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The diffuse scattering of monochromatic x-rays by a single
crystal of aluminum at 300°K has been measured along seven
lines in reciprocal space. Analysis of these data in terms of the
Laval-James theory has yielded dispersion curves for elastic
waves propagating along the three primary symmetry axes. By
interpreting these dispersion curves in terms of the Born theory of
lattice vibrations, values have been obtained for the nine force
constants necessary to describe the general first-, second-, and
third-neighbor interactions. These force constants have served as

criteria in rejecting the simpler models of atomic interactions
generally employed.

The secular equation containing these nine force constants has
been solved for the eigenfrequencies of 2791 wave vectors by
machine computation. These solutions served to establish an
approximate frequency spectrum of the normal modes, in which
the singularities caused by the critical points are explicitly in-
cluded. From this spectrum the specific heat is calculated. A
comparison with measured specific heats shows the need for the
inclusion of anharmonic terms in the theoretical approach.

INTRODUCTION

HE early theory of lattice vibrations developed by
Born and von Kirmin' has been generalized
and extended by Born and his colleagues.?® In this
general theory the equations of motion of the atoms in
a lattice are developed in terms of harmonic tensor
interatomic forces. Solution of the equations of motion
in terms of plane wave normal coordinates leads to a
secular equation relating the eigenfrequencies to the
wave vectors of the traveling waves. An approximate
spectrum of the frequencies of the normal modes can
be obtained from the secular equation by several
methods,*7 and from such a spectrum the lattice
specific heat may be calculated in the usual way.

A primary problem in applying this general theory to
specific lattices is that of evaluating the interatomic
force constants for the particular lattice. If only elastic
constant data are available, restrictive assumptions
must be adopted concerning the nature of the inter-
atomic forces in order that the number of nonzero
force constants required by the theory not exceed the
number of elastic constants. Thus the usual practice®8
in studying monatomic face-centered-cubic crystals has
been to assume that the interatomic forces are central
and limited to first and second neighbors, these requir-
ing only two force constants. In comparison, the general
theory requires three constants to describe first-
neighbor interactions, two more to include second
neighbors, and four more to include third neighbors.
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In the absence of experimental verification, the validity
of these restrictions must be questioned.

X-ray diffuse scattering measurements offer a means
of obtaining further data and thus a less restricted
evaluation of these interatomic forces. Measurements
of the intensity of the diffuse scattering of mono-
chromatic x-rays by single crystals along particular
lines in reciprocal space, after certain corrections, can
yield directly the dispersion curves for the elastic waves
propagating along the primary crystallographic axes.
This method has been followed by several investiga-
tors® ™ in studies of monatomic and diatomic crystals
of cubic symmetry. One can extend this procedure to
allow the determination of the general interatomic
force constants by matching appropriate solutions of
the secular equation to these measured dispersion
curves. In this manner Curien? and Jacobsen®® have
determined the general force constants for first-,
second-, and third-neighbor interactions in a-iron and
copper, respectively. Joynson'* has used a similar
method to study force constants for the hexagonal
lattice of zinc. In the following sections we shall review
briefly the theory of this approach, paying particular
attention to the necessary and often important correc-
tions, and then apply it to a study of the lattice vibra-
tions in aluminum.

DIFFUSE X-RAY SCATTERING

The theory of the diffuse scattering of x-rays arising
from the thermal motion of the atoms of a lattice has
been developed by Laval'®'® and repeated in a some-
what different form by James.'” Within the harmonic
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oscillator approximation it is shown that the intensity
of this scattering can be expressed as a series of terms,
of which generally only the first three contribute
appreciably. The first term, the first-order scattering,
describes the intensity of the scattering in which a
single phonon is involved. Similarly, the second- and
third-order scattering terms describe the intensity of
the scattering in which, respectively, two and three
phonons are involved.

The first-order scattering in electron units per atom
for a monatomic cubic crystal is given as

foze—zM S|? s E,; COS2asj
I(g)= - , 1)
m A =1 V,,jz
where
Eoj=hvoi{[e"oi*T —1]7+3}. )

I,(g) is the intensity at a point in reciprocal space a
vector distance g from the nearest reciprocal lattice
point; fo and ¢72¥ are, respectively, the atomic scatter-
ing factor and the Debye temperature factor; m is the
atomic mass, and S/A is the diffraction vector, the
difference between the wave vectors of the diffracted
and incident x-rays. The sum over j is taken over the
three independent elastic waves having the same wave
vector g but different directions of vibration; v,; is the
frequency of the jth such wave, ag; is the angle between
its eigenvector and the diffraction vector S/A, and E,;
is its mean energy, which at room temperature may be
significantly greater than the equipartition energy, 7.

This expression takes a much simpler form when the
elastic wave vector g lies along one of the primary
symmetry axes of the crystal, since such waves are
characterized as being either pure longitudinal or pure
transverse. Thus, the first-order scattering for S/A (and
hence g) along a [100], [1107, or [111] axis is
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m
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and from this scattering one can determine directly the
dispersion curves for these longitudinal waves. In a
similar manner, dispersion curves for the transverse
waves propagating along these directions can be deter-
mined from the first-order scattering along other par-
ticular lines in reciprocal space parallel to these axes,
taken together with a knowledge of the dispersion of
the corresponding longitudinal waves.

The above discussion describes the basis of the x-ray
approach to the study of lattice vibrations. For a
monatomic face-centered-cubic lattice, knowledge of the
first-order scattering along seven particular lines in
reciprocal space is sufficient to determine directly the
dispersion curves for the longitudinal and transverse
waves propagating along the three primary symmetry
axes. Then by matching appropriate solutions of the
secular equation to these experimental curves, one can
evaluate the various interatomic force constants.
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The scattering measured experimentally contains
not only this first-order scattering but also the second-
and third-order scattering and the incoherent Compton
scattering. These other contributions must be either
calculated or measured separately. It is in the evalua-
tion of these correction terms, whose sum may often
exceed the first-order scattering, that one finds a major
source of error of this method.

The second-order scattering arises from processes in
which pairs of phonons are involved. The intensity of
this scattering at a point X in reciprocal space contains
contributions from all pairs of elastic waves whose wave
vectors, when added, extend from any reciprocal lattice
point Q to the point X. Quantitatively
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where v is the volume of the primitive unit cell. The
indexes 7 and j refer to the three modes of vibration of
the two waves whose wave vectors extend respectively
from Q to dV¢x and from dVg¢x to X. The integral
extends over the volume Vgx common to first Brillouin
zones centered on Q and X.

A rigorous calculation of this scattering cannot be
made, since it requires in advance a complete knowl-
edge of the eigenfrequencies and eigenvectors of all the
elastic waves. One must depend on approximate calcu-
lations based on plausible yet simple assumptions as to
the nature of the various waves. Olmer® developed a
first approximation in which the crystal is assumed to
be an ideal isotropic continuum, wherein all elastic
waves have the same mean velocity. It may be expected
that the assumption of isotropy will not cause a large
error in these calculations. However, the neglect of
dispersion and the characterization of both longitudinal
and transverse waves by the same average velocity
seem physically unrealistic and are capable of causing
large errors. Thus a new calculation of this scattering
was carried out in which the basic assumptions included
dispersion according to a simple model and allowed
differentiation of the longitudinal and transverse
modes. Details of the calculation are given in the ap-
pendix. The intensity of the second-order scattering
calculated in this way is significantly greater than that
calculated from Olmer’s approximation, particularly in
the regions of reciprocal space where the first-order
scattering is a minimum. The ratio of the second-order
scattering to the first-order scattering, a maximum in
such regions, is as much as 609, in the case of aluminum.

The third-order scattering, arising from processes
involving three phonons, is much smaller in intensity.
Little error is caused in this case by neglecting dis-
persion and associating an average velocity with all
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elastic waves. Details of this calculation are contained
in the article by Olmer.® In the present study, the ratio
of the third-order scattering to the first-order scattering
has a maximum value of approximately 6%,.

The incoherent Compton scattering may form a large
fraction of the total measured scattering, as was the
case in the present study. The usual procedure in
evaluating the intensity of this scattering has been to
employ values calculated theoretically, such as those
tabulated in Compton and Allison,'® but Laval® has
shown that these can be seriously in error. A reliable
knowledge of this intensity can thus be obtained only
from experimental measurements. The values of this
intensity employed in the present study were deter-
mined experimentally ; the procedure employed and the
results obtained are discussed in a separate paper.? We
will note here only the fact that the measured intensity
of the Compton scattering was considerably lower than
the theoretical values, in agreement with the results of
Laval.

SECULAR EQUATION

In order to describe the general interactions between
an origin atom and its first, second, and third neighbors
in a monatomic face-centered-cubic lattice, a total of
nine force constants are required. The secular equation
for this lattice can be written in determinantal form as

| D(g)—w*I|=0. ®)
The elements of D(g) are?
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S;=sinrg;, C;=cosrg;,

Sz,'= sin21rg¢, C25= C0521rg,~.
The quantity  is the angular frequency of the elastic
wave of wave vector g=gibi+gobo+gsbs, where b; is
the 4th reciprocal lattice vector; |b;|=a", where @ is
the real lattice constant. I is the unit matrix. The sub-
scripts on the force constants, denoted by Greek letters,
indicate the shell of neighboring atoms involved. These
force constants are the second derivatives in a Taylor’s
series expansion of the total potential energy of the
lattice. The particular meaning of each can be inferred
from the more detailed notation given in Table I. In
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the particular case of central forces, ay=7v1, B1=82=0,
and a3=233=4‘ﬁa=4’73.

In the limit of long wavelengths, a comparison of the
secular equation with elasticity theory yields the fol-
lowing relations:

aCrn=4on+4as+ 16034 883;,
aCy=201+201+462+4az+208s, 6)
a(C1a+Caa) =4y1+8v3+326;.

EXPERIMENTAL PROCEDURE AND RESULTS

Aluminum single crystals were grown from a melt of
aluminum of 99.999, purity by the usual Bridgman
technique. Flat specimens were cut from these crystals,
generally with faces parallel to (100) planes. These
faces were prepared by mechanical polishing, etching
in an aqueous cupric chloride solution, and electro-
polishing in a solution of one part HNO; to two parts of
alcohol. Each crystal was examined both by the stand-
ard Laue method and by the special technique de-
veloped by Schulz.?? The crystals accepted showed an
angular spread of domains of less than ten minutes of
arc.

Diffuse scattering measurements were made along
seven lines in reciprocal space at room temperature,
approximately 300°K, using CuKe radiation from a
G.E. CA-7 tube powered by a full-wave rectified
source at 50 kv and 16 ma. The radiation was
monochromated by a toroidally bent LiF crystal
so oriented as to focus the diffracted beam at the face
of the specimen. Higher frequency harmonics passed
by the monochromator were eliminated from the re-
corded scattered radiation with a balanced nickel-
aluminum filter placed before the Geiger counter
detector. Horizontal and vertical divergences of the

" primary beam were 4=1°. The single crystal specimen

was mounted in a vacuum chamber, thus eliminating
air scattering and minimizing the growth of the oxide
film on the crystal. The face of the crystal was so
oriented as to maintain equal angles with the incident
and scattered beams, thus keeping the absorption cor-
rection angularly independent. The average counting
time at any point in reciprocal space was approxi-
mately one hour for the nickel filter readings and 13
hours for the aluminum filter readings. The measured
intensities were normalized to absolute units by the
standard technique of comparison with the high angle
scattering from amorphous substances. Paraffin, Lucite,
and fused silica were used as amorphous materials, the
interference function of the last named being found
from a separate experiment with MoKe radiation. The
three normalizations were internally consistent to
better than 19, on using an experimentally measured
value for the absorption coefficient of carbon.?

21, G. Schulz, J. Metals 6, 1082 (1954).
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with the value of 4.15 cm?/g reported recently by D. R. Chipman,
J. Appl. Phys. 26, 1387 (1955).
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Fi6. 1. Measured intensities along the [100] axis. The dotted
curve joining the solid circles gives the results of Olmer, and the
solid curve joining the open circles gives the present results. The
abscissa is measured in units of the reciprocal cell edge, |b]|.

In the interpretation of the measurements, values for
the atomic scattering factor were taken from the
calculations of James and Brindley,* with a Honl
factor of +0.18, as checked by the measurements of
Brindley? and Brindley and Ridley.2® The Debye tem-
perature factor was based on an x-ray @p of 402°K,
checked by measurements on a low-temperature spec-
trometer; this value is 29, lower than that derived
from the results of James, Brindley, and Wood.?” Values
for the elastic constants were taken as the mean of the
values reported by Sutton,® Lazarus,® and Long and
Smith.%

The measured intensities along the [100] axis in
reciprocal space are compared in Fig. 1 with the corre-
sponding data obtained by Olmer.® The peaks found by
Olmer at the (300) and (500) positions are not found in
the present measurements. It is believed that these
peaks were caused by Bragg reflection of a \/2 com-
ponent in the primary beam and are not to be associated
with the diffuse scattering.®

The first-order scattering along this axis was analyzed
with Eq. (3) to give the experimental values for the
dispersion of the [100] longitudinal waves plotted in
Fig. 2. These values taken together with the measure-
ments along the line from the (400) to the (420) re-
ciprocal lattice points gave the values for the dispersion
of the [100] transverse waves also plotted in Fig. 2.
Similarly, measurements along lines from (222) to
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that this is the probable explanation of these peaks, for such a
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(333) and from (222) to (311) gave the values for the
dispersion, respectively, of [111] longitudinal and
transverse waves plotted in Fig. 3. Values for the dis-
persion of the [110] waves plotted in Fig. 4 were ob-
tained from measurements along the lines from (220) to
(29/8, 29/8, 0) (longitudinal), from (400) to (19/4,
19/4, 0) (transverse No. 1, €||[[0017]), and from (13/4,
11/4, 0) to (19/4, 5/4, 0) (transverse No. 2, e[[1107).

An internal check on the validity of these data was
made by comparing the limiting long-wavelength ve-
locities extrapolated from these measurements with the
velocities calculated from the elastic constants. Agree-
ment within several percent was obtained for all except
the [111] longitudinal waves, which gave an extrapo-
lated velocity that was low by 7%. In view of the
length of the extrapolation involved, this agreement is
quite satisfactory.

These measured dispersion curves must be compared
with the results of the x-ray investigations of Olmer®
and Robert® and the neutron investigation of Brock-
house and Stewart.® After elimination of the effects of
the false peaks, the values of » vs g found by Olmer for
the [100] longitudinal waves are somewhat greater than
the present results, but the difference is within the
combined errors of the original intensity measurements.
Olmer’s values for the [100] transverse waves are gen-
erally smaller than the present results, the greatest
difference being about 159,. This difference is found to
be due primarily to the different calculations of the
second-order scattering correction, which have been
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F16. 2. Dispersion curves for elastic waves propagating along
the [100] axis in aluminum. The measured data for the longi-
tudinal and transverse waves are shown, respectively, by the solid
and open circles. The smooth curves represent the fitted solutions
of the secular equation.

8 H. Robert, Bull. soc. frang. minéral 78, 535 (1955).
(1;35];5 N. Brockhouse and A. T. Stewart, Phys. Rev. 100, 756
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discussed in a previous section. Robert has recently
reported on measurements of the dispersion of [111]
longitudinal elastic waves. His results are completely
different from the present values, showing for example
a maximum frequency in this direction of approxi-
mately 0.50X 10 cps as compared with the value of
0.94X10% cps found here. This disagreement can be
traced to differences-in the original intensity measure-
ments, Robert’s measurements being as much as 509,
greater than the intensities measured in this study. We
must conclude that there has been an error in the
original measurements of Robert, since the present
measurements were checked by separate measurements
made on a second crystal with faces cut parallel to
(111) planes, and there was agreement to within a few
percent. Furthermore, a second check is offered by the
measurements of Brockhouse and Stewart ; their values
for the dispersion of a very-short-wavelength [111]
transverse wave and for a short-wavelength longi-
tudinal wave whose wave vector is near the [111]
axis agree within a few percent with the present results.

Solutions of the secular equation for waves propagat-
ing along the symmetry axes were then matched to
these experimental points so as to give the best over-all
fit and at the same time agree with the limiting » vs g
relations determined from the elastic constants. The
smooth curves of Figs. 2, 3, and 4 represent these
fitted solutions. The rather large scatter found in the
experimental points for the short-wavelength longi-
tudinal [111] and [110] waves clearly illustrates the
magnification of errors that can arise during the sub-
traction of the correction terms. The largest deviations

an
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F1c. 3. Dispersion curves for elastic waves propagating along
the [111] axis in aluminum. The measured data for the longi-
tudinal and transverse waves are shown respectively by the solid
and open circles. The smooth curves represent the fitted solutions
of the secular equation.
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Fi1G. 4. Dispersion curves for elastic waves propagating along
the [110] axis in aluminum. The measured data for the longi-
tudinal wave are shown by the solid circles, the data for the trans-
verse wave T whose eigenvector is parallel to the [001] axis are
given by the open circles, and the data for the transverse wave
T, whose eigenvector is parallel to the [110] axis are given by the
solid triangles. The smooth curves represent the fitted solutions
of the secular equation.

in these cases could be due respectively to errors of
23% and 49, in the original intensity measurements.

The interatomic force constants obtained from these
fitted solutions of the secular equation are listed in
Table I under the heading 4. The model of the inter-
atomic forces employed here has required only that
interactions beyond third neighbors be negligible. Also
included in the table are the force constants for three
more restricted models as evaluated from the x-ray
and elastic constant data. The physical restrictions
made for each model are listed in the caption.

An analysis of the errors has been carried out in
order to evaluate the accuracy of the values determined
for the nine force constants of the most general model.
The quantities actually obtained from the fitted dis-
persion curves are the values for nine linear independent
equations involving the various force constants. The
standard deviations for these values have been found
from a calculation based on the scatter of the experi-
mental data combined with an estimate of the errors
in the correction terms. The propagation of errors as
these simultaneous equations are solved for the force
constants then determines the accuracy with which any
one constant is known. The results of the calculations
are as follows: The relative error in the two primary-
first neighbor force constants, a; and +i, is approxi-
mately 15%,. The relative error in the primary second
neighbor constant, «s, is approximately 759). The
relative error for the other six constants, all of small
magnitude, exceeds 1009.
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TasLE I. Interatomic force constants® (in 10° dynes/cm) for
aluminum. Model 4 neglects interactions beyond third neighbors.
Model B considers only first- and second-neighbor forces, re-
quiring the latter to be central. Model C allows only first-neighbor
forces. Model D, the usual model, allows only central first- and
second-neighbor forces.

A B C D
ay=D(101)y; 8.45 7.83 11.02 5.73
B1=D(101),2 —0.93 -2.10 -5.30 ..
v1=D(101)5 10.67 9.32 9.32 5.73
ay=D(200)1, 2.14 3.20 e 1.69
62=D(200),_,2 0.40 e o
l¥3=D(211) 11 027
Bs=D(211)2, —0.31
‘73=D(211)23 010
53=D(211)12 —0.19

# In the notation employed, D (hkl)i; may be considered as the force in
the direction 7 on the origin atom due to a unit displacement in direction j
of the atom at r =4ka1+4kaz+3las.

The errors cited here refer to the accuracy with
which any one constant is known, independent of all
the others. Various linear combinations of the force
constants are known to a much greater accuracy. For
example, the elastic constant relations, Eq. (6), are
known to approximately 19, and certain other linear
combinations obtained from the data for transverse
waves are known to about 4%,. Thus a frequency spec-
trum calculated from these force constants can be
expected to be reasonably accurate, particularly at the
lower frequencies.

The values for these nine force constants, despite
their rather large errors, can still serve as effective
criteria in an examination of the validity of the more
restricted models of atomic interactions in aluminum.
The Leighton two-constant model is not a valid ap-
proximation in this case, since its first-neighbor force
constants are much too small. The three-constant model,
model C, is also disallowed, for there are severe dis-
crepancies in several constants. The simplest model
based on the Born theory that can describe the inter-
actions in aluminum within the limits established by
the present experiment is a four-constant model based
on general first-neighbor forces and a central second-
neighbor force.

FREQUENCY SPECTRUM, CRITICAL POINTS,
AND SPECIFIC HEAT

The solutions of the secular equation employing the
experimental values of the nine force constants listed in
Table I were calculated and tabulated by the electronic
computer AVIDAC at the Argonne National Labora-
tory for the 2791 wave vectors distributed on a cubic
net® through the volume element of the first Brillouin
zone irreducible under symmetry operations. These
eigenfrequencies were used to determine histograms of
the frequency spectra of the normal modes and to
locate and characterize the several critical points
occurring in the various branches.

% The net interval is (1/30)|b].

WALKER

The histograms of the frequency spectra of the
different branches are given in Fig. 5. The “longi-
tudinal,” ‘“high transverse,” and ‘“low transverse”
branches have been defined as containing respectively
the high-, middle-, and low-frequency solutions for a
given wave vector.® This definition was adopted so
that in a given branch the frequency would be a con-
tinuous function of the wave vector. The histogram of
the total frequency spectrum is given in Fig. 6.

Van Hove’® has shown that as a result of the perio-
dicity of a crystal, its wave-vector space will show
certain critical points which cause singularities in the
elastic frequency spectrum. These critical points are
the points in wave-vector space at which the gradient
of the frequency of a given branch vanishes. The
topological nature of the surfaces of constant frequency
near a critical point determines the shape of the fre-
quency spectrum near this critical frequency. Van
Hove discussed quantitatively the singularities arising
from analytic critical points and derived from topo-
logical arguments a minimum number of the various
types of critical points which must occur for each
branch. Phillips®” has derived quantitative descriptions

Nv)
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HIGH TRANSVERSE
.
) AMM

LOW TRANSVERSE

. vio'e ps)
ol 1 1 1 | 1
4 2 3 A S ) T 8 9 0w

E F16. 5. Vibrational frequency spectra for the three branches of
aluminum. The histograms are obtained from computed eigen-
frequencies for 2791 wave vectors. The smooth curves are ob-
tained from the histograms together with the inclusion of the
singularities caused by the various critical points.

3 The eigenvectors for the low-frequency solutions in a branch
as so defined are described reasonably well by its title, i.e., longi-
tudinal or transverse, but this is not necessarily true for the high
frequencies. For example, the solution assigned to the “longi-
tudinal” branch for the wave of minimum wavelength propagating
along a [110] axis actually corresponds to a pure transverse wave;
%l}is x:sults from the crossing of two dispersion curves as shown in

ig. 4.
% 1. Van Hove, Phys. Rev. 89, 1189 (1953).
3 J. C. Phillips (to be published).
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of the singularities arising from various types of
nonanalytic critical points.?® Phillips also has further
extended Van Hove’s treatment, deriving from group
theoretical and topological considerations a series of
relations which define a minimal set of critical points,
both analytic and nonanalytic, which must occur in a
given branch. In the examples to which these relations
have been applied, this minimal set has proved identical
to the actual set of critical points present.

In order to obtain the best representation of the fre-
quency spectrum, one must thus locate and char-
acterize all of the critical points for the different
branches. Some are easily located from the symmetry
of the first Brillouin zone, as, for example, the centers
of (100) and (111) faces for face-centered-cubic crystals.
Until the development of Phillips’ relations, the loca-
tion of all the other points could be quite difficult.®®
Given the sets of frequencies tabulated by the computer,
the simplest procedure for locating and characterizing
these points in the present case was to plot contours of
constant frequency on several planes through the
Brillouin zone.

All the critical points for aluminum were found to be
on either (100) or (110) planes. The constant-frequency
contours for these planes are given in Fig. 7. The
critical points found included the various analytic
types, such as the maxima M and the saddle points
S1 and S,, and also several of nonanalytic behavior,
those denoted as N1, N2, My, Son, and D2 Using the
known shape of the frequency spectrum near these

)
o 4 2 3 A 5 6 7 8 9 [Xe]

FiG. 6. Total vibrational frequency spectrum for aluminum at
300°K. The histogram is obtained from 8373 calculated eigen-
frequencies. The smooth curve is obtained from the histogram
after inclusion of the singularities arising from the critical points
of the various branches.

38 A critical point is described as nonanalytic if the surfaces of
constant frequency around it cannot be described in terms of a
Taylor’s series expansion. Such behavior arises from the de-
generacy of two or more branches at this point.

® See the article by Rosenstock, reference 7.

9 These nonanalytic critical points, certain of which are termed
“accidental,” must be expected to occur for any real monatomic
face-centered-cubic crystal.
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critical frequencies, the best approximation to the
frequency spectrum of aluminum at 300°K was deter-
mined. This is shown by the continuous curves of
Figs. 5 and 6. By comparison, a Debye spectrum giving
the measured specific heat at this temperature has
©p=382°K; its cut-off frequency is then 0.796X 10" cps.

Using the approximate spectrum of Fig. 6, the lattice
specific heat at constant volume was calculated from
the usual relation,

ym x28:v
CV= 3R£ (cz_l—)?N(V)dV, (7)

where

x=hv/kT, fN(v)du=1.
0

The results are shown as the solid circles of Fig. 8.
The smooth curve is drawn through the experimental
values of Giauque and Meads,* corrected for electronic
contributions as measured by Howling, Mendoza, and
Zimmerman.? Although there is reasonable agreement
at the higher temperatures, the calculated values are
significantly higher at the lower temperatures, the
maximum deviation being about 249,. This error is
about twice that which could have been caused by
errors in the experimental force constants, since at
these temperatures only the well-determined low-
frequency part of the spectrum is effective.

There is a primary restriction that appears in all
phases of the theory involved in this study, namely,
that the atomic oscillations be harmonic. In order to
estimate an order of magnitude of the effect of the
inclusion of anharmonic terms, the following simple
approach has been used. It is assumed that the an-
harmonic terms can be included in the Born theory by
describing the atomic interactions as harmonic forces
which vary with temperature. It is further assumed
that all the force constants show the same relative de-
pendence on temperature.® Within these assumptions,
the effect of anharmonicity is only to cause the scale
of the frequency distribution to be a function of tem-
perature. On neglecting the small extra term which will
appear in the expression for the specific heat, Eq. (7),
this modification of the scale of the frequency spectrum
simply causes the specific heats calculated at different
temperatures from the harmonic theory to be associated
with similarly modified temperatures. The modifying
multiplicative factor is given by the square root of the
mean measured variation of the elastic constants.?®

The specific heats calculated by this method of in-
cluding anharmonic terms are plotted as the open

( “4?)/ F. Giauque and P. F. Meads, J. Am. Chem. Soc. 63, 1897
1941).

2 Howling, Mendoza, and Zimmerman, Proc. Roy. Soc.
(London) A229, 86 (1955).

43 The degree of validity of this assumption is indicated by the
variations of up to 309, found in the relative change of the elastic
constants of aluminum with temperature by Sutton (reference 28).
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circles of Fig. 8. Agreement with the experimental
curve of the specific heat is quite good. The previous
error of 249, is reduced here to only 99, which is
within the accuracy to be expected from errors in the
force constants.

These calculated specific heats are replotted in terms
of Debye temperatures in Fig. 9. The calculations which
include the correction for anharmonicity, given as
curve B, show quite good agreement with the experi-
mental measurements.

DISCUSSION

The first objective of this investigation has been the
determination of the force constants which describe
the general interactions between first, second, and
third neighbors in aluminum. The values for these
nine constants are listed in Table I. An analysis of the
propagation of errors has shown that, although several
linear combinations of these constants are known to
within a few percent, only three of the constants are
known individually to within 100%,; these are the
primary first-neighbor constants ey and v;, known to
159, and the primary second-neighbor constant as,
known to 759,. These errors illustrate clearly the
limitations of this x-ray method. The unavoidable
errors in measurements and in the correction for
Compton and second- and third-order scattering are
magnified by the subtraction of the correction terms,
and the accumulation of these errors leads to great
uncertainty in the force constants that have small
absolute values. Greater accuracy should be possible
for studies of elements of higher atomic number, since
the relative size of their corrections will be smaller,
but error accumulation should still prevent an accurate
knowledge of the small force constants.

The results of this analysis of the force constants
have been used to examine the validity of some of the
more restricted models of atomic interactions in
aluminum. Both the usual two-constant model, in-
volving central first- and second-neighbor forces, and a
model based on only general first-neighbor forces failed
to satisfy these experimental criteria. The simplest
model based on the Born theory that will describe the
interactions in aluminum within the experimental
limits of errors is the four-constant model based on
general first-neighbor forces and a central second-
neighbor force. Considerably smaller rms deviations
between the measured and calculated dispersion curves
are obtained for the general, nine-constant model, but
the possible errors in the measured values are such that
the use of this model, while perhaps of value, is not
required.

An approximate frequency spectrum of the normal
modes has been calculated in which the singularities
arising from the critical points have been explicitly
included. The specific heat calculated from this spec-
trum shows good agreement with the measured values
at room temperature, but is systematically greater
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F16. 8. Specific heat as a function of temperature. The solid
line is drawn through the experimental values of Giauque and
Meads, corrected for the electronic contribution. The solid circles
represent values calculated directly from the spectrum of Fig. 6.
The open circles represent similar calculations with an approxi-
mate inclusion of anharmonic terms.

than the measurements at the lower temperatures, the
difference being too large to be due to errors in the force
constants. A simple calculation has shown that the
majority of this difference can easily be attributed to
the omission of anharmonic terms in the theory. These
terms have been neglected not only in the Born theory
of lattice vibrations but also in the theory of x-ray
scattering and in the development from Boltzmann
statistics of the relation for the specific heat. The in-
clusion of anharmonicity considerably complicates these
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F16. 9. Debye temperature as a function of temperature. The
solid circles are obtained from the-measurements of Giauque and
Meads, corrected for the electronic contribution. The solid
squares give the results measured by Howling, Mendoza, and
Zimmerman and the open triangles give the values determined by
Kok and Keesom [Physica 4, 835 (1937)]. Curve 4 is obtained
from the directly calculated specific heats, and curve B is ob-
tained from similar calculations which have included an approxi-
mation for anharmonic terms.
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theories, and as yet this problem has not been satis-
factorily resolved. It is in this direction that progress
must be made if a better understanding of the inter-
atomic interactions in crystals is to be achieved.

The author is particularly indebted to Dr. D. A.
Flanders of the Argonne National Laboratory for the
advice and discussions on computer techniques given
on many occasions.

APPENDIX

On assuming equipartition of energy between all
modes, the expression for the second-order thermal
scattering, Eq. (4), takes the form

f2 —2M 4

I(X)= -

v(kT)2

<z [Tz

The definition of the various quantities is given in the
main text. We shall adopt the following assumptions:

cos’ag; cos’ag;

dVex. (8)

12 171

(a) The actual first Brillouin zone can be described
as a sphere of the same volume, whose radius is the
maximum wave vector, gm.

(b) The crystal is elastically isotropic. The waves of
a given wave vector are thus pure longitudinal or pure
transverse, and the transverse branches are degenerate.

(c) The dispersion of the waves of any branch is
given by the simple linear chain relation,

28m
y=V— sm( ) (9)
2gm

The long-wavelength velocity V for the different
branches is obtained by averaging the appropriate
velocities for long-wavelength waves propagating along
the three primary symmetry axes.

We consider first the contribution to this intensity at
the point X in reciprocal space from the normal modes

*

Fic. 10. Diagram for the calculation of the second-order
scattering. The unit vector i is contained in the plane defined by
the line segments OQ and QX.

C. B. WALKER

for the particular pair of wave vectors required by the
choice of the reciprocal lattice point Q and the volume
element dVgx. The eigenvectors for these modes and
the unit vector along S/A are described in terms of the
coordinate system shown in Fig. 10. The intensity from
this pair of wave vectors is averaged as the eigenvectors
for the transverse waves take all orientations. Next one
integrates over ¢, the angular variable for which the
magnitudes of g; and g, remain invariant. The cumber-
some mathematical form of the results is considerably
simplified by the following notation.

Let
g/gn=2, |QX|/gn=p

(where |QX| denotes the length of the line segment
from Q to X), so that

82/ gn= (2*+p*—2px cosy)}.

Let
%2
 sin? () sinf[ L (a2 p2— 2p cosy)i ]
x2
A= f Hdx, B= f —  Hix,
x4 p*—2px cosy
2px cos .
= f_._f_i_gd
¥ p2—2px cosy
and let

F[Wz K E[w? k? A <invd
0= 4 (1—{—%]3)2] 0= 4 (1+.§—k)2]f Sll’l\b ‘I’:

1 1
yi=— | A sin®ydy, yi=— f B sin®ydy,
' Eof " E

1 1
y3=— | Csin¥dy, vy=— f B sin®ydy,
’ Eof Y Eo

where
1+k=V2/VA
Then
Ix(X)
= Z Fo{ R*+RSv1+ (RS+2 V)’Yz
—Vvs+(S*+T—-2V)vs}, (10)
where

fote M o (RT)*x3| S|*
N 2m? A
R=[(1/k)+sin*(a—B)], T=}sin*(a—p),
S=[1—2sin?(@—p)], V=sin*(a—p) cos*(a—p),
1 171 2

Vnlgm

- —4+—
Va2 3\VZE V2
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The limits of the integrals, functions of the parameter ,
are such that the integration extends over that half of
the volume common to the Brillouin zones centered on
Q and X for which |g:| <|g.|. The integrals in this
expression have been evaluated numerically for various
values of the parameter p and are tabulated in Table II.
The total second-order scattering at any point X is
found by summing the contributions associated with
each of the reciprocal lattice points Q.

An important feature of this expression, Eq. (10), is
that it allows the contribution to the scattering at X
associated with the reciprocal lattice point Q, to depend
on the angle between QX and S/A. The angular de-
pendence is a function of the parameter p, ranging from
no dependence at p=0 to a maximum dependence at
p=2, where this intensity can vary by a factor of
about 20 for aluminum. Such a directional dependence,
not allowed in the calculation by Olmer, is easily under-
stood; the intensity varies effectively as (#)~* and so
must depend markedly on whether the majority of the
contributing waves are transverse, with low frequencies,
or longitudinal, with higher frequencies. When the total
second-order scattering is formed by summing the
contributions from all reciprocal lattice points, the net
directional dependence is reduced but remains of the
order of a factor of 2. The net result of this effect plus

557

TasLE II. Data for calculation of second-order
scattering from Eq. (10).

4 Ey Y1 Ty s v4

0 © 0.666 0.666 0.000 0.533
0.2 2.220
04 1.161 0.724 0.281 0.098 0.243
0.6 0.782
0.8 0.550 0.715 0.196 0.218 0.156
1.0 0.307
1.2 0.124 0.406 0.215 0.536 0.110
14 0.050
1.6 0.021 0.165 0.131 0.434 0.030
1.8 0.005
2.0 0.000 0.000 0.000 0.000 0.000

the inclusion of dispersion gives an intensity of the
second order scattering which may be as much as three
times the intensity calculated by Olmer. This difference
is generally significant.

A similar calculation can be carried out for the
scattering at very low temperatures. The only significant
change is that the energy of a mode is taken as its zero-
point energy, 14, rather than 27. This calculation has
been carried out and applied to aluminum, with the
interesting and unforeseen result that even at absolute
zero the second-order scattering is not negligible.



