
PHYSICAL REVIEW VOLUM E 103, NUM 8 ER 2 JULY 15, 1956

Applications of Scattering Theory to Quantum Statistical Mechanics
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A Laplace transform relation between the distribution function exp( P7I}—in quantum statistical
mechanics and the Green's function of the wave equation has been noted by Koppe. This relationship may
be extended to the stationary-state scattering equation. General properties of the transformation are
discussed. Applications to the evaluation of the virial coe%cients are considered. A further application of the
perturbation methods of Brueckner and his collaborators is described.

N 1s=E
(3)

V=+V,,

Here y; is the momentum operator of the ith particle
and M is its mass. The potential energy of interaction
between the ith and jth particles is represented by
V;;=v(r; —r;). It will prove convenient to express
the pair (i, j) by a single index a, so

V=+ V,

where the index n runs over all serif(1V 1) pairs. —
A great variety of approximate methods for evaluat-

ing Eqs. (1) and (2) have of course been developed.
When the "thermal" de Broglie wavelength, i't/(M8)&,
is small compared to regions over which w(r,—r;) varies

appreciably, the expansions of Wigner' and of Mayer
and Bands in powers of Aj8 are useful. General methods
of developing such expansions have been obtained by
Goldber ger and Adams' and by Goldberger and
Gell-Mann. 4 These latter methods have made use of
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I. INTRODUCTION

'HK evaluation of the thermodynamic functions
in quantum statistical mechanics necessitates

the evaluation of such quantities as

Z—=Tr(N (p) },
where

tc(P) =exp f —PH}. (2)

Here B is the Hamiltonian for a system of N identical
particles and p—=8 '—= (kT) ', where T is the absolute
temperature.

The Hamiltonian H can ordinarily be decomposed
into the sum of a kinetic energy term E and a potential
energy term V:

the fact that the differential equation satisfied by ec(P)

is formally equivalent to the Schrodinger equation if
p is replaced by it, permitting application of methods
employed in quantum electrodynamics.

More recently, the similarity of (5) to the Schrodinger
equation has been exploited by several di6erent
methods. I'eynman' has used his path-integral tech-
nique to give a theory of liquid He. Kubo, ' Schafroth,
Chester, and Nakajima' have discussed perturbation
expansions in powers of V. In these developments
there is considerable similarity to quantum mechanical
perturbation theory.

To our knowledge, the close relation of Eq. (5) to the
stationary-state Schrodinger equation of scattering
theory" has not been developed. Indeed, as we shall
see in the next section, the Laplace transform of
Eq. (5) leads directly to the stationary state scattering
equation. At this point we have available the great
variety of techniques for handling the scattering equa-
tion. We may, for instance, at the very outset formulate
the problem in terms of the solutions to the two-body
problem in quantum mechanics (which we may
consider as a soluble problem, and for which there
exist useful variational principles), eliminating com-
pletely any appearance of the potentials V,; of Eq. (3).
This involves applications of the quantum mechanical
theory of multiple scattering. "" In Sec. III, the
evaluation of the virial coefficients with the use of
variational principles will be considered.

In Sec. IV a method will be discussed for replacing
the Hamiltonian H by one of the form H=E(p)
+Vc(P), where K and Vc are flncfiorss of the particle
momenta rather than matrices. As will be seen in Sec.
V, this is formally related to the problem of obtaining
the index of refraction of a scattering medium (i.e.,

' R. D. Feynman, Phys. Rev. 91, 1291 and 1301 (1953).' R. Kubo, J. Chem. Phys. 20, 770 (1952).' R. Schafroth, Helv. Phys. Acta 24, 645 (1951).' G. V. Chester, Phys. Rev. 93, 606 (1954).' S. Nakajima, Phil. Mag. Suppl. 4, 363 (1955).
"See, for instance, M. Gell-Mann and M. L. Goldberger,

Phys. Rev. 9I, 398 (1953).
"K.M. Watson, Phys. Rev. 89, 5/5 (1953).
's N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).
» Gyo Takeda and K. M. Watson, Phys. Rev. 97, 1336 (1955).
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the "optical model" ), as was done by Francis and
Watson. " It is even closer to the theory of nuclear
binding of Brueckner and his co]laborators. " ' By
this method one does not have to expand the exponential
in Eq. (2), for instance.

The use of contour integrals much like those which
we shall encounter is already familiar in quantum
mechanical perturbation theory"" and in statistical
mechanical perturbation theory. 'Wentzel, "for instance,
has formulated the eigenvalue problem in meson 6eld
theory in a form closely related to that which we shall
use. His method has been extended to the evaluation
of the quantity Z in Eq. (1) in unpublished work by
Goldberger. Finally, it has been noted by Koppe"
that a Laplace transform of exp{—PH) leads to the
Green's function for the wave equation having H as
its Hamiltonian. It is this latter observation which
provides the starting point for our present application
of stationary-state scattering theory to statistical
mechanics.

II. GENERAL DEVELOPMENT

In the present section we shall discuss the properties
of the Laplace transform of u(P) and develop techniques
for its evaluation.

Let us designate the eigenfunctions of H for our E
particle system by lt&, ()% =1, 2, 3, ), so

To obtain a sensible statistical-mechanical problem, we

must (in general) suppose that the system is enclosed
in a box of 6nite volume 'U, at the limits of which the

satisfy appropriate boundary conditions. Under
these conditions, we may suppose the states ) to be
discrete and denumerable. For many calculations,
however, it is convenient to let 'U~~ at certain stages
of the calculation. This is done in order to replace sums
over intermediate states by integrals. We shall hence-
forth refer to this as the "'U(~) limit. " We shall
also assume (as is customarily done in quantum
mechanics) that this limit is unique for any specified
set of boundary conditions on the system. In particular,
the set of states Pz and the density of states X are
supposed to approach definite limits, the states fi,
remaining orthonormal in the "large" volume 'U.

I.et us denote the least of the eigenvalues E~ by EI...

Er, &Eg (all X).

The matrix ts(P) is posil. ive definite, having eigenvalues

i4Brueckner, Levinson, and Mahmoud, Phys. Rev. 95, 217
(1954).

» K. Brueckner, Phys. Rev. 96, 908 (1954); 97, 1353 (1955)."K. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344 (1955)."R. Eden and N. Francis, Phys. Rev. 97, 1366 (1955).
'8 S. Kato, Progr. Theoret. Phys. 5, 95, 207 (1950}."B.DeWitt, University of California Radiation Laboratory

Report UCRL-2884 (unpublished).
"G.Wentzel, Helv. Phys. Acta 15, 111 (1942).
&' II. Koppe, Ann. Physik 9, 423 (1951).

e &»0()i=1, 2, ), of which the greatest is e spaz.

Now let P, and ps be arbitrary, normalized state
vectors (not necessarily belonging to the set fi),
satisfying Q„Ps)=0. We may easily verify then the
following inequalities":

Ez & (alHla),
e "'&(~l~(P)l~) &o,

IRe(bi~I~) I
&e '" (g)

lIm(blela) l
&e-~Ez.

Conditions (8) imply the convergence of the Laplace-
transform integral

W(E) =—,~ eg&u(P)dP, (9)

w'here E is a complex number and

Re[E]&Ez.

The inversion of Eq. (9) is

1 1
W=+ —+ UW.

E—E E—E
(12')

H/' is evidently the Green's function for the operator
(E—H). Finally, the "Mfiller wave-matrix" Q(E) is
introduced as

Q(E)=—W(E) (E—K). (13)
Since (E—E) ' is nonsingular on Ci, we may multiply
(12') from the right by (E—E) to obtain

Q=1+ VQ.
E—E

~~These relations may be easily demonstrated by using X1+
=(p,Apt j/W2, x2+=[p &ipqj/v2, e t' »(xss+, gx&s+) )0, etc

~' Conditions (8) and the conditions that the matrix elements
of o(P) and BN/DP be piecewise continuous are sufficient to imply
the validity of Eq. (11),we recall.

'4If El,)0 it is convenient to replace Ez, by a new quantity
EL,'(0 so as to avoid the ePpureet singularities arising from
(E—E) ' on the positive real axis. We may henceforth consider
EL,(0.

1
~(P) =

i
e E~W(E)dE-.

27i Z C+ Loct

Here c is real and"
c&EJ„.

For brevity, the contour in Eq. (11) will be referred to
as C~.

Applying the transform (9) to Eq. (5) and llsing the
boundary condition that N(0) =1, we obtain

(E—Z)W=1+ y W. (12)

Operating on this equation with (E—E)—', which js
nonsingular on Ci,"we obtain
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This is precisely the familar stationary state scattering
equation in quantum mechanics, " except for our
apparent use of Z as an arbitrary complex variable
rather than as the energy.

To solve Eq. (14) it is convenient to use a representa-
tion in which the kinetic energy K is diagonal. Such a
representation will be designated by the symbol p,
which includes a speci6cation of the momenta, spins,
and any internal variables for our X particles. Thus the
matrix elements of 0 are labeled as

&p'l~l p&

LOur formal arguments do not require that we specify
"p" as a momentum representation. For these, then,
"p" can be any representation which diagonalizes E.)

The evaluation of Eq. (1) requires only the probabil-
ity distribution &pie(P) I p) for which we shall need
only the diagonal elements of 0, or

T as

(17)

T= V+V T.
E—E

The second equation follows from the first and Eq.
(14).These are of course familiar equations in scattering
theory. The second Eq. (17) has the formal Chew-
Goldberger" solution T= V+ V (E E V—) ' V—, which
in terms of the representation '9," of Eq. (6) may be
written as

&pl viz&&xl VI p&
T =&pl TI p)=&pl VIP&+P

E—E),

10 I vIP)l'
=&Pl VIP&+ P (18)

jv—g~
Now the sum

and s,=—~ I& I VI p&ls=(pl Vsl p& (19)

Qg(E)—+1, Wg(E)~1/E, (16)

and Tq(E) is bounded.
To continue, we introduce the scattering operator

"See, for instance, reference 10, for a systematic account of
stationary state scattering theory in the form used in the present
paper.

Our next problem is to study the singularities of 0
and W in the complex E-plane. We shall, indeed, find
that the only singularities lie on the real axis for
El, ~& E& ~.'4 This will permit us to deform the
contour C~ into a new contour along the real axis.
Thus E is a real "energy" in Eq. (14). It will, of course,
be necessary to specify the limiting process by which E
becomes real just as in conventional scattering theory.

To begin the discussion of the analytic properties
of Wd(E) and Qq(E) in the complex E-plane, we impose
some conditions on the potentials V;,. It is reasonable
to suppose that the "range" of the potentials V,;=v(r,
—r;) is much less than O'. This is necessary for passage
to the 'U(~) limit discussed at the beginning of this
section. It will also be supposed that the potentials
e(r;—r,) are everywhere finite. Whether or not this is
"true" for the potentials found in nature is probably
a useless question, since the very concept of a potential
is expected to fail as r,—+r, . It would appear therefore
that no loss of generality is incurred by assuming the
finiteness of the V;; everywhere.

It follows from Eqs. (9) and (10) that Q(E) and

W(E) are analytic everywhere for Re(E)&EI.. Also,

it will appear that as IEI +~
I Im(E) WO an—d greater

in magnitude than some arbitrary positive numberj,

in absolutely convergent by our assumptions that the
V;, are everywhere finite and that the system is confined
within the volume 'U.

To show that the series in Eq. (18) is absolutely
convergent for Im(E) WO, we choose some 6 (0&6
&&o), where he ——least of the values

I
E—Ez I (for any

X). Then
I( Ivlp&l'

jv jv~

From this inequality and the comparison theorem, it
follows from the absolute convergence of (19) that the
series (18) is absolutely convergent. Thus Tz(E) exists
everywhere, except on the real axis. The quantity

0Tg(E)

&, (E E~)s

also exists (by the same arguments) everywhere off
the real axis. Thus Tz(E) is analytic everywhere in
the complex plane, except on the real axis. It is evident
from Eq. (18) that Td, has just simple poles at all
E=Ei on the real axis. Since E is diagonal in the "p"
representation, it follows from Eqs. (13) and (16)
that both 0& and TV& are analytic everywhere except
on the real axis for El. ~&8(~ and that these have
simple poles for E=Ei, (X=1, 2, . ). Finally, the
relations (16) follow from Eqs. (18), (19) and the
argument following these.

At this point we are evidently able to deform our
contour Ci into a new contour Cs, which runs from +~
to Ez, just above the real axis and returns to +eo

~' G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 7'78 (1952).
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LES

Fn. 1. Contours
of integration, as
described in text.

This integration may be carried out explicitly, since
there are only simple poles at E=Ei (one readily
veri6es that there is no pole at E=K). Finally, the
resulting expression is substituted into the expression
(1) for Z:

below the real axis, as is shown in Fig. 1(a). This
follows from the fact that T is bounded I see Eqs.
(16) and (18)]when Cs is held a fixed distance from the
real axis. Since the only singularities of W'z(E) are
on the real axis, we may take C2 as close to the real
axis as we please.

If some of the Ei, are negative (corresponding to
"bound states"), it may be convenient to explicitly
evaluate the residues at these poles and to define a
new contour Cs which runs along the positive real axis.
This is shown in Fig. 1(b).

The integral (11) for e(P) may now be written in
several forms:

Here the order of the sums (or integrals) over
p states and } states may be interchanged. This
follows, since for large Ei, we expect dna=(Ei)'ivdEq
and since the p-sum is absolutely convergent. Indeed,
using &Xl Vl p)= (E—K)&&l p), we have

Z= d „nrd ,ne»il&}(lp)l

Had we not taken the 'U(~) limit before, we could do
so now. The point is that we get the same result in
either case, so it is correct to take this limit either
before or after doing the E-integral.

In spite of this, the form of the integrand in Eq.
(20) changes appreciably on passage to the 'U(ao)
limit. In scattering theory three separate classes of
limits appear most frequently:

1
&plN(p) I p) =

27rz~ c2

&p I T(E)
I p&

dE
E K(E——K)' T(+i = lim lim T(E)

Im (E)~(0+)
p)l'+e» = "outgoing scattered wave" solution,

+ ") T' '= lim lim T(E)e EedE. (20)
2wi j, (E—ir( —K)' (E+ir} K)'— Im(E)-+(0 —) '0—+ ~

Here K=K(p) and the Ei, s are the negative-energy
eigenvalues of H. The second integral is over real E
and rf is the (small) distance of the contour Cs from the
real axis.

The integral in Eq. (20) is of course independent of
y. We must be careful in passing to the limit g=0,
however. This is a consequence of the expected non-
commutativity of this limit with the 'U(~) limit
discussed at the beginning of the present section.
To study the effect of these limits, we rewrite Eq. (18) as

(21)

= "incoming scattered wave" solution,

T(s' = lirn lim T(E)
'U~ ~ Im(E)~(0 &)

(E«X)

= "standing wave" solutions. (23)

We shall have opportunity later to demonstrate
applications of each of these limits. It is worth noting
that Tq('i (E) is real, whereas Td(+i and Tq( i are
complex, with Tq(+'=LTD( 'g*. For example, passing
to the limit t}=0, after taking the 'U(oo) limit in Eq.
(20), we obtain"

In this expression, J'dna represents a discrete sum over
states X before going to the 'U(oo) limit and an integral
over continuous variables (with possible discrete terms
also appearing) after passage to the 'U(~) limit.

The expression (21) is to be inserted into the C,-
integral in Eq. (20). Because of the absolute conver-
gence of both integrals and the boundedness of Te(E)
on C2, we may interchange orders of integration and
perform the E integral before doing the e~ integral.

&pin(p) I
p&=use-e" I&»I p&ls+e-ex+lim

'f '27rz

Ts(—l (E) T~(+) (E)
(24)

"Strictly speaking, we have shown only that Eq. (20} is
correct for finite e Lwith a trivial correction of 0(e) at the lower
limit of the integralj and is indeed independent of e. There is
no reason to expect that a limit does not exist as g—+0. In specific
calculations, it will of course be possible to check this.

e EedE—jp (E—iri —K)' (E+ir( K)'—
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It must be emphasized that we have given an
incomplete discussion of the 'U(co) limit. That is, we
have assumed that this limit is unique and is equivalent
to replacing the sum in Eq. (21) by the corresponding
integral over continuous ) s. This assumption is, of
course, also made in scattering theory. " Evidently,
some care is required in taking this limit properly.

As a preliminary to our subsequent discussion, we
shall express 0 in terms of the two-body scattering
operators t:

t.= V.+V.
E—E

This is the integral equation for solving the two-body
scattering problem. In terms of the 3 's, an exact
expression for 0 is"

is B.On defining

we have
r=2v2—N[27rA'/M8]f, (29)

Ud p
(&P I N(P) I P)—exp( —Pp'/M))

U (2srA)'

I
«'P t &PltIP)

dEe—E&

2sri~ (2m%)s& os (E—K)'

r ~ t' (pl t
I p)

d'p dEe P~ . (30)
2tri ~ ~ os (E—K)'

The second virial coeKcient29 in the equation of state,

P'U = NOL1+ (&/'U)+ ((-/'U')+ " 7,

0=1+ Qt 0,
a

(26)

We have taken the 'U(~) limit here, and in doing so
have set

&pl tl p)='U/(2~&)'&pltl p), (»)

0 =1+ Q tpQp.
E—E pea

We may consider Eqs. (26) as representing a starting
point for the evaluation of Q~ and 8"~that is, a
starting point after the two-body problem has been
solved. Actually, these equations represent only the
simplest example of an extensive class of equations
involving two-body scattering operators, of which
more will be said in Sec. V.

We observe also that Eqs. (26) are formally valid
for either Bose-Einstein (B-E) or Fermi-Dirac (F-D)
statistics. It is convenient, however, to consider the
t 's as properly symmetrized amplitudes in the equa-
tions. In Sec. V more will be said concerning this
point also.

A simple perturbation expansion of Eqs. (26) leads to

1
0=1+ P t.+ P t. P t,+ . (27)

E—Ea E—g a E—&pea

This has a structure similar to the corresponding
perturbation expansion of Eq. (14)—but differs in
that exact two-body 3 's rather than "Born-approxima-
tion" V 's appear.

III. THE SECOND VIRIAL COEFFICIENT

Equations (26) permit one to calculate Z in terms of
two-body scattering operators, although it is rather
cumbersome in the form given if N is large [a different
approach is adopted in Sec. V for large N]. For
evaluation of the second virial coefFicient, %=2 and
the sum over pairs has just one term:

(it" ', sx.)(x. , ~~t."')
t'

, ( ) tt —e u P t+l

EIt+irt K—)

(32)

which is stationary with respect to independent
variations of Pt & and Pt+& about their correct values

4 ~"'=xu+ tspn'".
E@&Lg E

(33)

Here we have written the E of Eq. (30) in terms of
its real and imaginary parts as E=E~~j7/I.

An alternative approach is to assume that the two-
body potential in momentum space is factorable. Let

(kl elk') =6~(~)~(~'), (34)

for example, where k is the relative momentum of the
two particles, G is a constant, and p(k) is a function
of k subject to the existence of the integral (36).
The integral equation for t,

is satisfied by

t =e+tt t, —
E—E

in accordance with the accepted convention for normal-
ization in the continuum.

There exist, for instance, variational principles which
may often lead to practical means for the evaluation of
t. As an example, we quote the familiar Schwinger
variational form

(P'I t"'
I P)

0=1+ t.
E—E;

(28)
&kl tlk') =y(&)y(&')/(1 —I), (35)

s' This is readily verified by substitution into Eq. (14), using
Eq. (25). A derivation was given in reference 11.

s' See, for instance, D. ter Haar, Stattstt'cat tlf'eckalics (Rinehart
and Company, New York, 1954},p. 171.
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where

(36)

of the second virial coefficient lies in the use of dispersi orl,

relations" for the evaluation. of the amplitude (p ~
t

~
p).

IV. A GENERAL PERTURBATION METHOD

If there exist points E on the negative real E-axis
for which I=1, there are bound states, according to
the general remarks made in Sec. II.

The potential (34) describes scattering in the S-state
only. It is easily generalized to describe scattering in
all angular momentum states:

In the present section we seek a perturbation method
for labeling the states E), in terms of the "unperturbed"
states

~
p). That is, we seek a correspondence between

X and p. This means that we shall have "untangled"
the operators E and V in H and may write

(k
~

v
~

k') =Q Q G„, iy„, i(l'o) y„, i(l'o') P 1', (k) 7,"(k'),
l v=1

where k is a unit vector in the direction of k. The
G„,~ are constants and n~ is some positive integer
dependent on /. Spin dependence may also be included.
The integral equation for t may still be solved explicitly.

As a speci6c example, let us take

P(k) = (k'+n') ', u) 0. (37)

The integral (36) for I is readily evaluated to give

I=q((1+iZ)/(Z'+1)), (38)
where

q = —(27r)'GM/2u,

Z'= (ME/n') (0 &arg(Z) &or).

There is evidently a single bound state when

(39)

Eb
= —(n'/3l) Lq

—1j'.
We interpret q as giving a measure of the strength of
the potential, being positive for an attractive potential
and negative for a repulsive potential.

Substituting into Eq. (30) and doing the p-integral,
we obtain

I3=—r e t'~b+ — ds

(1—
q
—Z'$

)&exp) —(Pn'/M) Z']
(C'Z'+Le —1—Z'j'}

(40)

The e t'~' term is missing when there is no bound
state. In the low-temperature limit this becomes

tir, = drt„(i=1, 2, ~ ) (42)

are each uniformly populated, and suppose also that
V=O. We now "turn on" V very slowly and follow
the members of the ensemble which started, say in

8r;p. To accomplish this change in V, we replace it by
gV, where g is a dimensionless parameter confined to
the range of values 0~&g~&1. Because the ensemble
is uniform in br, p, the initial degeneracy is immaterial
for its subsequent behavior. When g has reached the
value g=1, the members of the ensemble coming from
6r,.p will occupy some "volume element"

&by,
J,p

where Vr, is a function of p. The task of accomplishing
this bears great similarity to the problem of calculating
the refractive index of a scattering medium" and to
the theory of muclear saturation of Brueckner et al.""

By an appeal to the adiabatic theorem, we may for
instance imagine that we gradually turn the potential
V on or off Lthe energy levels are all discrete, since the
system is confined to a box]. The transition of the
system from X to p levels (or vice versa) may then be
observed. In the presence of unresolved degeneracies,
however, this transition is not unique. Furthermore,
in systems as complex as those which we are considering,
the problem of resolving these degeneracies is in general
unmanageable. The quantum mechanical perturbation
problem is thus quite difficult in most cases, unless
the perturbation is very weak or unless simple sym-
metries obtain.

The corresponding statistical problem is in some
respects much simpler. I-et us suppose that we have an
ensemble of identical systems for which the "coarse-
grained volume-elements"

It is beyond our present scope to develop further
applications. We observe, however, that a great variety
of potentials may be approximated by "factorable
potentials" such as we have discussed.

A third possibility for at least approximate calculation

of A. states. Their energies mill lie in some range

E,o
—oBE;o ~& Ei, ~&8'o+ o8E,o.

As long as the range 8E;p is small enough to be unimport-

"Goldberger, Gell-Mann, and Thirring, Phys. Rev. 95, 1612
(1954); M. L. Goldberger, Phys. Rev. 99, 979 (1955);R. Karplus
and M. A. Ruderman, Phys. Rev. 98, 771 (1955).
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(E E)MQ I p)Ws= I p)+' VMo I p&Wd.

If we define

(46)

and operate on (p I by Eq. (46), we obtain

$E K(p)$Wg= —1+Vc(p) Wg, (48)

using Eq. (45).
Since Wq, Vc, and E are all functions of p (and not

matrices), Eq. (48) may be solved algebraically for Wz.

ant for macroscopic considerations, we need never have
worried about the degenerate states. "We may go even
further in the application of "coarse-grained" distribu-
tions. Having chosen a given range of energies as
defining our approximation, we need say only that
most of the states in 87,0 go into the range 5E;0. In
other words, the calculation of individual energy
levels is not required —it is only necessary to follow
some mean of the energy of the set of states originally
in bv, o into the range 5E,O. The statistical problem may
thus be much simpler than the corresponding dynamical
one, and this simplification of course results from the
limited dynamical information required to obtain
thermodynamic properties of a system. (The arguments
of this paragraph will be given more formally at the
end of this section. )

To develop the formal perturbation technique, we
shall follow an argument similar to that of Eden and
Francis. ""The quantity W of Eq (12) .may be used
to define a quantity Mo

I p) as follows:

Wlp) Molp)wd (44)
with

(plM. I p&= 1, (45)

of course, Wz is defined in Eq. (15). Equation (12) for

Wlp) is then

which is the Brueckner-Levinson" and Eden-Francis"
form of the eigenvalue problem. Unfortunately, Eq.
(51) is somewhat misleading, since it has solutions for
atl Ei quite independently of the momentum state p.
(This point was perhaps not sufliciently emphasized
by the above authors. ") To see this, we observe that

A(p') A*(p)p'Wp=
jv—gi

l4~(p)l'

E—E"

(52)

&p I LU—~,]M, I p) = o,

so Eq. (54) may be put into the form

(55)

Mol p)=
I p&+

E—K—'Uc
[1—A„][U—v, )Mo I p). (56)

where lt i(P) is the eigenfunction fi in a P-representation.
Comparison of Eqs. (49) and (52) makes it quite
evident that E=Ei, (any X) is a solution of Eq. (51).

Equation (51) then establishes no connection between
a given state

I p) and a particular f&,. On the other hand,
if a convergent perturbation procedure can be found,
leading from a state po to a state 'Ap, Eq. (51) will
certainly be satisfied for 8=Ego, p=po (since it is
true for any Zi and any p). Defining

'Uc= ~c&,

where d is the unit matrix, we rewrite Eq. (46) as

(z E~—,)MoI p&= (z E~—,) I p&

+[V-~.)M. lp& (54)

It is evidently verified that

W~(p) =
&—E(p) —Vc(p).

(49)

We repeat that all quantities appearing in Eq. (49)
are numbers and not operators. Thus the "untangling"
of noncommuting operators mentioned at the beginning
of this section has been formally accomplished. Equation
(11) is now

E
I po&=E(po) I po&, (57)

Here Ai, is the projection operator onto the state
I p)."

In the next section, methods of solving the perturba-
tion problem will be considered. For the moment, let
us suppose it has been completely solved. By this, we
imply that we have started from a state

I po&, belonging
to the set for which'4

1 t. e ~&dE

(p I ~(p) I p) =
2 i ",8 E(p) Vc(p)— —

Wz has, as we have seen, only simple poles [before
going to the 'U (oo) limit]. These occur at

E=E(p)+ Uc(p), (51)

"That diKculties from singular energy denominators do not
occur has been observed, for instance, in references 8 and 9.

3'A more comprehensive formulation of the method of Eden
and Francis has been given in the review by DeWitt (reference
19), which contains a survey of perturbation methods in
quantum mechanics.

ZP'o, (p)4'&(p) =&() —) o) (58)

» Equation (56) is just Eq. {117)of Eden and Francis (reference
17). In contrast to these authors, we still consider 8 to be a
complex variable which is made to approach its desired eigenvalue
as a limit. This simplifies the handling of singularities associated
with the degeneracy of those states

~ p) having eigenvalue Alp).
s4 The state

~ po) will in general be a linear combination of the
degenerate states ( po).

and obtained a unique eigenstate of H with eigenvalue
Bio, the states lyo& and Xo being paired. We have
therefore found a transformation To, (p) of the p-repre-
sentation onto the p-representation such that



496 K. M. WA T SON

The corresponding transformation on 8" is

(po'I Wl po) = 2 I'»(P')(P'I Wl p)2'~0*(p)

~() o
—&0') ~(po —po')

(59)
E—E),p E—E),p

because of the one-to-one correspondence yo~)%.0. LWe
have used Eqs. (52) and (58) here. j

We now transform back to the po-states of Eq. (57).
Let the transformation function be Spo(po) so

(p, lwlp, )= Z s„(p,')(p, 'Iwlp, )$ o*(po)
PO tPO

Applying the transformation V' to 8', we have
I again, not the same W as in Eq. (63)j
(Po'IwIPo) = 2 &.o (P')(P'Iwl p)& o*(P)

~() —),')~(),—),)
(64)

In the "coarse-grained" sense, this is diagonal. If
the range "8E~O" is negligible, we may again set

K It(po)+ VL(po) ~ (65)

In view of the normalization (63), we obtain from
Eq. (64)

I
&t o(yo) I'

(60)
Po E—E)o

(polwl po) =
&—E(Po) —VL, (Po)

(66)

In accordance with the remarks made at the beginning
of this section, we suppose the eigenenergies E~o in
the sum (60) to lie within a small range of values,
RE~0. We also suppose that we made no eGort to find
the set of states po, but began with the state Po, and
that the perturbation procedure led to a limit VL(po)
for Vg. that is,

Vo~VL(P0) (61)

(p Iwl po)= 2 Is o(yo) I'
&(Po) VL(P—o) 0o—

(63)
E- (Po) VL(Po—)—

Finally, we return to the "coarse-grained" volume
elements, 87"yo mentioned earlier. Let us suppose that
"most of the states" in bwyo go into a range "bE~O"
about some limit

&(Po)+Vo~&(P0)+ VL (Po).

I VL(P0) is not necessarily the same as the VL in Eq.
(61), since we are considering a cruder approximational
technique. ) If this approximation method has been a
valid one, we may suppose that we have found an
"approximate wave function" 9"»(p) such that

The energy Jt. (P0)+VL(P0) cannot be identified with
any one of the E~o, but may be supposed to lie within
the range 8E~O if our perturbation procedure is a correct
one. If bE) 0 is small enough to be neglected, we may set

+&0—+(po)+ VL (po) (62)

in Eq. (60) to obtain

Evaluating the integral (50), we have

(to I N(P) I to) =«p{—Pl:I~'(Po)+ VL(po)3) (67)

The use of a "coarse-grained" density has many
advantages for providing simple physical interpretations
of methods employed for approximation. For instance,
"wave packets" may be used to approximately diag-
onalize matrices (this was, of course, done in Eq. (64)
by means of physical rather than mathematical argu-
ments). As an example, the degeneracy associated with
the position of "liquid droplets" in the gas may be
resolved by the use of wave packets. Again, the
"potential" Vl, may be given a physical interpretation
which can be of help in estimating the position and
density of large groups of energy levels. "

V. AN EXPRESSION FOR 'Uc

In the present section we propose to develop an
expression for 'Ug in terms of two-body scattering
operators. To do this we shall make use of the fact
that evaluation of (PILI p) is formally identical with
the problem of calculating the index of refraction of an
extended, homogeneous medium, as was done by
Francis and Watson. "The final result provides just the
Brueckner-Levinson-Eden-Francis' ' formulation of
the eigenvalue problem.

I.et A be a projection operator onto the appropriately
symmetrized Bose-Einstein or Fermi-Dirac subspace
of the states

I p), which will be called
I p).00 Then

(68)

is the required solution to Eq. (14) (being a linear
combination of unsymmetrized solutions). "The equation
obtained by letting Eq. (14) operate on h. is

ZP'»(P)A(p) =~() —) 0),

g, I
~() —),) I'=1, (63a) (69)

where 6 0 except for Ez within the range "BE~p of
&(Po)+ VL(Po)

3~ Applications and more detailed development will be published
separately by W. S. Riesenfeld and K. M. Watson.

"That is, ~p)=A
~ p), if properly normalized.
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where I=A. is the unit operator on the symmetrized
states. It is easily seen that Eq. (69) is equivalent to

(70)

V=+V,,=+V,

V;;= ', L(P,'P-I Vlp'P)+(P''O'I VIP P~)], (71)

the + or —sign referring to 8-E or F-D statistics,
respectively. Now consider the solutions to

physical interpretation of the use of e in Eqs. (74)
is that the two-body scattering must be calculated in
a self-consistent manner for a pair of particles movin. g
in the medium of the other particles.

It is important for what follows that the I 's have
eo diagonal matrix elements with respect to the
complete set of symmetrized states I7i).

The desired solution to Eq. (72) is

Qo= FOt. ,

1
F=1+—Q I F,

1
Qp ——1+ VQp.

E—E
(72)

1
F =1+—Q Isa,

e P~of

(77)

Evidently, we obtain
(73)

The two-body scattering amplitudes are introduced
by I

"rr" refers to the pair "(i, j)"$
t =V +V (1/e)I,

(P''P '
I
f

I P'P ) = (P'P I
f

I P'P )L~ " '~ ' +~ "~ '~3

f.=I.+to.,
e=E—X—Q,

Q= +~to~

(74)

Here ro is the "range of the interaction. " By the
assumptions made in Sec. II, we consider t (4s /3)rest'U —'
to be a very small number.

Factors such as V (1/e)I are of course of the order
of (75), because the sum over states involves J'dts
=J" U'dP/( v2rA)', which cancels one factor of (4r/3)rp'
)&'0—'. On the other hand,

1 1 1
V;f. V;I.=V;«—„,

e e e
(76)

The set of equations (74) defining 1 is not identical
with Eq. (26). To understand this difference, we must
consider the magnitude of the matrix elements of t:

(4n /3) rps

f =
I an "interaction energy"])&

To show that these provide a solution to Eq. (72),
we substitute them into the right-hand side of Eq.
(72) to obtain (after a little simplification)

1
Qp=Qc+ Q 1— tc IaFaQc. —

E—E e
(7s)

By the same argument which was used in connection
with Eq. (76),

~Ca
E—E

to relative order I
(4ir/3)rp'U-'j. In this approximation,

which we may consider to be "almost exact, "Eq. (78)
reduces to

~0= Fe,

and the proof is complete. '
To proceed, we must calculate the diagonal matrix

element

&7 IQI7»= &7 IQ. I7), (79)

where Ip) is a properly symmetrized state of the
system. It is evident that Q and Qo are both diagonal
in this representation, so

&7 IQplf)=&7 IFI7)&plQ, I7-). (so)

The last equation (77) for Qo is evidently only a simple
algebraic equation.

From this point, we follow in detail the method of
Francis and Watson. "Define

L—=
&1 IZ.I.F.lr), (81)

'8 This result, in the form of Eqs. (77) was 6rst obtained in
reference (11).The terms dropped were stated to be of relative
order (1/E), where X is the number of particles. For a uniform
medium such as was there considered, this is equivalent to our
present criterion that (4n./3)rp' 'o ' be small.

does not contain a sum over states since tg is diagonal.
It is thus of OL(4r/3)rp'U ')' and negligible.

However, the difference between e and (F. E)is-
not negligible for very strong interactions. '~ The

3' Some calculations of this effect have been made by Srueckner
et ul. (references 14-17) and by Frank, Gammel, and Watson,
Phys. Rev. 101,891 (1956).For nuclear forces the "self-consistency
correction" seems important for quantitative calculation, but
not for qualitative studies. For "weaker forces" the correction
is negligible —but for much stronger forces, even the qualitative
features are changed. A more careful study of the propagators
is given in reference 35.



498 K. M. WATSON

so
1

&s IF ls»=1+-~

To obtain an equation for F~, we form the diagonal

(82
matrix elements of Eq. (77) for F:

Fe=&s IF-Is»=1+ (s-I 2 seFels»

1
F-IS»= IS &+- 2 leFeIS»

and

Here e=e(p) is also, of course, diagonal in the p- P&a

representation. Let A. (p) be a projection operator onto
the state Ip&. From the third of Eqs. (77), we obtain Now to OL(4s/3)ro'U —'j, we have

(S I 2 SeFelS»=L,
p~

(90)

Operating on this with L1—A(p) j, we obtain

L1—~(s)jF-ls)=- 2 I1-~(s)j

(91)

(We are not considering L1V(kr/3)ro'*U 'j as small. )
Equations (88), (90), and (91) lead to

xleL& ~(s)jFels)+- 2
8 P~~

xL1—~(s-))duels-&&7-I Fels». (83)

F.=1+ Lv.-(pl@ip&jE E(p) V—o—
To complete the evaluation of

f4=(p If' ls»=F. (plfl. ls»,

(92)

Fc=—&s IFe Is». (84)

Now a new set of operators G is introduced by the
relation

Qg ——1+ Vc(p).
E &(p) Ve—(p)— (93)L1—~(s )3F- Is»=—LG-—1)Is»Fe (85)

Substituting Eqs. (84) and (85) into (83), we obtain»nally,
for the G 's the set of equations

(94)
F- I-'(p) F--&(p) V-(p)-1

G-=1+- 2 (L1—~(S)3e)Ge (86)
This is of the form of Eq. (49).

Equation (89) represents one of a variety of forms
for Vg, which involve 3 's. Applications of these methods
will be published separately. "

It is a pleasure to acknowledge helpful conversations
(88) with Professor M. L. Goldberger and with Dr. Marshall

Rosenbluth. The author is particularly indebted to
Dr. W. B. Riesenfeld for many discussions concerning

(89) this work.

To continue, we may write Eq. (81) as

I-= &s I
&-~-(1—~(s ))F- Is )

=Lv.—&s lais»jF. ,

where the quantity Vz is )from Eq. (85)$

v, = (s-I P.~.G. Is».

We verify that (p I Fe I p& is independent of the index P,
we write

and so de6ne


