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Multiple Photon Production by Electron Pair Annihilation in Flight*
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Starting with the Feynman-Dyson 5 matrix, we have computed the two leading terms in the high-energy
expansion of the cross section for multiple photon production by electron pair annihilation in flight. In the
extreme relativistic limit, when ln(Z+/ra)))1, where P+ is the positron energy in the laboratory system, our
result reduces to that previously obtained by Gupta.

We also calculated the first four terms in the high-energy expansion of the three-photon production cross
section. Gupta obtained the leading term only and found a discrepancy between 0.3 and 0„for st=3 by a
factor -', . This discrepancy is removed.

For the sake of simplicity, Gupta assumed that the principal contributions to the cross section come from
(1) low-energy photons and (2) small scattering angles. We proved that all these assumptions are indeed
valid.

The possibility of observing multiple photon production is discussed.

INTRODUCTION

'HE first explicit estimate of the high-energy cross
section for multiple photon production by electron

pair annihilation in flight was given by Gupta. ' In an
independent estimate of the high-energy cross section
for three-photon production, Gupta showed that the
principal contribution to the cross section arises when at
least two of the photons have very small scattering
angles. He assumed that the third photon is also likely
to be emitted in the forward direction.

When estimating the cross section for multiple photon
production, Gupta further assumed (1) that all photons
are likely to have small scattering angles, and (2) that
in the rest system of the electron pair, all but two pho-
tons are likely to be soft. '

Gupta's results exhibit a discrepancy by a factor 2
between his general formula for the multiple photon
production cross section o.„,as specialized to m=3, and
his independently calculated formula for the three-
photon production cross section 0-3. He attributed this
discrepancy to the approximations made in com-
puting 0-„.

This raises the questions: (a) Does the discrepancy
between Gupta's formula and the "correct" formula for
0-„increase, decrease, or remain constant for increasing
I? (b) Under what conditions are Gupta's assumptions
valid?

We propose to answer these questions by 6rst proving
the validity of assumption (2). Then we will make full
use of it at the very beginning of the computation of 0.„.
The calculations thereby become very much simpler
than in Gupta's work.

We also propose to compute the 6rst four terms in the

high-energy expansion for the three-photon production
cross section.

I. MULTIPLE PHOTON PRODUCTION

(n) Transition Amplitude

Throughout this discussion we employ the system of
units in which 5=1,c=1,and a metric tensor which has
the nonvanishing components gyp= g22= g33= —gpp= 1.
The product a„y&,between the four-vector a„and the
Dirac matrices p„is denoted by a.

According to energy-momentum conservation, photon
production by electron pair annihilation in Right can
occur only by the emission of a minimum of two hard
photons (h and h'). Considering the production of rt+2
photons, we will show that the principal contributions
to the cross section arise when: (A) There are only two
hard photons, the remaining photons (qt ~ q„)being
soft. ' (8) In the Feynman diagrams, none of the soft
photons is emitted by internal emission, i.e., from the
electron line segment between the two hard photons.

For this purpose it is convenient to isolate the two
hard photons and to consider a partition of the soft
photons into two groups of r and e—r in number. The
two hard photons, and the bare electron line segment
between them, are isolated in the diagram Fig. 1. The
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* Submitted in partial fulfillment of the requirements for the
Ph.D. degree at the State University of Iowa, Iowa City, Iowa.

t Now at Iowa State College, Ames, Iowa.' S. N. Gupta, Phys. Rev. 98, 1%2 (1955).
2 A group of photons whose collective energy is small compared

to the electron energy, consists of what we call soft photons. At all
other energies a photon is called hard. This statement refers only
to the center-of-mass system of the electron pair.

FxG. 1. A Feynman diagram for multiple photon emission by
electron-pair annihilation. The energy-momentum vectors q&, g2,~, g„represent soft photons. The vectors k' and k represent hard
photons.
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FIG. 2. A part of the diagram
illustrated in Fig. 1. The four-
vectors m and 7i.+ are associated
with internal lines, and ~+=p+—(e+ "e ), ~=P (e.+— u.~~),
K 7l k) K =%+—g).

we can write for the ratio of the matrix elements corre-
sponding to (1.1) and (1.2)

Pe(Q,) (i~"+m) e(k') P (oi„q'*

t
«"+m'

~

I
—

I I, I (16)
ye(q„)(i~'+m)e(k')~ (n, ) (""+

In the soft photon limit

4~4o(P+), Mb(k, P), (1.7)
6rst group of n —r photons is emitted from the directed

so that R decreases like
electron line segment leading into the isolated pair, and
the other group of r photons is emitted from the electron
line emerging from the isolated pair.

Let us compare the contributions to the transition
amplitude from the con6guration illustrated in Fig. 1 to
one which replaces the soft photon g„bya hard photon
Q„.Everything else remaining the same, the relevant
factors are illustrated in Figs. 2 and 3. The correspond-
ing analytical

e(q
(ioop m)—

(2(0

floe(Q )Li(P+—Q.)+mme(k )Eol

0 oe(q„)I iP~+m)e(k') fo

t'o~) ' P+ &
XI —

I

— (1 g)
En„) p+ Q„

k' q„k

expressions are The 6rst factor depends on co„only through the polar-
ization vector which hardly aGects the magnitude of R.

(ix' —m)
—' It follows that R decreases like (&o,/0, ) **. The quantity of

interest, however, is (0„/io„)R,because the density of
final states contributes a factor (0,/oi„)' to the corre-

/' I mx —i /i I mx —] j1 1% sponding ratio of transition Probabilities, and therefore

(2io') & (2io) &

e(k') e(k)
(ix+m) —'——(ioo+m) ', (1.2)

(2oi') & (2co) '*
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FIG. 4. A part of a Feynman dia-
gram for multiple photon emission
by electron-pair annihilation. This
is the same as Fig. 2 except that
the soft photon g, and the hard
photon k' are permuted, and K*

I=m+ —k .

Q~ k' k
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FIG. 3. A part of a Feynman dia-
gram for multiple photon emission
by electron-pair annihilation. This
is the same as the part illustrated
by Fig. 2 except that the soft
photon q„is replaced by a hard
photon Q„and K"=a+—Q,.

where e„(k)is the polarization four-vector associated
with the photon k. The variables co, co', co„,and 0„,are
the energy components of k, k', q„and Q„respectively.
All electron line segments are internal, and the associ-
ated four-vectors can be expressed in terms of the initial
and final variables by

~=p (q-+ "q+i)—~+=P+ (qi+" q -i)—
(1 3)

K='E kq K =)I+ qp) K =ol'+ Qp.

The remaining parts of Fig. 1, which are not illustrated
in Fig. 2, can be represented by two spinors p and x. If
we now introduce the spinors

iP= oo(ioo~ —m) ', (1.4)

e(k)
g= (i~+m)-' (z~+m)-&x, (1.5)

(2~)'*

a factor (&,/~, ) to the ratio of the transition ampiitldes
It follows that the probability distribution involving
three hard photons is smaller than the probability
distribution involving only two hard photons. Their
ratio is the ratio of soft- to hard-photon energies. Our
proof was given for a special case only, namely for the
photon in Fig. 1 which is the immediate neighbor of the
hard photon O'. To make the proof more general, we
only need to prove the second condition (8).

Turning to condition (B), let us compare the contri-
bution to the transition amplitude from the con6gura-
tion illustrated in Fig. 1 to one which is obtained from it
by permuting the hard photon k' with the soft photon
q„.This permutation results in the internal emission (see
condition 3) of a soft photon. The relevant factor
arising from this permutation is illustrated in Fig. 4.
The corresponding analytical expression is

e(k')
(ioop m) ' -(i+*-m)-'

(2io')'

e(q„) e(k)
X (ix+m) —' (ioo+m) —', (1.9)

(2~.)' (2~)'
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where ~*=m+—k'. We can write for the ratio of the
matrix elements corresponding to (1.1) and (1.9)

-)pe(k')(ir. *+m)e(q„)p ~(("+m' y

Pe(q„)(ix'+no) e(k') P El(*'+m')

In the soft-photon limit, E' decreases like

(foe (k') Li(p„—k')+m]e(q, )$0 qR'=
i

+«(q,)Lip++~]e(~') 4

The first factor again depends on co„ through the
polarization vector only, which hardly aGects the magni-
tude of R'. It follows that R' decreases like ((0„/(0').
Since the difference between the matrix elements arises
from merely permuting the soft- and hard-photon
variables, there is no additional factor arising from the
density of final states and E' is actually the quantity of
interest. We can conclude, by a suitable generalization
of the argument presented above, that for each soft
photon emitted by internal emission (see condition B),
the corresponding transition amplitude is smaller by the
ratio of soft- to hard-photon energies.

The conditions (A) and (B) having thus been cor-
roborated, we now proceed with the calculations of the
transition amplitude.

The analytical expression corresponding to the iso-
lated pair, F2, is the spinor matrix related to the
transition amplitude 3f2 for two-photon production by

We write the four-vector products a&b„as a b for
simplicity. The symbol 2 indicates the soft photon
limiting form. There is a sum over the index (r) which
describes the partition of the soft photons, and a sum
over the permutations (p) among them. That the
symmetrization of the initial and final states is correctly
included in these two sums can be seen by dividing the
sum over all the permutations into the following four
classes: Class I consists of the permutations among the
soft photons alone. Class II consists of the permutations
between the two hard photons alone; they are included
in Ii~. Class III consists of those permutations among
soft and hard photons which do not result in internal
emission (see condition B). The sum over these permuta-
tions can be expressed as the sum over all partitions.
Class IV consists of the remaining permutations, each
of which provides a configuration involving internal
emission.

According to statement (B),which was proved above,
class IU can be neglected. Class II is included in Il&.
Therefore, Eq. (1.14) is correctly symmetrized.

Ke use the relations

e,P+=2e, P~—P+e„
peg = 2eg ' p —e,p,

v(p+) (ip+—m) =0,

(ip+m)N(p) =0,
which we apply in succession in the soft photon limit,
and we obtain from (1.14)

en

( 1)n rP-
M2(p~p; kk') =v(p~)F, (p+p; kk')m(p), (1.12) (2~)»(2 (2». . .2„„)s&„&

where the spinors N(p) and 8(p+) are the negatron and
positron plane wave amplitudes normalized to

N(p)~(p) =1, e(p+)~(p+) =-1. (1.13)

e,
~~2=& Z Z()(p+) II

& &(n) -) (2m)l (2&v.)&

—i(p+—
q&

— —q,)—m
X

2p (q~+" +q——)+(q+" +q.)'~
XF2(p+ qi ''q~& p q~+—) '—'q~i ~~)—

e~n

The transition amplitude for (n+2)-photon production
is in the first approximation

p+ e~ p+ e,

p, (q.+ +q,)

p '4+1' ' p'en
X

p'(qr+1+' ' 'q )' ' 'p'q
~ (P+P; &&'). (1.16)

At this point we use the identity, easily proved by
induction:

(1.17)
y) (7(+7&) ' ' ' b')+ ' ' '+7 ) y)$2 ' ' 'y

where the sum extends over all permutations of the
.variables, and fiod

-+) (2~)&

i(p-q — -q )-m
—2p (q.+ +q )+(q +' '+q )'-

~(p) (1 14)
(2(d,)&

(p+'e&&( (p+'e 't
x i I

~

I

- Ep+'q~) &p+'q j
(p e~+)'t (p'e~)'

xl — I"
~ I ~-(p+p; »') (1 18)

4p q„+y) 4p'q~
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Here (p') is any of the remaining permutations of the the quantities
soft photons excluding those within either group of the
partition. Next, we employ another identity, which can
also be proved by induction,

2P.P+ m' m'
+ +, (1.24)

P-q P+ q. (p q.)' (p+ q,)'..
g(—1)"—'P ait a„ta„+i. a„
(1) (y')

s n
= g (a t—a,), (1.19)

s=l

it follows from (1.20) tha, t

G~2= —— -{Q o~, sc', )G2.
(22r)2~

(1.25)

and obtain 6nally

8.=g(y+, tl ) s=1 r
(1.26)

We evaluate the integral in the c.m. system of the
e 1 Jre. p+ e. P) electron pair. Defining

M„+, , g —
l

—
l M. (1.20)

=i (2~)'*(2~.)'&P+ q P q &

The reduction of M„+2to the particularly simple form
(1.20) is not surprising in view of previous work by
Glauber, ' Thirring and Touscheck, ' and jauch and
Rohrlich. These authors, considering the emission of an
additional soft photon during an almost arbitrary scat-
tering process, described by the matrix element M,
obtained for the matrix element Ml describing the same
process with one additional soft photon

e 1 (p ei p'ere

(22r)-**(2(oi)'*i P' q, P qi&
(1.21)

H one were to apply an iteration process in this manner,
the result would be precisely (1.20).

(g) Cross Section

where p' is associated with the scattered electron. We
can apply the substitution law' to (1.21) in substituting
the positron momentum P+ for —P' in (1.21) and M2
for 3f, to obtain

e 1 (p+ ei p ei)
M,+,——— —

l

— lM2.
(22r)t (2coi)l &Pp qi P qi&

&.=4(li, tl.), s=r+1, ",~,

we can write

2(1+P)
C,=

(1—P' cosV,) p2(1 —P cosrt, )2

s-r, ir tI dsq
f7~2—0 2

s=i (22r)2 J (1.28)

(1.27)
y2(1+p cos8 )'

where ym is the electron energy and p =
l p+ l /ym. We can

see by inspection that in the high-energy limit p))1, the
angular distribution has very sharp maxima for l8, l

«1
and l2r —B.l«1. We know this is also the case for the
two- hard-photon distribution contained in 62. This
proves the validity of assumption (1) by Gupta (see
Introduction). We can also say that both energy .and
momentum conservation in the soft-photon limit is
essentially that between the electron pair and the two
hard photons. It follows that

o ++2(e2)el) =a 2
,

deke' ifk'~' d'qi
L(P P+)' m']*' "—

The transition amplitude and cross section are related The remaining integrals are elementary an
by

l nC ln(e2/ei)]"
(1.29)

with

The factor N.' arises from the fact that the m soft photons
X dsq„G„~25(Pf—P~), (1.22) are indistinguishable. The factor C arises from the

integral over the angular distribution,

G~s=er(2~)22 Z IM~2I2
pol spin

(1.23) 1 ldO, 2
C=—i C,=l ln(2y)' —17, (130)

The negatron and positron energies are E and E+. The
initial energy momentum is p;=p++p and the final

energy momentum is pt =k+ k'+qi+ q .Introducing

' R. H. Glauber, Phys. Rev. 84, 395 (1951).
4 W. Thirring and B.Touscheck, Phil. Mag. 42, 244 (1951).' I.M. Jauch and F. Rohrlich, Helv. Phys. Acta 27, 613 (1954).
2 See J. M. Jauch and F. Rohrlich, The Theory of Photols arid

Etectrorss (Addison-Wesley Press, Cambridge, 1955).

which we have evaluated in the high-energy limit.
The factor ln(e, /ei) arises from the integral over the

energy distribution

(e q
=lnl —l.

&e, j



MULTI PLE PHOTON PRODUCTION

We have carefully refrained from specifying the
energy limits e2 and e~. We wish to make a few remarks
concerning these limits. However, we first show that
cv 'd~ is invariant under Lorentz transformations. This
would provide the energy distribution in the laboratory
system. Furthermore, it would enable us to discuss the
limits in the laboratory system.

The quantity co 'd'k is a well-known invariant. We
write co V'k=co 'd+dyoP sin8d8. If we choose the polar
axis along the direction of motion, then d p is invariant.
Thus we need only to prove that co' sinbdd is invariant.
According to the transformation equations x=—a&'/~

=7(1—p cosI)) and x—I=y(1+p cosI)') wehave (dx/dx
—')

= (&e /~)'= sinI)dI)/sinI)'dI)' so that indeed, oP sinI)dI) is
invariant. It follows that co Cko is invariant.

As proved by Jauch and Rohrlich, ~ the contributions
from real and virtual photon energies below the experi-
mental energy resolution ~mc', cancel to each order of
the coupling constant. We thus take for the lower limit

The upper limit c2((p+m, where y+m is the
positron energy in the laboratory system. However, we
have shown that the principal contributions come from
the low-energy distribution. We thus obtain a crude
estimate and a cutoff-independent result by using p+m
for e2. One can show in a rough way that this leads to an
error which amounts to neglecting terms of the relative
order [in(y+/c)] '. We thus obtain

FIG. 6. A Feynman diagram for
double Compton scattering.

The cross section for this process is

gg+
0.3= d'kg d'k2 d'ka

[(p p+)' —~']'*

(2m)'
X——p p ~~, ~'b(p+p+ —k,—k,—k,). (2.1)

pol spin

In order to specify the probability amplitude M3, we
introduce the spinor matrix

T= —Q e(kg)[i(p+ —k2) —m] 'e(k3)

&&['(P-k)+ ]-"(k), (22)

where the sum extends over all permutations of the
three-photon variables. Then we can write

[uC 1n(y+/e)]"
0 )t+2—tT2

where C= (2/m) [ln(2y+) —1].

2. THREE-PHOTON PRODUCTION

(1.31) M3 —— ~(P+)»(P), (2.3)
(2m)'I' (EE„2~I2Id22(o8)&

which corresponds to the sum over all permutations of
the three photons on the Feynman diagram illustrated
in Fig. 5.

We have the relation
In this section we wish to make an independent and

better calculation of the cross section discussed in (1)
for the special case of three-photon production. We do
not at the beginning distinguish hard and soft photons,
and we regard all three photons on an equal footing. For
this reason we make a slight change of notation by
using k&, k2, and k3 for the energy-momentum vectors of
the three photons.

(2~)' Qfp

Pol 8P In (4~) QQ+(gI(g2(g

m2X

&=—E»(iP m)T*(iP~+es)T—
pol

(2.4)

(2.5)

FIG. 5. A Feynman diagram for
three-photon emission by electron-
pair annihilation.

kq

I
j
I

k~
l
I

I

k,
j

I

I

l

I

has been computed for the double Compton process by
Mandl and Skyrme. ' A typical diagram for the double
Compton process is illustrated in Fig. 6. We make the
following substitutions'. (a) p'~ —p+, (b) kI—8—kI',
(c) we change the over-all sign of the probability dis-
tribution.

By introducing the system

7 One should use the lowest photon energy which is observable
with the particular apparatus employed. However, this quantity
is of the same order of magnitude as &me'.

a=+ a —' b=g bI
—'

O'=Q bI,

c=g(aIbI)-'
~=K(«bI),
u=Z(a b -I+a —'b )

0=+ at,

+= Qy8283)

(2 6)
8= bgb263,

F. Mandl and T. H. R. Skyrme, Proc. Roy. Soc. (london)
A215, 497 (1952).
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where as= —p k~, b= p+—k~, we can write (using
o =c' from energy-momentum conservation)

—X= 2(ab —c)[(a+b)(~+2)—(ab —c)—8—2p]

+[2p (o.—2) —8]c—20 (a'+ b')

(A+B)(0+1)+(aA+bB)

When y))1, we see that the integrand of (2.10) has two
very sharp maxima for ~8&~&&1, ~Ps~&&1 and both
~%~&&1 and ~sr —Is~&&1. The latter is, however, the
charge-conjugate case of the former. Thus we return to
(2.4) and (2.7), and we can use the approximations

(2 12)

We must also multiply by a factor 2 to compensate for
an equal contribution from the charge conjugate case.

Then, with'
tt' a —1

x)& —2 /+O.s(1—b)+28, (2.7)

we have

Z~=2ys(1 —P cos8~) 1+ys8P,
~s+~s—~s—7,

(2.13)

which is wholly unsurveyable and requires a suitable
approximation.

In order to see which approximation can be made, we
develop (2.3) in further detail. We introduce center-of-
mass coordinates and the quantities

at= ~sz&/27, as—2'r, as =a&szs/2y,

b1—2 r~l~ bs—Mszs/2'r& bs—2rMs.

In this approximation, according to (2.14) and (2.6),

+i=4(p, lri), ~s=4(1s+,lrs), ~s=4(y, ks),

F (123 ( PP+) = es[i(P—~ k,)+n—zj
c', p, &))1, and aA+bB«0'.

It follows from (2.15) and (2.7) that

(2.15)

m'
X(,„—— Q Tr(ip —m)

16m ious poi
4a'

+20 (a'+b' pc)+ [—ob —A —Bf . (2.16)
AB

XP (rssl
~ PP~) (iP++rrs) r (123

~
PP+).

Xes[i(P—0&)—rrs]e„'
(2.8) X= 2(.b—.)L2p+(.b —.)—.(.+b) ~

Noting that

a)g 8(a)s+cos) G01= 2y ——(1+cos8~ cosmos
fS

The system (2.6) reduces to

(1 1~ 2q 1
+ I, b=—+

~ ~lzl ~szs J zs 2&yMs GO) Sg
2

+sindxsin8scos~ qs —q, ~) =D—
~, (29)

with

X,(2.10)
y'(1 —P cos8g)y'(1 —P cos8s)

we obtain, after performing the trivial integratjons,

3!nrps
I

d(o&
I

d&s t d&s

2jPP J m ~ 4n. ~ 4sr

p—4v'Zzr', &=P~PZ„

—21&3~P3& ~—2y'CV 1~3S2.

(2.17)

There are altogether nine final variables, three mo-
mentum components for each photon. Energy-momen-
tum conservation eliminates four of them. The conserva-
tion of angular momentum, expressed as the azimuthal
symmetry about the polar axis, eliminates one more.
There remain therefore altogether four independent
variables for which we choose the set

X123 X312 (oy, zy, zs, and p=
~
ys —

yg~, (2.18)

(1—P cosdy) (1—P cos8s) (1—P cos8s) (1+Pcos8y)

X231 X132

(1+Pcosmos) (1+Pcosmos) (1—P costi) (1+PCOS8s)

X213

(1+P cosds) (1+P COSILY)

(2.11)
(1—P cosmos) (1—P cos8i)

0's=
)

pZQ p
ZQ

dscs dz y dzs

2 lf

X !
—c.s(scl)zl)zspq), (2.1&)

~o 2m

' We now let no=1.

where p& and ps are the azimuthal angles for lr& and its.
According to (2.9) and (2.13),D '—2(y —

cu&) so that



M ULTI PLE PHOTON P RO DUCTION

TABLE I. A summary of results for multiple- and three-photon production cross sections by electron pair annihilation in Qight.

Multiple-photon production

1 2n n-2
0.„=o-2 —ln —+ (ln(2y+) —1)

(+—2) t

ln —)&1 y+))1
C

(Gupta) o„=o 2
—In —In (2y+)

1 20!

(n —2) I „x e

ln —+ »1 lny+)&1

n—2

Three-photon production

os ——os— In —+-, (In(2y+) —I)+-2(x p+ 1 7r'

6

—))1 y+))1

(Gupta) o s = sos—In —In(2y+)
2'

ln —&)1 lny+. )&1

y+c' electron energy
mme'=experimental energy resolution

with

nro' m»

&s(W184S»V') =
4y2 m3

C
tT32 = (1+Wl—2W1')

2P e'/y

W3= 1—Ã])

X [+(Wl Sl Ss Sl)+J (Ws Ss S2 P)j
COy

Wl= —, Ss= (Wl Sl+Ss
'R3

—2W1[1+ (Zs —1) '*(Zl —1)
*

COS Io]l,
(2.20)

where

(zo ds zp ~2Ã

X ii dss —,(2.22)
"Q 22r (a—b coss2)

G=W1 Sl+S2 2W1, b= 2W1(1 Sl) '(1—Ss)*~

we can write
1 (1 q 1 1( 1~

F(w, ,s,,z„&)= (
—1, ~+ —

( 2+—
(

siss I wp ) siss wl ( wl ) We find

&S=OS1+&22 (2.23)

2 t(1 1)
S1S2 Wl (Z1W1 S2 )

2v'

(&) (&l
ln'zp ln] —(+1 —2 lllzp 1n] —

) p (2,.24)
EQ') I Q' j

In the last step we have divided by an additional
factor 2, because the two photons (with energy-rno-
menta kl and ks) emitted within the same cone are
indistinguishable. The physical property that these two
photons are completely equivalent permits us to see
readily the following relation (which can be obtained by
straightforward manipulation):

8 (wl, Z1,Z2, Q2) Ws

8(ws)ss)zs, p ) wl

The variables p and q' are related to the azimuthal
angleS Q21, qs, and sos fOr the VeCtOrS kl, ks, and ks,
respectively, according to &p'=

~
sos —sos ~, and, as before,

q =
~
Ss—q 1 ~. It follows, therefore, that with

t

"dZ2
0'3l =

2'Y ~ "IV Wl "1 Sl ~1 Ss

( K'1) 2W1

X 1+»——
( 1+—i+—,(2.21)

Sl t. 'WS) S2Ws

nr02 (
lnSQ lllSQ 1n( —

)

—(lllsp) ]
1——

[
2~2 I Q') ( 3) (2.25)

where we have neglected terms of the relative order Q'/y
and 1/zp.

According to (2.23), (2.24), and (2.25), we obtain

o s oscs{C 1n——(y+/c)+ 2C+ Qsrs), (2.27)

where as before C= (2/sr)[ln(2y+) —1]. In the limit
ln(y+/Q)))1 this result agrees with the multiple-photon-
production cross section (1.31) which gives

ol~s=ostsC ln(y+/Q).

CONCLUSION

A comparison of our results with those of Gupta is
shown in Table I.One sees that in the extreme relativistic

nrp 7r'
lnsp ln( —[+2 [lnsp —1]+— (2.26)

( Q') 6

Qy transforming to laboratory coordinates and by
estimating the contributions from all angles, we obtain
finally
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106

0,296

10~

0.344

108

0.394

10'

0.444

' Schein, Haskin, and Glasser, Phys. Rev. 95, 855 (1954).
"A. DeBenedetti et al. , Nnovo cimento 12, 954 (1954).

limit (in'+))1), our o„reduces to that of Gupta. It is
also apparent that when: in(y+/e)))1, our os and o„
specialized to m= 3, agree. Gupta s r3, which is obtained
in the limit ln(y+/e)»1, lny+))1, disagrees by a factor
~3. The error lies in Gupta's estimate for o.3, not in 0 „as
he asserted.

Some rather interesting photon showers have recently
been observed in cosmic rays.""These showers consist
of about 20 high-energy photons within an extremely
narrow cone of less than 0.001 radian, and the very
conspicuous absence of charged particles. It was first
thought that the small value of the fine structure con-
stant o, ruled out multiple-photon production by
processes in quantum electrodynamics. Gupta con-

jectured, however, that perhaps the energy dependence
is such that for suKciently high energies, the energy-
dependent factor becomes comparable to o. ", where e
is the number of photons produced.

In order to investigate this point further we note that
the average or most probable number n of photons in
excess of 2, emitted in the extreme relativistic limit is

n (2o./m) ln(y+/e) ln(2y+).

This leads to the following table for n, with y+/e taken
to be 100:

27+
10
10'
105

O.2 mb

32
1.5
0,025

O3 O2

0.038
0.15
0.26

Thus, three-photon production appears to be most
likely to be observed at relatively low relativistic
energies.

I am indebted to Dr. F. Rohrlich for suggesting this
problem, and for his advice and encouragement given
during the course of its solution.

We see that it is very unlikely that the Schein event is
an electron pair annihilation. One may argue that this is
a freak event, Since there have been several such
photographs involving about 15 to 20 photons, one
wonders why cases involving from 5 to 10 photons have
not been observed. We therefore agree with Gupta's
conclusion that the Schein event cannot be accounted
for by electromagnetic processes.

The table suggests that even three-photon annihila-
tion is unlikely. Although the multiplicity increases
with increasing energy, we must remember that o 2 (and
thus o„)decreases rapidly with increasing energy. In
fact, using the exact formula for 0-3 at energies of the
order 10' Mev, we hnd

3 SX10 8 mb

0-3~7.4X 10—s m

Let us consider smaller energies. Taking (y+/e 100)
we hnd


