
PH YSI CAL REVIEW VOLUM E 103, NUM B ER 1 J ULY 1, 1956

Impurity Band Conduction in Gerxnanium and. Silicon'

EsxazR M. CoNwzx. r.
Physics Iaboratory, Sylvania Electric Products, IrIc., Bayside, Sm York

(Received January 9, 1956)

In this paper, we attempt to establish the idea of impurity
band conduction on a Armer theoretical basis for germanium and
silicon. Calculations by Baltensperger of energy bands arising
from the impurities are adapted for these materials by replacing
wave functions of impurity states with suitable hydrogenic
approximations. These are used to estimate the concentration
for which the impurity band substantially merges with the
remainder of the conduction. band, and this estimate is found to
agree reasonably well with experiment. An estimate is also made
of the range of concentrations for which the usual band type of
theory might be applicable to electrons in the impurity band.
It is found that approximately within this range the simple band
theory does well for the impurity band. This, incidentally, high-

lights the necessity of taking into account conduction in impurity
states for degenerate and near-degenerate samples even at rela-
tively high temperatures. For concentrations lower than these a
crude treatment of conduction is described which can account for
the sharp increase in impurity band resistivity with decreasing
impurity concentration, the importance of compensation in these
samples, and even the order of magnitude of the resistivity. It
does not, however, predict the correct temperature dependence
for the resistivity, and a possible origin for this is suggested.
The question of the sign of carriers in the impurity band is dis-
cussed, and it is shown that the sign reversal of thermoelectric
power observed for the impurity band need not imply a change in
sign of the effective mass,

I. INTRODUCTION

HE idea of impurity band conduction was ad-
vanced by Hung' to explain the Qattening of the

resistivity and occurrence of a maximum in the Hall
constant at low temperature in germanium samples. '
Additional work by Fritzsche and Lark-Horovitz' and
Fritzsche' put this idea on a firmer basis experimentally

by elimination of a number of other possible explana-
tions for these phenomena. It remains still to establish
this explanation on a firmer theoretical footing and that
is one of the purposes of the present paper. A major
problem here is accounting for conduction in impurity
states at the low concentrations involved; it is felt that
su%cient information on the details of band structure
and impurity states is now available to make real
progress in this direction possible. A second purpose of
this paper is to emphasize the fact that conduction in

impurity states must be taken into account in the
analysis of bulk properties in concentration and tem-

perature ranges where this has not generally been done.
Part II and the first section of part IV will be con-

cerned mainly with highly impure samples. It will be
shown in part II just where the usual one-carrier theory
is inadequate to explain the variation of Hall constant
and Hall mobility with concentration and temperature.
Part III deals with the energy level structure of impure
material. A theoretical calculation of impurity band-

width as a function of spacing between impurities has
been carried out by Baltensperger assuming hydrogen-
like impurities and distribution in a regular lattice.
Neither of these assumptions is satisfied here, and the
modifications which arise from dropping them will be

* Some of this material was presented at the New j('. ork meeting
oi the American Physical Society, 1955 /see Phys. Rev. 98,
11/8(A) (1955)j.

C. S. Hung, Phys. Rev. 79, 727 (1950).
s C. S. Hung and J. R. Gliessman, Phys. Rev. 79, 726 (1950);

96, 1226 (1954).' H. Fritzsche and K. Lark-Horovitz, Physica 20, 834 (1955).' H. Fritzsche, Phys. Rev. 99, 406 (1955).

discussed. Estimates will be made of the concentrations
in germanium and silicon above which: (1) the impurity
band is merged with the conduction band, (2) the usual
band picture might provide a fair approximation for
electrons in the impurity band.

Conduction in impure samples will be taken up in
part IV. The first section will deal with samples which
lie in the concentration range selected by the two criteria
of the preceding paragraph. It will be shown that the
usual simple band treatment is capable of accounting
in detail for the observations made on such samples.
The last section of part IV will attempt to deal with
some of the phenomena found at lower impurity con-
centrations. A crude theory of conduction, suggested
by the importance of compensation in these samples,
will be shown capable of explaining some of the experi-
mental results for this concentration range. The inter-
pretation of thermoelectric power measurements of
Geballe and Hull and the sign of impurity band carriers
will be discussed.

II. DISCUSSION OF EXPERIMENTAL RESULTS'

In this section, we shall analyze experimental Hall
and Hall mobility data for fairly impure samples on
the basis of a one-carrier theory. This is equivalent to
assuming that all electrons are in the conduction band,
or that the impurity band electrons have properties
identical with those of the conduction band electrons. '
It will be shown where this is inadequate. This has been
done to some extent by Hung and Gliessman, but the
case they make can be strengthened.

It should be remarked 6rst that for p-type germanium
and silicon, even when all holes are in "the valence
band, " we must deal with two types with diferent

' The notation used throughout will be that of P. P. Debye and
E. M. Conwell, Phys. Rev. 93, 693 (1954).

It is convenient to speak specifically in terms of electrons in
much of what follows. The results are expected to apply to holes
mutatis mutaedis.
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It is then suKciently accurate for our purposes to say
that 8~1/(zz, +zzs)e, and Eo represents the average
mobility. The accuracy of these relations should im-
prove as one goes beyond the low-field range, and they
become exact in the limiting case of high fields. In
what follows, therefore, we shall make no explicit
distinction between the two types of valence band
holes.

In the case of electrons in the conduction band there
is evidence that the simple one-carrier theory for Hall
eBect is reasonably valid. '

We shall consider now experimental data for highly
impure samples. Figures 1(a) and 1(b), 2(a) and 2(b)
show some typical data for this range. The zz- and p-type
samples involved were made from germanium which
had been carefully purified and then doped with arsenic
or gallium, respectively. " Extensive study of other
similarly prepared samples leads to the belief that these
are to a high degree free of imperfections and impurities
other than the ones intentionally added.

According to a theory based on one type of carrier
then (i.e., electrons in the conduction band or holes in
the valence band), the curves of Figs. 1(a) and 1(b)
represent within a small factor the variation in carrier
concentration with temperature. This factor can be
expected to be a function of impurity concentration
and temperature, and has not as yet been calculated in
detail for the actual band structures involved. In prin-
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FIG. 1. (a) Reciprocal of product of Hall constant and charge
on the electron vs reciprocal of absolute temperature for some
n-type germanium samples. (b) Reciprocal of product of Hall
constant and charge on the electron vs reciprocal of absolute
temperature for some p-type germanium samples. Magnetic field
intensity was about 3000 oersteds. The data were taken by
P. P. Debye.
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and the Hall mobility as:

zzllzlHzz1+zz2Iz2Hp2 (IzJglz)
Ro- =

zz lzz 1+I2Zz 2

(2)

Such information as there is on the two types of holes" '
indicates that (zzlzzz)/(zz)' is no larger than perhaps 3.

' Dresselhaus, Kip, and Kittel, Phys. Rev. 92, 827 (1953l;
R. N. Dexter and B.Lax, Phys. Rev. 96, 223 (1954).' Willardson, Harman, and Beer, Phys. Rev. 96, 1512 (1954).

masses and mobilities. Since the constant energy sur-
faces of both holes have been shown to be approximately
spherical near the band edge, it should be accurate
enough for present purposes to take the low-field Hall
constant as given by

1 NlzzlHIz1 j spzz2 Hs ttz(AH+)R=—
(zzlZzl+zzszz2) (Zz) ('~1+zz2)e
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FIG. 2. (a) Hall mobility vs absolute temperature for the n-type
germanium samples of Fig. 1(a). (b) Hall mobility vs absolute
temperature for the p-type germanium samples of Fig. 1(b).
Magnetic field intensity was about 3000 oersteds. The data were
taken by P. P. Debye.

See, for example, Debye and Conwell, reference 5.
' For a detailed description of sample preparation and experi-

mental procedure see Debye and Conwell, reference 5. The
samples were prepared and data taken at Bell Laboratories.
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ciple, its inclusion could modify the shape of these
curves, and such information as is available indicates
that it does indeed make some minor changes. (See
part IV.) Over-all, however, the variations in shape
which accompany fairly small changes in temperature
and concentration, particularly for the p-type case, are
so large as to make it difficult to believe that its inclu-
sion everywhere would have a significant effect. It is
then necessary to explain peculiarities such as the
existence of a low-temperature plateau at a concen-
tration approximately one-tenth the room temperature
value, or an apparent increase in carrier concentration
with decreasing temperature. The presence of a large
amount of another impurity of much lower activation
energy might be invoked to explain the first, and
perhaps a suitable temperature coeKcient for the activa-
tion energy to explain the latter, but these are unlikely
and artificial explanations. Similar data have been
obtained for silicon. ""

In Figs. 2(a) and 2(b) are Hall mobility es tempera-
ture data for the same set of samples. The behavior of
the Hall mobility at temperatures above about 100'K
appears reasonable, qualitatively speaking, for samples
with a mixture of lattice and impurity scattering. The
relative Ratness of the curves for the most heavily
doped samples is presumably explained by the fact
that they are in a transition region between Maxwell-
Boltzmann statistics and Fermi-Dirac statistics.

Below about 30'K only impurity scattering need be
considered in these samples. At the lowest temperatures
obtained here, @II of all the samples but 74 goes into a
temperature-independent region indicating the onset of
Fermi-Dirac statistics, where the impurity mobility is
temperature-independent. It is notable that the curves
for the diferent samples have crossed, so that in this
region the samples with higher impurity content have
higher mobility. This trend has been found also for
silicon samples. ""

As expected theoretically, the temperature of the
transition to Fermi-Dirac statistics is lower the lower
the impurity content of the sample. Sample 74, least
heavily doped of the group, is still going down sharply
at the lowest temperatures, showing no tendency yet
to flatten. In the neighborhood of 11.5'K, the Hall
mobility of this sample is changing with temperature
as T+".Unfortunately, there was no n-type sample in
this set with the proper concentration to show this
steep slope. (Presumably one with concentration a little
less than that of sample 59 would be suitable. ) How-

ever, such a slope can be seen in some of the highly
doped rr-type silicon samples (as well as p-type), for
example Pearson and Bardeen's sample 8, Morin and
Maita's sample 126. It is noteworthy that in all cases
this slope is associated with samples having curves of

n G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949).
's F. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954).
"W. Shockley, E/ectrorls amd Holes ie Semiconductors I'D. Van

Nostrand Company, Inc. , ¹wYork, 1950), p. 283.

1/Ee ss 1/T similar to that of 74. Further, for each
sample the steep slope occurs in the neighborhood of
the temperature associated with the minimum in 1/Ee,
or what would presumably be part of a minimum if
lower temperature data were taken. Samples with still
higher impurity concentration do not show this steep
a slope. However, it is also the case for these samples
that the steepest slope of pl~ vs T occurs in the tem-
pera, ture region of the minimum in 1/Re for the par-
ticular sample.

Consider how these experimental results compare
with the predictions of a one-carrier theory. On theo-
retical grounds the temperature dependence anticipated
for impurity mobility is T+".Experimental indications
are that this predicted temperature dependence is, if

anything, steeper than the actual value. ' There is no
known scattering process for elemental semiconductors
which leads to a temperature dependence as steep
as 7+3 5.

The dependence on concentration of the mobility in
the Fermi-Dirac region also cannot be explained by
the usual theory, A formula for the impurity mobility
valid in this region was derived by Mott'4 some years
ago. This is:

3x O'I(."
pr ——— log{1+(24s'm) rX'}

2 m*'e'
(24s'm) *)I.'

(3)
1+(24m'e) 'X'

where X is the screening length for the ion potential,
which Mott evaluates in an approximate fashion, and
the other symbols have the usual meaning. This result
is identical with that obtained by extending the Brooks-
Herring formula' into the Fermi-Dirac range. In the
latter case the screening distance was taken as the
Debye length. This can be generalized for the present
case as follows:

-1 am*(s') &

X=—
3 4z.ee'

387rs

20

1
K@II

'4 N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936).
' Extension of the Conwell-Weisskopf formula into this range,

carried out by V. A. Johnson and K. Lark-Horovitz, Phys. Rev.
71, 374 (1947), also gives a mobility which decreases with im-

purity', concentration. For discussion see W. Shockley, reference 13,
p. 281.

where a~* is the radius of the first Bohr orbit for an
electron of mass ms*. The screening length employed by
Mott is essentially of the same form, involving the
same dependence on carrier concentration. It can be
shown simply that Eqs. (3) and (4) predict an impurity
mobility which decreases with impurity concentration, "
contrary to the experimenta1 results.

As seen in the data of Hung and Gliessman, ' less

impure samples show many of the features which have
been remarked on for the highly impure ones. Curves
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FIG. 3. Baltensperger's results for energy levels of impurities
vs impurity spacing. The lower abscissa scale, representing im-
purity concentration for a dielectric constant of 16 and effective
mass of mo/4, has been added for illustrative purposes. At the top
are indicated the radii of the atomic cell for which the edges of
some further bands cross the value E=O.

of Eo- ~s T resemble that of 74 in that below a high-
temperature region in which behavior is explainable by
the usual theory they go into a region of steeper slope.
This occurs at lower temperature than it does for 74,
and the slopes are steeper. " Again, this steep slope
occurs in the same temperature region as the minimum
of 1/Re.

III. ENERGY LEVELS IN IMPURE MATERIAL

As a first step in a theoretical explanation of the
results of the preceding section, we shall discuss the
energy levels of a disordered substitutional alloy of
germanium or silicon with one of the usual. column III
or column V impurities. Since a rigorous solution of this
problem is not available, we shall begin by reviewing
Baltensperger's solution for the case where the im-
purities are assumed to be on a regular lattice. "

To obtain the energy bands of the impurity lattice
Saltensperger uses a cellular method. The atomic
polyhedra surrounding each impurity are approximated
by spheres of radius r, such that (4/3) err, s= I./Xr, where
Ãq is the number of impurities per cm'. Within each
sphere the bound electron wave function and energy
are assumed to satisfy the Wannier or eRective mass
equation for the simple model of the band structure. ""
The potential in the cell is taken as e/~r, which is, —
of course, not correct very close to the ion. It is assumed
that the bottom and top of the bands are characterized
by periodic and antiperiodic wave functions, respec-

'6 This is not shown in Fig. 9 of Hung and Gliessman, reference 1,
because Rcr is not plotted to low enough temperatures for samples
purer than SB-3.

» W. Baltensperger, Phil. Mag. 44, 1355 (1953).' See, for example, J. M. Luttinger and W. Kohn, Phys. Rev.
97, 869 (1955).

"More correctly, according to the formulation of effective
mass theory by Luttinger and Kohn, the bound electron wave
function for the simple model is of the form Ii (rgb, (r), where F(r)
is the solution of the Kannier equation and P, (r) is the. 'Bloch
function at the band edge.

tively. The energy values satisfying the resulting
boundary conditions, and thus presumably representing
the band edges, are plotted as a function of r, (measured
in units of ~a& ) in Fig. 3. The results are qualitatively
as expected for such a calculation. At in6nitely large
distance between impurities there is the complete set
of hydrogenic levels. As the distance between impurities
decreases, the wave functions of successively lower
excited levels overlap and form bands. The ground
state spreads visibly on this scale, forming what is
usually called the impurity band, at r,~small*.

This calculation does not explicitly mention the con-
duction band of the underlying medium. As discussed
by Slater, for example, the effect of the Coulomb
potential arising from the donor ions is to perturb all
the conduction band states, the lowest ones most. "The
levels of Fig. 3 have presumably been pulled down from
the conduction band. At low impurity concentration,
on the right side of Fig. 3, say, we should be able to
neglect the eRect of the impurities on the conduction
band in the usual sense that we describe the levels as
constituting an unaffected conduction band starting at
8=0 (at least approximately), with some discrete levels
and perhaps bands below. As the impurity concentra-
tion increases, more levels are pulled down and pre-
sumably the remaining conduction band levels are more
perturbed. In any case, it appears that the impurity
band remains separated from the other levels at least
down to r, of the order of 2~a~~. At r, ~aII* the separa-
tion has evidently vanished and this group of levels
has merged with the remainder.

In view of the use of a hydrogenic potential and the
neglect of randomness, the effort involved in obtaining
results analogous to those of Fig. 3 for the actual band
structures is difficult to justify. It appears practical
therefore to make use of Baltensperger's results, and
this will be done in the following way. Hydrogenic
approximations valid for the ground state at large r,
will be set up. Excited states will not be considered
explicitly since they mostly remain very close to the
conduction band or overlap it. For tr and p germanium
and m silicon, wave functions for the ground state
obtained by variation method are available as a guide.
The hydrogenic approximations supply a value of ~uJI*
which will be used with Baltensperger's results to trace
the behavior of the energy to smaller r, . Errors due to
neglecting the deviation from the hydrogenic potential,
and to randomness, will then be examined.

The variational wave functions for the ground state
consist of a sum of terms which, apart from periodic
modulating factors, decrease approximately exponen-
tially with distance. In the case of electrons bound to
donors, this decrease is essentially given by

exp{ Cn's'+P'—(x'+y') j~/carr),

~ J. C. Slater, Technical Report No. 5, Solid-State and Molecu-
lar Theory Group, Massachusetts Institute of Technology, De-
cember 15, 1953 (unpublished).
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TAaLE I. Estimated impurity concentrations for "formation
of an impurity band, " and for its overlap with the conduction
band.

Case

m+/mo of
hydrogenic

approximation
Ny for overlap

cm 8

¹ for "band
formation"

cm

n-Ge
p-Ge
n-Si
p-Si

0.13
0.2
0.2'?

0,5

&9X10''
&3X10ig)2 X10i
&1X1020

&1X10"
&5X10I6
&1X10D
&1X10'8

"C. Kittel and A. H. Mitchell, Phys. Rev. 96, 1488 (1954);
M. A. Lampert, Phys. Rev. 97, 352 (1955).

's W. Kohn and D. Schechter, Phys. Rev. 99, 1903 (1955).
The author is indebted to Dr. Kohn for making these results
available before publication.

where n is between 2 and 3 times as large as P, and
x and y are transverse directions. "It appears reasonable
to replace this with the hydrogenic function having an
effective mass ratio m*/nzs ——P. This of course, over-
estimates somewhat the extent in directions other than
the transverse ones. It should lead, therefore, to a
somewhat low estimate of the desired concentrations
but this error should not be large. In the case of bound
holes in germanium the factors giving the decrease with
distance are of the form" e "'"' and r'f(0,&)e "'s, where

r2 is about 0.8ri. Very crudely we shall approximate
this wave function by the hydrogenic function with
m*/nzs=ra~/rr 0.2. It is interesting to note that this
is very close to the mass for which the hydrogen model
gives the observed activation energy. Actually, the
e "~"2 terms in the wave function are comparable in size
to the e "~"I terms out to r greater than 5r~ because of
the r' factor in the former. Thus the bound hole wave
function falls o6 less rapidly with distance than the
hydrogenic approximation, and this should cause esti-
mates of the desired concentrations to be somewhat
high.

Since solutions are not yet available for bound holes
in silicon, for purposes of a crude estimate we shall use
the hydrogenic function with the m*/ms value required
to give the observed activation energy for acceptors in
silicon. The germanium experience suggests that this
should not be too bad. Unfortunately, there is con-
siderable variation in activation energy among the
column III acceptors. Since the measurements available
are on boron-doped silicon we choose the m*/ms value
appropriate to boron, 0.5. This is also equal to the
heavy hole mass.

The masses which have been selected for the hydro-

genic approximations to the bound wave functions are
listed in Table I. We shall now use these, in conjunction
with Baltensperger's results, to estimate the concentra-
tion for which the impurity band merges with the
conduction band. According to the discussion earlier in
this section this should occur around r, =I(.a~*. The
concentrations which satisfy the condition r, =~uII* are
listed in the third column of Table I. The & and (

signs indicate where it is thought that these concentra-
tions have been under- or overestimated because of
the choice of the approximating function. These errors
should, however, not be large.

Another quantity of interest is the lowest concentra-
tion at which a band picture along the usual lines
might provide a good description for electrons in the
impurity band. This could be called, very loosely, the
concentration for "formation of an impurity band. ""
As a rough guide here, and probably in the nature of a
lower limit, we have listed in Table I the concentrations
for which the width of the impurity band, as calculated
by Baltensperger, is of the order of kT at 10'K. (This
is in the temperature range where conduction in im-

purity states is generally predominant. ) This corre-
sponds to r, around 4 or SI(:a~*.

Discussion so far has been confined to the case of a
regular arrangement of impurities. No calculation of
energy vs r, is available for a random arrangement, but
there are some good qualitative guides to the results.
I et us consider these for the case of the lowest impurity
level, For either a regular or random arrangement of
El impurities there are, for very large r„2%I localized
levels, all of the same energy. "When r, is small enough
so that there is appreciable overlapping of electron
wave functions on adjacent impurities the 2E& energy
levels split. The resulting "band" cannot be expected
to have well defined edges in the random case because
these are characteristic of a periodic arrangement. For
small overlapping or interaction, however, it is to be
expected that most of the levels would be close to the
original energy. These features have been found by
James and Ginzbarg in calculations for a comparable
one-dimensional random case." They find that the
density-of-states curve still shows a narrow maximum

around the original energy, but there are long tails to
both low and high energy, the latter overlapping the
conduction band. Thus, as coInpared with the density
of states for a regular distribution, the curve for the
random arrangement of the same impurities should be

"For values of r, greater than this, in the case of uncompensated
material it would be reasonable to consider the electrons localized
and use Heitler-London wave functions. (See N. F. Mott, in
"Semi-Conducting Materials, " Butterworths Scienti6c Publica-
tions, London, 1951). This is not necessarily the case, however,
for compensated material, because there the existence of empty
sites should permit motion of the electrons from one ion to another
even at much larger values of r,. Thus the feature of extended
rather than localized wave functions would be valid at much
lower concentrations than those "for band formation" in com-
pensated material. It is nevertheless not likely that other features
of the usual band picture would apply. Specifically, at low tem-
perature one would not expect more than one electron at a time
on a donor ion, which, of course, is permitted by the usual band
picture. From this point of view one may consider the Ggures in
the last column of Table I as rough measure of the concentration
below which electron correlations are important enough to
prevent the accumulation of excess negative charge on the donor
"atoms. "

24 More generally, the number of levels is Xl times the de-
generacy of the ground state. This may be greater than 2.

"H. M. James and A. S. Ginzbarg, J. Phys. Chem. 57, 840
(195').



more diffus-- broader, Qatter, and without distinct
edges. It will nevertheless be convenient to speak of
the group' of states arising from the lowest discrete
state as the impurity band.

Consider now the effect of randomness of the arrange-
ment on the concentrations listed in Table I. It has
been pointed out by Baltensperger that disorder will

increase the average interaction between electrons on
different impurities over what it would be for a regular
arrangement. This suggests that both the concentrations
calculated should be lower for a random arrangement. "
The amount of this lowering is dificult to estimate.
As will be seen in part IV, there is no reason to believe
that it is more than an order of magnitude. It should be
noted also that the implications of the concentration
"for band formation" must necessarily be somewhat
modified for a random arrangement. Not all features of
the usual band picture can be expected to apply in a
random case. For example, the one-electron wave func-
tions cannot correctly be taken in the Bloch form. It is
therefore more suitable for this case to consider this
concentration as indicating the lower limit for validity
of such band features as extended rather than localized
wave functions for uncompensated material" and the
relative unimportance of electron correlations.

There is another effect, so far neglected, which gives
a systematic error in the other direction. This is the
deviation of the potential from the hydrogenic one at
small r, which causes an additional concentration at
small r with consequent diminution of the wave func-
tion at large r. Thus the hydrogenic approximations
which have been set up overestimate the correct wave
functions at large r, and thus the overlapping. From
this point of view the concentrations listed in Table I
are too low.

It is possible to get an idea of the importance of this
effect from the difference between the variational energy
for the ground state (calculated for the hydrogenic
potential) and the activation energy obtained, for
example, from Hall data. " In the case of germanium
these differences are fairly small for the column III
acceptors and for Sb. They are considerable for P
and As, of the order of 30/o. For column V donors in
silicon the differences are also considerable, being least
for Sb, Although the variation energy has not yet been
calculated for acceptors in silicon, it is to be anticipated
from the observed large variations in activation energy
that the differences will be considerable here also. We
conclude that the underestimate of the concentrations
in Table I from this effect should not be large for Sb
and column III acceptors in germanium, but may be
considerable for the other cases. Presumably the dis-

crepancy will be: larger the larger the binding energy
for the particular impurity. We have here then a source

2 It has also been pointed out by P. Aigrain, Physica 20, 978
(1954), that the concentration at which extended wave functions
are valid should be lower for a random arrangement."T.H. Geballe and F. J. Morin, Phys. Rev. 95, 1085 (1954).

of systematic differences in impurity band conduction
for different impurities.

From all of the foregoing, it is clearly not possible to
tell whether the concentrations of Table I are systemati-
cally under- or overestimated. In fact, they may con-
ceivably be too high for some impurities, and too low
for others. However, it does seem reasonable to expect
that these concentrations will serve fairly well as guides
in understanding the experimental results. This is the
more true since the criteria of merging of the bands or
"impurity band formation" are of course loose enough
so that they do not single out particular concentrations,
but rather a range of concentrations in the neighborhood
of those chosen for Table I.

IV. CONDUCTION IN IMPURE MATERIAL

A good deal has been done in the past to show' 4

that a simple two-band theory will go far in explaining
the type of Hall and resistivity results we have been
discussing. Applicability of band theory to carriers in
the impurity band at the concentrations involved had
not, however, been established. From the results of the
last section it appears reasonable to apply band theory
to carriers'in the impurity band down to concentrations
of the order of those listed in the last column of Table I.
Of course, the detailed predictions of a band theory
should depend on the distribution-in-energy of the
states in the band, etc. , and this has not been worked
out. It seems reasonable, therefore, to compare experi-
Inental results with the predictions of band theory for
the simplest case—that of spherical constant energy
surfaces —and this will be done in the first part of this
section. In this, two-band theory wiH be applied to the
study of E and pII of samples with impurity concentra-
tion greater than those for "impurity band formation. "
The germanium samples discussed in part II all fall
in this range, although sample 74 is close to the
lower limit. This study will also serve to highlight the
necessity for taking into account impurity band conduc-
tion in discussing bulk properties of highly impure
samples.

The last part of this section will be concerned with
some aspects of conduction in impurity states at lower
impurity concentrations, where we have reason to
believe we are dealing with a narrow impurity band.
Thermoelectric power measurements of Geballe and
Hull and their implications for the sign of the carriers
in the impurity states will be discussed. It will be
shown that some of the observations in such samples
can be understood on the basis of a simple and crude
model of conduction. Possible explanations for some of
the peculiarities in temperature dependence of the Hall
constant and resistivity will be presented.

Properties of Heavily Doped Samples

We shall present now an explanation in terms of a
two-band theory of the apparently anomalous results
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discussed in part II. Consider the curves of Hall
mobility es temperature. Where p,& is independent of
temperature, or Fermi statistics are valid, the electrons
have more or less sunk into the impurity levels and we
are observing the Hall mobility characteristic of these
levels. At the higher temperatures the data should
essentially represent the Hall mobility of the conduction
band. The fatness of the pl~ vs T curves for samples 75
and 58 means that the distinction between impurity
levels and conduction band levels has more or less
vanished. The concentration for which these approxi-
mately flat curves are obtained is 10"/cm' in both
n and p germanium, around 10"/cm' in both types of
silicon. These figures agree quite well with the theo-
retical predictions in Table I giving the concentrations
for merging of the bands. Sample 74, on the other hand,
corresponds to the case of a narrow impurity band
according to the figures of Table I.

Additional support for this characterization of the
impurity bands in the different samples comes from
the spin resonance experiments of Fletcher et at.28

Absorption lines corresponding to transitions among
hyperfine levels of electrons bound to donors are seen
in Si samples up to concentrations of about 10"/cm'.
At higher concentration these hyperfine lines disappear,
being replaced by a single line which has been attributed
to conduction electrons. Observation of the hyperfine
lines requires that electrons be fairly well localized
around the donors, not moving too rapidly from one
to another. "It is to be expected then that the highest
concentration for which they are observed be approxi-
mately equal to the concentration "for impurity band
formation. " Comparison with Table I shows that this
is indeed the case for donors in silicon. In germanium
the hyperfine lines are not observed at 10"/crn', which
also would be expected from the previous discussion.
To obtain electrons sufFiciently localized for hyper6ne
lines to be observed should require a concentration
below 10'r/cms in the case of germanium.

This characterization makes it possible to explain the
observation of increasing low temperature Hall mobility
with increasing impurity concentration below 10"/cm'
in germanium as due to increasing overlap of electron
wave functions on adjacent impurities. (This corre-
sponds to the decrease in m* of a conventional narrow
ba, nd with increasing band width. ) Of course this will

be affected, and perhaps enhanced, by the changing

"Fletcher, Yager, Pearson, Holden, Read, and Merritt, Phys.
Rev. 94, 1392 (1954); Fletcher, Vager, Pearson, and Merritt,
Phys. Rev. 95, 844 {1954).

"More quantitatively, the hyperfine lines should be wiped
out when the jump frequency is of the order of the energy interval
between hyperfine levels divided by /s. For As-doped silicon this
condition leads to a jump frequency of 10' sec '. It is of interest
to compare this with the value calculated from the theory of
part IV. I'or a concentration of 10"/cm' and the m* value of
Table I this theory predicts a jump frequency of 10"Xa/Eo sec '.
To obtain agreement Xg must be 10'4/cm', which seems low for
these samples. However, as discussed elsewhere, it is likely that
use of the m"' value of Table I leads to an overestimate of the
overlapping and of the jump frequency for As donors in Si.

character of the wave functions with increasing overlap
of conduction band and impurity band.

For the cases where overlapping is sufficiently small
that conduction band and impurity band are more or
less distinguishable, we shall apply the simple two-band
formulas of part II. The subscript 1 will now denote
carriers in the conduction band, and 2 carriers in the
impurity band. The fact that the general shape of the
R us 1/T curves is given by (1) has been discussed
elsewhere. It is worth pointing out that (1) can account
for further details of the shape also. Consider samples
P-78 and rs 59 A-t .300'K, both are in the temperature
range for which (1) gives 1/Re (frt/prrr) ~N~
Below about 20'K, they show a plateau for which,
according to (1), 1/Re= (ps/ps')

~
1VD—X~

~

. The values
of prr/p, appropriate for these samples at 300'K have
been obtained, at least approximately, by Prince. "For
P-type material at this concentration the factor is
about 2. For n-type material it is a little less than 1. At
the low-temperature end when the carriers are in im-
purity levels and degeneracy has set in, theory based
on spherical constant energy surfaces predicts that
p&/@=1. Thus if this theory is valid for the impurity
band and we are indeed dealing with a constant total
number of carriers, 1/Re at 300'K for p-type samples
shouM be about -', its value at the low-temperature end,
and for n-type samples a little greater than its value at
the low-temperature end. This is in fact what is seen
experimentally. There is additional and more direct
evidence in the case of the p-type sample, 78, that
p&/p for the impurity band is unity. This sample is in
the concentration range for which a value of the drift
mobility is available, and the number of carriers com-
puted from o /eye is approximately equal to 1/Re at the
low-temperature end.

Some simple relationships between the depth and
position of the minima in 1/Re ts T and impurity
concentration (or, more accurately,

~
Xn —X~ ~) can be

"This factor is plotted as a function of impurity concentration
in Fig. 11 of the paper by M. Prince, Phys. Rev. 92, 681 (1953).
It has been obtained by dividing the experimental values of Ro
by the drift mobility calculated for majcrity carriers from that
measured for minority carriers. Unfortunately, this latter calcu-
lation is to some extent uncertain because it involves a correction
for impurity scattering which has been made on the basis of the
simple model of the band structure. Within this limitation, it is
clear in the case of electrons that pd obtained in this way should
equal conductivity mobility, so that R0/ys represents the desired
E{ne), or pII/p. In the case of holes this is not immediately clear
because of the complication of the two types of holes. From the
evidence cited previously for approximately equal relaxation
times of the two holes and failure to detect any eRect of two holes
in drift experiments [J. Harrick, Phys. Rev. 98, 1131 (1955lj, it
is reasonable to conclude that interband transitions take place in
a time very short compared to the time of drift in a drift mobility
measurement. In that case the measured jM~ should represent
(n]p 1+ngp2)/(n1+n&) ~ Then 0/eye should again equal total hole
concentration, and Ro-/pp should equal E.(n&+n&)e, or the desired
p, ~/p, for this case. This is still subject, of course, to the uncer-
tainty mentioned previously. Note also that, although the hole
mobilities are probably small enough in these samples so that
there is little magnetic field dependence of R or ply, the values of
R for Prince's results were taken at the same magnetic field
strength as that used for Debye's results.
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derived from (1) if we make the assumptions that
p&/p&, to be denoted by b, is independent of temperature,
and pir/@=1. We find then that the minimum occurs
at the temperature for which ni has dropped to 1/(5+1)
of the exhaustion value for the sample, or when e~p, ~

=nsps. The ratio of 1/Ee at the minimum to its value
at exhaustion ( ~ND N~—) is given by 4b/(9+1)'.
Since b increases as impurity content decreases, it is
evident that these relationships predict the deepening
and shift of the minima to lower temperatures as the
samples grow purer. It might be noted that it is reason-
able to expect some features of this behavior even when
this sort of band treatment is not good for the impurity
states. It should in any case be true if there is any
conduction in impurity states that eventually, as one
goes down in temperature, 1/Ee stops decreasing,
having at least a local minimum. Further, the smaller
the conductivity in impurity states, the more electrons
must fall out of the conduction band before the im-

purity band conduction takes over. This will ensure
deepening and shifts of the minima with decreasing im-

purity band conductivity for lower concentrations also.
From the minimum and exhaustion values of 1/Ee

one obtains, using the relationships of the last para-
graph, b~5 for samples 59 and 78. This appears con-
sistent with the observed p~. For sample 74 one obtains
b 25.

The behavior of p~ vs T in this simple two-carrier
model is given by (2). In the region where n&p& n, dM, ,
Ro. represents more or less a weighted average of the
two mobilities, and its temperature variation reflects
the rate at which carriers fall out of the conduction
band as well as the temperature dependence of the
individual mobilities. It is apparent that this tempera-
ture variation could be much steeper than that of the
individual mobilities in a case where p~))p2. This then
provides an explanation for the steep slopes in p~~ vs T
remarked on in part II. These were observed to coincide
with the region of the minimum in 1/Re res T, which is
just the region where e&p& m2p2.

Because of the many variables it is difficult to extract
quantitative information from @II vs T in this region.
With the same simplifications mentioned previously it
can be shown that at the temperature for which 1/Ee
has its minimum, p~ ——[(9+1)/(2b)/p& ——L(6+1)/2', .
Thus, in the case of a sample with large b, such as 74,
at the temperature of the minimum p~ has fallen only
to half of pI and is still many times p~.

Below the concentration range considered in this
section (in fact, possibly even at the concentration of
sample 74) there is evidence that the predictions of the
simple band picture do not hold for the impurity levels.
Fritzsche' has found that at about 6X10"/cm' and
below, in both Ga- and Sb-doped Ge, R and 0- of the
impurity band do not go to constant, temperature-
independent values but continue to increase with de-
creasing temperature.

More will be said about conduction at these lower

concentrations in the next section. Ke conclude here
that: (1) the predictions of Table I are reasonably well
borne out; (2) a simple band treatment of conduction
in impurity states does very well qualitatively and even
to some extent quantitatively in roughly the concen-
tration range indicated in Table I. More precisely, this
range is about 8X 10"/cm' to 10is/cms in Ge. For Si an
upper limit of 10"/cm' is indicated, but not enough data
are available to establish the lower limit clearly. It is
likely that the Table I estimate of this lower limit is
low for Si, probably more so than for Ge, because the
concentrating effects of the deeper well at r=0 seem
generally larger for Si. This, of course, would be ex-
pected from the smaller value of dielectric constant and
the larger effective masses.

Properties of Less Impure Samples

Geballe and Hull have investigated3' the thermo-
electric power, to be denoted by Q, of a set of silicon
samples in the range 15'K to 350'K. They find that
samples with about 10" impurities per cm' have the
same sign of Q throughout this temperature range. In
both an n and a -p-type sample, with about 10"
impurities per cms, they find a change in the sign of Q
at low temperature. The sign reversal occurs at a tem-
perature for which 1/Ee of these samples has stopped
decreasing and is approaching a minimum, thus a
temperature for which the conductivity of the impurity
band is comparable to that of the conduction band.
For one of these samples Hall data are available to as
low a temperature as the thermoelectric data and they
show no sign change. It is, of course, conceivable that
this could occur at a lower temperature. However, Hall
data on Ge samples over a wide range of impurity
concentrations and temperatures have never shown a
sign reversal. Another interesting 6nding of this work
is that addition of sufhcient minority impurity to pro-
duce a very highly compensated sample seems to
eliminate the sign change.

The product QT is equal to the energy transmitted
per second per unit current when the energy zero is
taken as the Fermi level, to be denoted by Ep. In order
to understand the above results, we shall consider the
location of the Fermi level in these samples in the tem-
perature range concerned.

At a concentration of 10"/cm' in Si, according to
the evidence of the observation of hyperfine structure
and the depth of the dips in 1/Ee es 1/T, we should be
dealing with a narrow impurity band and fairly well
localized electrons. In that case it is not correct, as
pointed out by Slater,"to say that in the limit of low
temperatures the lowest Xl of the 2T~ states in the
band will be occupied. Rather, it is necessary to use all
of the states in the band in making up a wave function.

To obtain the location of the Fermi level, at least

"T.H. Geballe and G. W. Hull, Phys. Rev. 98, 940 (1955).
3s J. C. Slater, Revs. Modern Phys. 25, 199 (1953).
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approximately, we shall neglect the width of the donor
band and use the usual expression for localized elec-
trons: nD/Nn $1——+go 'exp(En E—~)/kT) ', where
eD is the number of electrons bound to donors, g~
and ED the degeneracy and energy of the donors, respec-
tively. (As before, we shall assume gD

——2 in what
follows. ) For the I-type sample which showed the
reversal, sample 126, Xn~10rs/cm' and it is quite un-
likely that Ã~ is greater than 10"/cm'. For the latter
value of Ã~, at temperatures low enough so that few
electrons are left in the conduction band, the equation
above leads to EF~ED+4AT for sample 126. For the
highly compensated e-type sample, 563, which did not
show the reversal, XD—1V~ ——1.2S&(10"/cm' and Geballe
and Hull estimate cVg=1&&10"/cm'. This leads to
Ep ED—3kT at low temperatures for sample 563.

At 15'K in sample 126, even if we allow for an im-

purity band width of a few kT, the Fermi level shouM
be above the impurity band, or at least above most of
the electrons in it. As the temperature goes up the
Fermi level in this sample rises, probably not as high
as the edge of the conduction band, and then goes down
again. Thus at high temperature when the carriers are
in the conduction band Ep should lie below them, and
we expect the usual negative sign of thermoelectric
power. When the carriers are in the impurity band Ep
should lie above them, producing a sign reversal of Q.
In the highly compensated sample, 563, the Fermi level
should be below the impurity band at all temperatures
so no sign reversal is expected.

If this is the correct explanation, the thermoelectric
results do not imply a change of sign of the effective
mass of carriers within the impurity band, and there is
no inconsistency between thermoelectric and Hall data.
It then seems unlikely that such a sign change occurs,
but details of the transport process for impurity band
carriers should be better understood before this is
concluded definitively. It should be said that currently
there is no reason to believe that such a sign change will

occur for a completely disordered array. The usual
proof of its occurrence is based very directly on the
periodicity of the atomic arrangement and the resulting
existence of forbidden energy regions. Still, perfect
periodicity is not a necessary condition since hole con-
duction has been found in some liquids. Thus local order
of some degree is apparently a sufficient condition.
That it is also a necessary condition seems likely, but
still remains to be proved. "

In looking over 1/Re es 1/T of Ge samples doped
with different impurities, one finds some characteristic
differences. For example, in the case of e-type material,
As-doped samples show larger dips than Sb-doped

"The case of Te is an interesting one here. Just above the
melting point R and Q remain positive LA. Epstein and H.
Fritzsche, Phys. Rev. 94, 1426 (1954)g, and conductivity varies
exponentially with 1/T, the slope corresponding to the forbidden
band width of solid Te LV. A. Johnson, Phys. Rev. 98, 1567
(1955)g. With increasing temperature R and Q decrease until
they become negative and the conductivity becomes metallic.

samples of the same SD—S~. This can be seen by
comparing As-doped sample 61 of P. P. Debye and
sample Sb-19-2 of Fritzsche. ' Similar differences can be
seen for p-type Ge. Ga-doped samples show character-
istically deeper dips than In-doped samples. 4 As dis-
cussed in the last section, deeper dips shouM indicate
less conductivity in the impurity band. A reason for
such differences was suggested in part III—namely,
differences in overlapping of wave functions of electrons
bound to neighboring impurities as a result of different
potential wells at the various impurities. It would be
expected that such differences would be correlated with
differences in binding energy. The As and Sb differences
might be an example of this eGect, since the binding
energy of electrons to As donors is 30'%%uo higher than
that for Sb donors. It is most unlikely, however, that
the difference between Ga and In arises from this
source. The difference in binding energy is very small,
and furthermore in the wrong direction. It has been
suggested by Fritzsche and Iark-Horovitz that it
results from the greater degree of compensation, i.e.
the greater minority impurity content, of In-doped
samples compared with Ga-doped samples of the same

~
1VD —Ã& ~. This may well be a factor in the difference

between As- and Sb-doped samples also. The segrega-
tion coe%cient of Sb in Ge is about one-tenth that of As
in Ge," making it likely that Sb-doped samples will

have a higher impurity background than As-doped ones.
Electron correlations should be important in these

samples since we are dealing with narrow impurity
bands. It is not surprising then that compensation
should greatly enhance conduction. A crude treatment
of impurity band conduction suggested by this is
described in the following paragraphs. "

Consider that as a result of compensation there are
g;„donors out of a total of X „without a bound
electron. We shall assume that Z;„(X „/2. An
electron bound to one donor ion can tunnel over to an
adjacent empty one. This process can also be thought
of as diffusion of the ionized donors. To obtain the
jump frequency, the system of the two neighboring
donor ions and an electron was treated like a hydrogen
molecule-ion. For this system the rate at which the
electron oscillates between the ions is given by 1/fs
times the energy difference, AE, between the symmetric
and antisymmetric combination of ij's localized on
each ion. The diffusion constant for the process is then
4r, DE/h. Using the Einstein relation, we obtain a
conductivity

o = iV,„; (e'/kT) (4r, 'hE/h)

In this form the expression is valid for either e- or
p-type material. For the large r, values of interest

~ See J. A. Burton, Physica 20, 845 (1954), for references.
'A similar treatment was used by C. Zener, Phys. Rev. 82,

403 (1951), for a somewhat different case.
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TAsx,z II. Calculated degree of compensation for
some germanium samples.

Sample

Ga-1
In-2
In-1

cm 3

4X10»
4X10»
1X 1015

p at 4'K
ohm-cm

1X10'
3X10'
1X1o'

Nmin jXmaj
from (8)

10%
25%

Dmin/%mal
from

Fritzsche

357o

here":
AF 8 (r,/Karl*) F.„t exp (—2r,/KalI* ), (6)

where E„&denotes the activation energy. If we neglect
the volume occupied by the minority impurities, and a
constant factor not very different from 1, we obtain
the following for the impurity band resistivity:

P (lV .;/iV;„) (hkT/16KE„t') exP(2r, /Kaid*). (7)

For Ge, at O'K this gives a resistivity in ohm-crn:

p~SX10 '(1V „/LV; ) exp(2r, /Kaid ). (8)

Equation (7) shows directly the importance of com-
pensation in the factor 1V .;/1V;„. It predicts an addi-
tional effect of compensation through the dependence
on r, . From the derivation of (7), r, refers to the distance
between majority impurities. Thus, for two samples of
the same ~1Vii —1V~~, r, and p will be smaller for the
more compensated one. It seems apparent, however,
that this would overestimate the conductivity in highly
compensated samples because it neglects the repulsive
effect of the additional charged minority impurities.

Crude as it is, the theory does not do badly in pre-
dicting the magnitude of the impurity band resistivity.
This must be ascertained rather indirectly since we are
not given S „and Ã, ;„, but only their difference.
Even this diRerence, obtained from the room tempera-
ture Hall constant, is somewhat in doubt because of
the uncertainty in p&/p. In the calculations to be
described @II/p was taken as 2. The observed p at O'K
was used in (8), along with the |1Vii—1V~~ value, to
obtain values for Ã „and lV;„. The results for their
ratio are shown in Table II for some of Fritzsche's
samples. In the last column of Table II are shown the
values calculated by Fritzsche from the temperature
dependence of mobility and Hall constant in the tem-
perature range where the carriers are in the conduction
band. Since, as stated by Fritzsche, the values of the
last column can only be considered as giving order of
magnitude, the agreement between the two sets of
values looks reasonably good.

Although the theory does well in the respects de-
scribed, the temperature dependence predicted by (7)
is incorrect. It has been found experimentally' that 0 in
the lowest temperature range is given by C3e ~'~~~ for
Ga-, In-, and Sb-doped samples. A possible origin for
such temperature dependence is in the conduction

'6L. C. Pauling and E. B. Wilson, Introduction to Quantum
Mechanics (McGraw-Hill Book Company, Inc. , ¹wYork, 1935),
p. 327.

process involving an excited state or band which is
higher in energy by E3 than the ground state. Although
there is some variation of E3 with concentration
(attributable, on this mechanism, to narrowing of the
band gaps with increasing concentration) its value is
approximately 10 ' ev. In the case of Sb-doped Ge
there is evidence for an excited state or band this close
to the ground state."The extent of the electron wave
function in this state should be somewhat larger than
that in the ground state. An electron excited into this
state could therefore have a considerably larger jump
frequency than one in the ground state. Conduction
through this excited state should lead to the p of (7)
modified in only two respects: (1) the replacement of
AE by the value appropriate to this state, presumably
larger, (2) multiplication by a factor e x&'" times the
ratio of the statistical weights of the two states. Thus
with this mechanism one would retain the desirable
feature of being able to explain the defendence of p,
or more speci6cally C:, on majority and minority im-

purity concentration. There is one major difhculty with
this mechanism, however: it does not seem applicable
to any case but that of Sb-doped material. There is no
reason to believe that there is an excited state so close
to the ground state in Ga- or In-doped Ge. A careful
investigation of excited states of acceptors, similar to
that carried out for donors, has, however, not yet been
published.

It might be mentioned that it is very unlikely that
this excited band is the one corresponding in position
(more or less) to the hydrogenic v=2 band. If this
extended down so far it would be a fairly wide band,
overlapping the conduction band, and it would then
be dificult to explain the strong dependence of C3 on
impurity concentration. On just this basis, in fact, one
might speculate that the term C2e ~'~~ found by
Fritzsche4 in the 0- of some Ga-doped samples represents
conduction in an v=2 band. It is not unreasonable
that, in the concentration range for which this term
appears in 0, the v=2 band is both wide enough to
support this type of conduction and more or less
separated from other bands. Further, the existence of a
fairly well defined group of electrons with mobility
diRerent from those of the conduction band and lower
impurity bands might also account for the additional
hump observed in the Hall curves of the samples which
show this term in o-. It is apparent that to test this
hypothesis and others more must be known about
excited bands and their behavior with changing im-

purity concentration.
'tA"e conclude that, although one must have reserva-

tions about the crude theory of the last section, it does
indicate that prospects are good for accounting for
impurity band conduction down to about 10'5/cm' in
germanium and perhaps lower in more highly com-
pensated samples than those discussed here. In the

3' E. M. Conwell, Phys. Rev. 99, 1195 (1955).
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case of silicon, the lowest concentration for which signs
of impurity band conduction of the type discussed in
part II have been observed is about 10"/cm'. This is
not far below the concentration listed in the last
column of Table I, and the germanium results suggest
that it will not be difFicult to account for this.
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For constant scattering time 7 and ellipsoidal energy surfaces, the Boltzmann transport equation reduces
to a phenomenological equation of motion for electrons from which a conductivity tensor is derived. The
calculations for germanium and silicon diQer in the orientation of the ellipsoids. The resistivity tensor is
evaluated in the saturation limit, and explicit expressions for the angular dependence of the magneto-
resistance are elaborated for certain high-symmetry combinations. The theoretical 6ndings are in qualitative
agreement with experiment, thus providing confirmation of the 4- or g-ellipsoid [111]and the 3- or 6-
ellipsoid [100]models of the energy surfaces in I germanium and a silicon, respectively. Essential agree-
ment with energy-dependent v theory is also established.

INTRODUCTION

' 'NDKPEXDENT reports by Abeles and Meiboom'
~ ~ and by Shibuya' have demonstrated that the gal-
vanomagnetic behavior of m germanium is successfully
accounted for by the application of Boltzmann trans-
port theory using the model of eight ellipsoidal energy
surfaces located along the $1111 axis in the Brillouin
zone. Their analyses were formulated in terms of an
energy-dependent scattering time 7 which, in particular,
represented lattice scattering.

This paper describes a di6erent approach to the
problem which was a natural outgrowth of the theo-
retical interpretation of the cyclotron resonance experi-
ments of Lax, Zeiger, and Dexter' in which a constant
v was found adequate. It was thought that a constant-r
theory might adequately describe the observations of
Pearson and Suhl, 4 although such a restrictive assump-
tion is not truly justi6ed over all temperatures. The
advantage of this approach is that the Boltzmann
theory reduces to a relatively simple phenomenological
description. We also by-pass the difficulties involved in

carrying through a precise treatment of the scattering
processes. It is known that there are uncertainties in
the temperature variation of the mass ratio E, the

*The research reported in this document was supported jointly
by the Army, Navy, and Air Force under contract with Massachu-
setts Institute of Technology.

.t Now at Harvard University, Cambridge, Massachusetts.
~ B.Abeles and S. Meiboom, Phys. Rev. 95, 31 (1954l.' M. Shibuya, Phys. Rev. 95, 1385 (1954).' Lax, Zeiger, and Dexter, Physica 20, 818 {1954).' G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951).

validity of neglecting intervalley and interband scat-
tering, ' and the anisotropy of v. Thus, one may not be
much worse off in working with a constant r.

In this light, our theory, while not generally physi-
cally realistic, has the virtue of being the simplest
possible approach. This is not to say that it is entirely
rid of cumbersome algebra; but at least the results can
be more clearly expressed and explicitly evaluated.
While we will initially follow a course which is appli-
cable over all ranges of magnetic field, we will specialize
to the high-6eld saturation limit when taking the in-
verse of the conductivity tensor, and leave the more
complicated intermediate field case for a separate
report. This permits us to concentrate on the magneto-
resistance in this paper, since for B~ ~ the Hall
coefficient RIr is simply (eye) '.

PHENOMENOLOGICAL CALCULATION OF THE
EFFECTIVE CONDUCTIVITY TENSOR FOR

COMBINATIONS OF ELLIPSOIDAL
ENERGY SURFACES

Use of the constant r in the Boltzmann transport
equation leads to the phenomenological equation of
motion 6rst proposed by Shockley'.

L(v+ jco)m+qS&(jv=qE, v=1/7. (1)

The relation describes the forced, damped oscillation
of an electron in a single ellipsoidal energy surface
characterized by the mass tensor m, which is given in

~ C. Herring, Bell System Tech. J. 34, 237 (1955).'%. Shockley, Phys. Rev. 90, 491 (1953).


