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Diffusion of Charged Particles across a Magnetic Field
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In this paper we study the diffusion of charged particles across a magnetic field, treating collision-induced
steps of the guiding centers as a random walk process. Particular attention is paid to the vanishing of the
first-order Aux due to like-particle collisions.

I. INTRODUCTION We consider the plasma density to be small enough
that its magnetic effects can be neglected —i.e., we do
not have to consider gradients of 8 due to the plasma.
We shall assume that the field is strong enough so that
many Larmor revolutions are made between collisions.
We shall also assume that electron currents can Row

(through end-plates, for example) in such a way as to
keep the plasma neutral at all points.

The first problem that arises is what to take for the
zeroth order distribution function f(x,v) Since col.li-
sions are regarded as a perturbation, it is reasonable to
require that f be a solution of the steady-state Liouville

equation neglecting collisions:

HE problem we consider here is the diBusion of
an ionized plasma across a magnetic field. ' In

the absence of collisions the center of the Larmor orbit
(called the guiding center) of a charged particle remains
fixed on the same field line; collisions allow the guiding
center to step about in a random way and, therefore,
lead to diffusion. Ions may diffuse by colliding either
with electrons or with each other. It might appear that
the latter process is most important since ions can
exchange momentum more easily with each other than
with electrons. However, it turns out that collisions
between like particles actually produce no R.ux in erst
order (proportional to the gradient of the particle
density), because of a peculiar cancellation between
those terms in the Qux proportional to the first moment
and the second moment of the random step. The 6rst
nonvanishing term in the Aux due to like-particle
collisions is proportional to the third derivative of the
particle density. The net result is that, if the density
does not vary much over an ion Larmor radius, ion-

electron collisions predominate; otherwise ion-ion colli-

sions predominate.
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Here &o is the Larmor frequency eB/tttc, with e the charge
and m the mass of the particle. The general solution
of (1) is

(2)f= f(X+V„/co, V„V,'+V„').

II. DISTRIBUTION FUNCTION

In particular, we shall consider the problem of a
plasma in which the density depends on the x coordinate
alone, in a uniform magnetic field 8 in the s direction.

*Work done under the auspices of the U. S. Atomic Energy
Commission.

'This problem has in part been discussed previously by L.
Spitzer, Physics of Fully louized Gases (Interscience Publishers,
Inc., New York, 1955), by a difterent method from the one used
here.

A simple interpretation of (2) is afforded by the fact
that X=—x+vr/&o is the x coordinate of the guiding

center of a particle whose coordinates in phase space
are x, v. Hence (Q merely indicates that the distribution
function can be an arbitrary superposition of Larmor
orbits; the function f is not specified further. The
situation here is quite diGerent from that in ordinary
kinetic theory, where the zeroth order distribution must
be the Maxwell-Boltzmann distribution.

Since we wish to study spatial diGusion rather than
thermal diffusion, it seems reasonable to require further
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that f be of the separated form

f=Ni x+—ig(v„v2),
E. M

is the same as the density of guiding centers 2 at
x+ (v2„/o12) =X+L(v2„/o12) —(v,„/o&1)7. Hence the prob-
ability per unit time that a particle 1 with guiding
center at X will be involved in a collision, with scatter-
ing into solid angle dQ--is

mtvt l
Xexp~ — (N2(X+v2 /102 vl /Ml)

2kT )

where N(X) is the density of guiding centers in space
and g is a normalized velocity distribution. The func-

1&~2& ~ ~» ~2 ~1 ~2
tional form of g is, of course, arbitrary, and in different (22rkT 22rkT)
physical situations different g's may be appropriate,
We shall consider that particular g which gives an
exact solution to the full Boltzmann equation for
constant E, namely

( vy( m q f mv'y
f=N( ~+—

I( I
expl—

10) E22rkT) 5 2kT)
(3)

msvs' q

Xe~~ — Iv~(Q)dQ (&)
2kT )

Here v is the relative velocity,
~

v1—v2~, and a(Q) isThis appears to be the most reasonable analog of the
the differential scattering cross section. The occurrence

~ ~

of the relative velocity suggests that one transform to
theory, center-of-mass variables

3

M= mt+ms, m= mrm2/M,

(mlv1+m2v2)/M v= v1 v2

)m M q'*
P (v, V,Q)d'vd' VdQ =d'vd'V

E22rkT 22rkT)III. CALCULATION OF THE FLUX

Xexp( —mv'/2kT) exp( —MV'/2kT)

XN2(X+&)vo (Q)dQ, (9)

Consider now two types of particles, not necessarily
different, which we denote by subscripts 1 and 2. We
shall calculate the Aux P1(X) of guiding centers of type where
1 due to collisions of the particles 1 and 2. To this end
we use the well-known stochastic expression for the Aux'

e tms mr) (1 1)a=—
/

———[V„—m( —+—/v„.
&e2 e, i "

&es e,)
(10)

1 8
F1=Nr(X)(AX 1)—— [Nr(X) ((AX1)')7.

2BX
(4) In order to perform the integrals, we expand

We take a distribution of the type (3) for each type
of charged particle in the plasma, all with the same Equatton (&) then becomes
temperature, and assume that there are no neutral
particles.

AX1= Avl /Ã1. (6)

The averages indicated in (4) include an average over
the velocities of particle 1 and of the particles 2 with
which it can collide, and an average over the scattering
angles in the collision.

For a guiding center 1 at X, the associated particle 1
is at x=X—(v»/o'er). The density of particles 2 at x

2 S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943). See
Eq. (126) and the preceding discussion.

Third and higher moments of the guiding center step
hX» are neglected, for a reason to be discussed in Sec.
IV. Equation (4), coupled with the conservation
equation

c)N 1/c) 1= BF1/BX, —

determines the behavior of the guiding-center density
Nr(X) in time.

The step AX» of the guiding center is related to the
change in the y-component of the velocity by

N2(X+~) N2(X)+N2 3+ N2 'P+—N2"'P (11)
2! 3f

(DX1)= ~dsvdsVdQP(v, V,Q)DX1,

((AX1)2)= I dsvdsVdQP(v, V,Q) (AX1)2

(13)

and drop higher terms. We also express AX» in terms
of v, V, and the scattering angles 8 and p in the center-
of-mass system; from (6), (8), and an elementary
trigonometrical calculation, we find

~xr= (m/m1) (v/o'er) hsing cosb sinX
—(1—cos8) cosx7, (12)

where x is the angle between v and the y direction,
i.e., v„=e cosy.

The two averages that occur in (4) are then
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Since o (Q) depends only on 8 and the magnitude v, we
may do directly the integrals over V, over the angles
of v, and over g(0—2sr). Using (9), (10), (11), and
(12) in (13), we find that many terms obviously
integrate to zero, and that

Ssr'( m y&(mcus' ( esi &So
I 1+—Iii

3 E27rkT) EegBj & es j 8X

Pro. 1. Diagram
illustrating reason
for counter-Qux from
6rst moment.
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where the I are integrals over the scattering cross
section:

t"
1 ( mv'i

dv ' d8o(v, 8)vs expI — l(1—cos8) sin8,
~o ~o E 2kT)

t'" t' ( mvs )ls—= dv
i d8o(v, 8)v'expi—

2kT)
(16)

X (1—cos8) sin8,

mv'
yIs= 'dv d8—o (v,8)v' expI—. o "o ( 2kT)

)& I sin'8+3(1 —cos8)') sin8.

In those terms in (14) and (15) which involve the
second and third derivatives, we have kept only the
part which does not vanish when particles 1 and 2 are
identical.

If we put (14) and (15) in the expression (4) for the
Aux, and keep only terms involving the 6rst derivative,
we find

Ssrs( m ) &(mc) s

I
1+—i~.

E2~kTj EesB) ( esj 8X

8
(XsE,) . (17)

Bx

It can be seen that this expression vanishes when the
set of particles 2 are the same as the set of particles 1.
This result is independent of the form of the differential
scattering cross section. The first moment of the step
produces a flux in the direction of the gradient (opposite
to the usual result) which just cancels the flux due to
the second moment. The reason for the counter-Aux
from the first moment can be seen with the aid of
Fig. 1. The circle represents a Larmor orbit with

guiding center at the point 0. Suppose the density E2
is greater at a than at b. Then more collisions will take
place at g than at b. For a collision at u, the guiding
center moves, on the average, on the arc of a circle
about a. Hence more guiding centers will move in the
direction of the gradient than against it.

The appropriate scattering cross section is the
Rutherford formula,

e'e'( 8i 4

o(v,8)= I
sin-

I

4m'v4 E 2)

With this expression inserted in (16), one can easily do
the indicated integrals, and one finds

2kT (e&esi s (2 i
m im j i8o)'

(2kT I ' (eses't ' ( 2 i
E m ) Em) E8oj

I3 2I20

Here 00 is the minimum angle of scattering, which

occurs in a collision in which the impact parameter is

equal to the Debye shielding radius

8o eses (4~Ãe'i &

(19)
2 mv'i kT )

In (18) we have dropped terms small compared to the
logarithm.

With these results, (17) finally gives the flux of
particles 1 due to collisions with particles 2,

4 (2srmcsi '* (cess' (2 i

( esp BXs 8
X

I
1+—l&i — &s&s (2o)

es) 8X BX

If the particles are identical, higher derivatives in (14)
and (15) have to be retained; the result is

8 (srmzc i ~ (ce& ) (mskTd 't

15 ( kT ) &B') ( essB' )
(2) 8 1 Osis

)(ln
I

—
loess . (21)
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Pro. 2. Diagram
illustrating direction
of fluxes.

IV. DISCUSSION

Equation (20) agrees with the result obtained by
Spitzer. ' Equation (21) has the same form as the result
obtained by Kruskal, ' who did not attempt to evaluate
the coefficient of the derivatives. Equation (21) also
agrees with the result obtained by Simon, ' except for
a numerical factor 4/3; the source of this discrepancy
is not known.

The additional coefficient nsikTe'/ei2B' in Eq. (21)
is essentially the square of the Larmor radius of the
particles 1. The ratio of the ion flux F;(i), due to
collisions with ions, to the ion flux F,(e), due to collisions
with electrons is

F,(i)/F, (e) = (E,/D)'(m;/m, ) l,

where E; is the ion Larmor radius, D a characteristic
distance in which the density E; changes substantially,
and m; and ns, are the ion and electron masses, respec-
tively.

For a density distribution of the form shown in Fig. 2,
it can be seen that the like-particle flux (21), as well as
(20), is such as to fill up the low places and deplete the
high places. Thus the result (21) has a measure of
reasonableness. However, if Ã were exponential or
linear, there would be no like-particle Qux.

In order to calculate the second and third derivative
terms exactly, one ought to include the third and fourth
moments of the step in Eq. (4). However, these mo-

' M. Kruskai (private communication).
4A. Simon, Phys. Rev. 100, 1557 (1955). Simon uses the

Chapman-Cowling method.

ments add only terms small compared to the logarithm
to the previous results. Since 80 can be calculated only
approximately, it is not justided to carry these extra
terms.

ln a collision between like particles, Eq. (6) and the
conservation of momentum show that the steps taken
by the two guiding centers are equal in magnitude and
opposite in direction. It might appear that this rigid
correlation should be taken into account in the sto-
chastic Eq. (4) by averaging over pairs of steps instead
of steps of particles individually. However, it can be
shown that this correlation in fact produces no eGect,
and that Eq. (4) is correct. The simplest way to see
this is to imagine that all of the like particles are
divided into a large number of subsets, so that collisions
between particles in the same subset can be neglected.
Equation (4) is then correct for the flux of each one of
these subsets, since the colliding partner is in a di6erent
subset. On summing over subsets, (4) is correct for the
Qux of all the like particles simultaneously.

One is tempted, at 6rst sight, to assert that the rigid
correlation mentioned in the foregoing paragraph is
the cause of the cancellation in the first-order Qux due
to the like-particle collisions. The fact that the center
of gravity of the two guiding centers does not move in
the collision may lead one to conclude that there can
be no net Qux. However, this argument is fallacious.
In any random-walk problem where the probabilities
of equal steps to the right or left from a given point
are equal, the center of gravity of the distribution is
conserved, apart from absorption and edge effects;
yet the Qux need not vanish. The result is not altered
if steps to the right and left are imagined to occur in
pairs. In our problem, the probabilities of steps to the
right and left are not equal, with the result that the
erst-moment Qux does not vanish, but rather acci-
dentally cancels the second-moment Qux. If particles
with guiding center at a given point could somehow
be restricted to collide only with other particles whose
guiding centers were at the same point, the first-
moment Qux would vanish, the net Qux would not
vanish, and the center of mass would still be conserved.


