbors which was assumed to be
2.8 A.

—0.086. For a NaC1 lattice, the number of positive ions
within the radius happens to equal the number of
negative ions."The calculations seem to indicate that
the sum over an equal number of positive and negative
ions is about &0.05.

The sums would have the opposite sign if the electron
were attached to a divalent ion at a positive-ion site.
This gives a value of &0.001 ev for S2, which is smaller
than Si for the same value of q. We have set ',hv+kT-
=0.025 ev.

For q=0.1, the sum over the same set of ions is
&0.013, giving a value of &0.0003 ev. 0 one neglects
kT in (5.16) (low temperature) and sets isbn=0. 01, the
value is 0.00013 ev, which is larger than the corre-
sponding Si even for n=2. This seems to reflect the
oversimplified method used to obtain the results. The
contributions of the nearer ions to the sum of 5 is most
important and they depend on the second derivative of
the electronic distribution. Thus, changes in q will

greatly eGect 5 and S2. We also note that a terin was
omitted in order to obtain Eq. (5.14). The author
suspects that correct calculations will always give
H,)e„+e., and that Si will always be the leading term

These incomplete arguments are the justification for
omitting S2 and for relying on Fig. 2, which most
probably indicates a trend, although its details are not
to be taken seriously.

ln Fig. 5 we have plotted r~ against q for several
values of RI,. The values seem to be larger by a factor of
about two when compared with similar calculations

' There are two sets of 24 ions at a radius of g(17) from the
center, namely, the 410 and the 322 set. The above statement is
true only if one set is omitted.

Fis. 6. Plot of (q ~
~

Vs~ y~) and. (S'/SRr. ')(y~ ~ V~~ q ~) against Rq
for a non-ionic crystal. The lower curve again indicates that the
8's change signs for small q's.

made by Mott and Littleton, "Williams, "or Markham
and Seitz."This is not surprising since no allowance is
made for the readjustment of the surrounding lattice.
While Fig. 5 gives an estimate of the displacements, its
reliability is not greater than a factor of two or three.

The estimation of rA, , 5, and 52 for a non-ionic crystal
seems more difficult. The electronic field polarizes the
atom, and one might suspect that (q ~

Vs~ q „)would be
proportional to the square of the field due to the electron
cloud. Hence, in Fig. 6 we have plotted the square of
this field and its second derivative against R~. The s s
are again of both signs. Since the s's are much smaller
(although D and Si are not) one is probably justified
again in neglecting S2.

O. CONCLUSION

We may summarize this paper with the following
conclusions:

1. The wave function chosen for the electrons in a
solid determine the perturbation potential to be used.
Although in principle this can be done in an infinite
number of ways, only two types of approximations, the
"adiabatic" and "static, "have been used extensively in
the past. There seems to be nothing in the literature to
justify the assumption that one approximation is
"exact."

2. Equations (2.7b) and (2.8b) are the expressions
which enter into a perturbation scheme for the inter-

N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485
(1938); F. E. Williams, J. Phys. Chem. 57, 780 (1953); J. J.
Markham and F. Seitz, Phys. Rev. 74, 1014 (1948).
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action of electrons and phonons. Note that the last term
of (2.7b) usually does not appear

3. The adiabatic approximation overestimates the
kinetic energy, while static approach overestimates the
potential energy.

4. Electron transitions affect the equilibrium posi-
tions of the ions and the frequency of the normal modes.
One cannot, in general, justify the consideration of these
eGects independently.

5. The splitting of the Hamiltonian leads to several
mathematical difhculties. The static approximation
gives non-orthogonal wave functions while the adiabatic
gives non-Hermitian operators.

6. The adiabatic approach is superior for deeper
traps. A rough estimate indicates that it should be used
when the binding energy is greater than 0.1. ev.

7. For very shallow traps the static approach may be
superior at low temperatures. Actually, the difference
between the two for depths of about 0.1 ev or less is so
small that there is little choice, and other approxima-
tions made in a calculation will be of greater importance.
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Transitions between the hyperfine structure levels of the rotational state of Li'Cl with 1=1 were studied
by the molecular beam electric resonance method. The electric quadrupole interaction constant, (eqQ)c&,
and the spin-rotation interaction constant, t, ql, of the chlorine nucleus, and the product of the square of
the molecular dipole moment, p, , and moment of inertia, A, were determined in several different vibrational
states. These constants, and the ratios derived from them are:

for Li'Cl3' v=0 8=1 8=2
(eqQ/h) oz (kc/sec) —3071.72&0.61 —3479.3+1.7 —3873.0&1.8
c/hcz (kc/sec) 2.07+0.10 2.22+0.20 2.19+0.21
p'A (X10"cgs) 1774.26&0.28 1840.26+0.40 1909.3+0.6
for Li6Cl3'

(eqQ/h) cz (kc/sec) —2736.6+5.4 ~ ~ ~ ~ ~ ~

c/hoz (kc/sec) 1.60+0.34 ~ ~ ~ ~ ~ ~

@~A (&(1076 cgs) 1854.9~0.6 1924.7+0.7 ~ ~ ~

'v=3
—4250*11

~ ~ ~

1980.6+0.9

—2419.9+2.4
1.88~0.30

1788.24a0.40

(sqQ) o&"/(sqQ) oz" 1.2694&0.0013 1.2714+0.0025 ~ ~ ~ ~ ~ ~

pe (LisCPz)/&sA (Li~CP~) 1.00788+0.00027 1.0081&0.001 ~ ~ ~ ~ ~ ~

The random errors in p'A are given in the foregoing. The systematic error was ~1.1)&10 "cgs.
The vibrational constant, ao„was found to be 536+60 cm from a study of line intensities. The magnetic

field at the chlorine nucleus, IIg, was calculated to be 4.96~0.23 gauss from col for Li'CPS in the zeroth
vibrational state. p, and the internuclear distance, r, were found from beam de6ection data to be 5.9&1.3
Debye units 2.4~0.4 A, respectively.

A static electric field was used to study the Stark eGect. %hen the static field was weak or absent, line
frequencies were found to depend on the magnitude of the radio-frequency 6eld used to produce transitions.
This eGect is termed "radio-frequency Stark effect." A theory for this effect was developed and accounts
for the observations.

INTRODUCTION

ADIO-FREQUENCY spectra of Li'CP' and Li'CP'
were studied by the molecular beam electric reson-

ance method. ' ' Transitions were induced between the
*This work was supported in part by the Oflice of Naval

Research. Reproduction in whole or in part is permitted for any
purpose of the United States Government.

t Present address: General Electric Research Laboratory,
Schenectady, New York.' H. K. Hughes, Phys. Rev. 72, 614 (1947).

~ J. W. Trischka, Phys. Rev. 74, 718 (1948).' Lee, Fabricand, Carlson, and Rabi, Phys. Rev. 91, 1395 (1953).

electric hyperfine structure levels of the rotational
state with J=1 by an oscillating 6eld applied in the
region between two inhomogeneous fieMs which selected
the initial and final states to be observed. Stark eGect
was produced by a static electric field superimposed on
the oscillating field.

Two nuclear-molecular interactions, the electric
quadrupole interaction and the spin-rotation interaction
of the Cl nuclei, were required to explain the observed
spectra. The product of the square of the molecular


