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Relativistic Effects in Nuclear Forces*

HANS-PETER DUERR$
Department of Physics, Urtieersity of California, Berkeley, California

(Received March 30, 1956)

An attempt is made to reformulate in a relativistically invariant way a phenomenological theory proposed
by Johnson and Teller. Such a generalized theory reproduces the earlier results, i.e., saturation of nuclear
binding and approximately correct neutron-to-proton ratios. It also avoids the collapse of the nucleus
occurring in the nonrelativistic theory for high kinetic energies. The theory predicts as a secondary result
an extremely strong spin-orbit coupling which is of the order of magnitude of the phenomenological coupling
introduced in the shell model. Furthermore, the theory predicts a strong attraction between nucleons and
antinucleons. This could lead to a 'S bound state as the ground state of the nucleon —antinucleon system
having the properties of a pseudoscalar meson. The strong attraction between antinucleons and nuclear
matter also suggests a high value for the collision cross section of antiprotons with nuclei, an e8ect which
has recently been observed.

INTRODUCTION
' 'N a paper by Johnson and Teller' a velocity-de-
~ ~ pendent potential was introduced to explain certain
striking nuclear properties. This phenomenological
model was based on the following data on nuclear
forces.

1. Nuclear forces lead to saturation of density and
energy.

2. Nuclei show shell structure which can be explained
by the introduction of a smooth classical potential as a
first approximation in which the nucleons (at least the
top nucleons) are thought to move more or less inde-
pendently. To get the right shell structure a strong
spin-orbit coupling has to be assumed. '

3. Nuclear forces are charge-independent.

The simplest way to treat charge independence would

be to assume that di6erences between protons and
neutrons result from their nonidentity (Fermi-sta-
tistics) and their different charge states. On the other
hand the kinetic energy of the excess neutrons in nuclei
do not balance completely the additional Coulomb

energy of the protons.
In I, a nuclear model was proposed in which the

nucleons move in a potential which transforms like a
scalar in a nonrelativistic sense. For convenience, this
potential was assumed to arise from a linear coupling
with a neutral, scalar meson field. As an essential part
of this theory an additional linear coupling was intro-
duced which is proportional to the kinetic energy of the

nucleon; this additional term is repulsive. According to
Fermi statistics the total kinetic energy increases with

density. Since the additional term in the potential also
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increases with density one can show that equilibrium
can be obtained, and the saturation properties are
correctly given. The kinetic-energy-dependent coupling
has the effect of decreasing the Inass of the nucleons
within the nucleus. By assuming an effective mass of
=0.4m, the correct nuclear radii are reproduced. Be-
cause of the increased kinetic energy a smaller neutron
excess can balance the repulsive Coulomb potential of
the protons thus leading approximately to the correct
neutron-proton ratios.

According to these assumptions the coupling between
meson field and a nucleon is linear in the field amplitudes
and decreases with increasing nuclear momentum. For
a certain momentum (kinetic energy=60 Mev) the

coupling vanishes and for higher momenta it becomes
negative. The interaction between nucleons remains,
however, negative and is proportional to the square of

the coupling. Thus for very high kinetic energies

extremely strong attractions are obtained and the
nucleus should collapse. Ke shall show that in the
relativistic treatment this collapse is avoided.

CHOICE OF COUPLING

Ke will try in this section to 6nd a relativistic
formulation of an interaction which in the nonrelativ-

istic limit will lead to a velocity dependence as proposed
in I. Ke restrict ourselves to the consideration of

classical potential functions which have a smooth

behavior inside the nucleus. All V terms appearing in

an interaction may therefore be discarded as surface

terms. They do not give any contribution to the volume

energy which is our primary interest. However, we do

not restrict ourselves to fields transforming like ordinary

potential functions, but investigate potentials which

are linearly coupled to the nucleon field like scalars,
vectors, tensors, pseudovectors or pseudoscalars. %e
write the Dirac equation (setting A=c=1):

iy„P„+rrt=O, ,
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with the possible interaction terms

Og= —U„
02——iy„A „,

03=—,'iy„y„F„I

04 ——iygy„B„,

05= iysV„„

A.= (A,id p),

F„„=—F„„,
8„=(B,iBp),

scalar,

vector,

tensor,

pseudovector,

pseudoscalar,

(2)

arid

~1 0~

&0

(1 0~

O 1)l

(4a)

(4b)

this has the consequence that the expectation value of

P tends to zero with increasing y, the expectation value

or linear combinations of these fields.
In calculating the nonrelativistic limit of the volume

energy we can simplify our problem in two ways:
1. We can discard all commutators of the momentum

p with the interaction potentials since they will lead to
V' terms.

2. We can drop all spin-dependent interactions and
interactions w'hich are linear in the momentum p since
they will average to zero for a closed-shell nucleus, and
in other cases correspond to surface effects in phase
space.

In the following we restrict ourselves to interactions
which have a nonvanishing linear average. Terms which
arise from averaging higher powers of the interaction
will be disregarded. On the other hand, higher powers
of linear averages will be retained. In time-independent
problems this amounts to a self-consistent 6eld treat-
ment. On the basis of the transformation properties of
the fields we observe that only the scalar interaction
and the fourth component of the vector field interaction
will contribute expressions linear in the field amplitudes
to the nonrelativistic Hamiltonian since only these
interactions transform like scalars in a nonrelativistic
sense. Linear expression in the other interactions will
either contain the V', the spin o, or the momentum p,
and they all can be dropped according to the approxi-
mations stated above.

Therefore we only consider the interaction with a
scalar field U and the fourth component of a vector
meson field Ao and w'e will also keep any functions of
these fields which may appear in the nonrelativistic
limit. We set up our Dirac Hamiltonian in the form

H=n y+Pm —PV+Ap.

In this interaction a velocity dependence appears
which can be seen by the following observation: all the
operators involved are diagonal operators (i.e., do not
mix large and small components) except for n=p, e
which multiplies p. The momentum therefore has the
effect of mixing large and small components. Since

of l, however, remains unity. If we consider both Ao and
V positive and V) Ap, the net potential —(P)V+(I)Ap
will be attractive for small momenta and will become
repulsive for higher momenta.

This behavior is readily seen in the nonrelativistic
approximation. If we introduce for later convenience
the notation

V= a~,
A 0 Sm(jko)

(~)

(~)

where u and b are coupling constants, p and po field
amplitudes, then we are led in the limit p«m to the
Schrodinger Hamiltonian with II =II—m:

with

II'= p' —m(ay —by, )
2m(1 —~)

1
p'+ V.~f,

2m

V,fg ———amP 1 +bm(f) p

1—a$ 2m'

This obviously shows the decreasing contribution of
the scalar interaction with increasing rnornentum. We
have given here only that part of the Hamiltonian
which is free of V' terms. The exact nonrelativistic
limit of our Dirac equation, which can be obtained by
a Foldy-Wouthuysen transformation, will be given later.

We have constructed our interaction in a completely
phenomenological way. However, the result is inter-
esting from the view point of field theory. Assuming
linear interactions with uncharged (isotopic singlet)
meson 6elds, we may hope that already the adiabatic
approximation (which neglects any changes in the
nucleon state during emission and absorption of mesons)
will give a fair result. In this approximation the scalar
field and the fourth component of the vector meson
6eld will give the main contribution, namely a classical
instantaneous potential exactly of the type we intro-
duced above. Meson theory also unambiguously deter-
mines the sign of the interaction. It can be shown quite
generally that an interaction with an uncharged scalar
field always lowers the energy and therefore leads to
attraction. The interaction with the fourth component
of an uncharged vector field always gives repulsion
between like particles (e.g. , nucleons-nucleons). We
have here the same situation as for the electromagnetic
field which leads to repulsion between particles of the
same charge.

In our phenomenological approach, we have heavily
relied on the assumption that the potential inside the
nucleus is smooth. In 6eld theory, this assumption
corresponds to the introduction of a strong cutoff for
meson momenta inside the nucleus. This assumption
of low momentum cutoff would justify our replacement
of the 8-function lattice of nuclear sources by the smooth
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p distribution. Also the adiabatic approximation of our
interaction would be quite reasonable. By disregarding
the average of nonlinear terms we have excluded the
processes in which two or more mesons are created and
annihilated simultaneously. The justification of this
restriction does not appear to be straightforward. In
connection with the pseudoscalar theory arguments
were given' which seem to imply that the contributions
of the "pair term" to the interaction is small, and which
depend on a weak momentum cutoff. In the case of a
postulated strong momentum cutoff this conclusion
may not hold. 4

LAGRANGIAN AND HAMILTONIAN

H'=H„„,i+H;„,'+H;„,"+H '+H ", (14)

with

f
Hn ucl ~Kpd ~,

GPL pp47, (16)

Following the usual procedure of establishing a
Hamiltonian form, ' we arrive at the total Hamiltonian:

%e will set up a Lagrangian for the interaction of
nucleons both with isotopic singlet scalar and vector
mesons of mass p, & and p2, respectively. As stated, the
interaction shaH be of the type

I i= —g8'*&q+gs+~Ve. (~)

4 has here the meaning of the total nuclear field
operators, while y and (y,ice) are the field operators
of the scalar field and the vector field, respectively. In
the following discussion, we simplify our problem by
treating the sources of the meson field in a nonrelativ-
istic approximation. The nucleons obey Fermi statistics
and can be effectively described by a Fermi gas of
density p. The average kinetic energy of the nucleons
can be written as

H jyet ~
651popd 7,

L~'+
l V~ l'+»'~'l~r,

r
~'+

~
V X s I'+»'~'

(2
+~ '~o( —V

In addition, an equation must be satisfied:

ps pp= Atsp+V ' 'x. (20)

where
E~——Cp:, (10)

anz iop+ btisq pp,
1—Gp tll

if we introduce the new coupling constants

6= gi/BS,

b= gs/ns,

and define (1—a&) ' by its series expansion.

(12)

(13a)

(13b)

'K. A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023
(1953); S. Drell and E. M. Henley, Phys. Rev. SS, 1053 (1952);
G. Wentzel, Phys. Rev. 86, 802 (1952).

4 One may argue in the following way. The nucleons are fer-
mions occupying volumes of approximately 1/R' in momentum
space if R measures the nuclear spatial dimension. Emission and
absorption of mesons will lead to recoil eRects which can be
accepted if the meson momenta 4&1/R=(1/r0)A & and the
nucleon remains in the same state. Exchange of mesons with
higher momentum would necessitate transitions to other mo-
mentum states which are already occupied. Transition to unoccu-
pied momentum states above the Fermi level may be assumed to
be less probable except for nucleons near the top of the Fermi
distribution. These contributions, however, will then be propor-
tional to A&. This argument therefore introduces a strong mo-
mentum cutoff for only single meson events which are based on
the exclusion principle rather than an assumption concerning the
interaction. This line of reasoning is related to arguments given
in the self-consistent 6eld treatment by Brueckner, Levinson,
and Mahmoud, Phys. Rev. 95, 217 (1954).

C= (3/10') (-'m') '. (11)
With these simplifications, the interaction Lagrangian
assumes the form

er=Bq/Bt+V happ,
x.p=—0. (21b)

The condition (20) for qs is connected with the fact
that only three of the four components of the vector
meson field are independent variables thus correspond-
ing to an interaction with a meson of spin 1. It is easy
to see that the Hamiltonian is positive definite as it
should be.

We now want to separate the classical part of the
interaction. Therefore we write

and
v =4+~',

qo=4o+q e',

(22)

(23b)

where we now assume P, Ps to be ordinary functions
(i.e. , not operators) describing a time-independent
instantaneous classical field.

'E.g. , G. Wentzel, QNamtlm Theory of Fields (Interscience
Publishers, Inc. , New York, 1949).

Here p and m are the canonically conjugated field
operators of the scalar field satisfying the relation

(21a)

For the analogous operators (p,spe) and (~,i~s) of the
vector meson field, we have
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Substituting (23a) and (23b) into our Hamiltonian linear coupling between y and thenucleons. This gives
(14), the vector field part (17) and (19) can be written us a field equation for g:

1 E~—V'Q+ Pi p= 1——
7' m-

ctpEp. (31)

p2 pp =Q ' 'Jc (25)

V'4—o+p2'4 o= bmp

Ke recognize that the effect of the interaction of
vector mesons with 6xed nucjear sources can be de-
scribed by a classical potential, po (particular solution),
which obeys the field equation (26). The primed
operators (q ',iq o') correspond to free (uncoupled)
mesons (solution of the homogeneous equation).

The reduction of the scalar meson interaction is
similar. However, the calculation is a little rn.ore
complicated by the nonlinear coupling which appeared
in the nonrelativistic limit. Upon substituting (22) into
(14) the Hamiltonian for the scalar meson interaction
(16) and (18) can be written

E~
H; i'+H '= —1—

,
—amp(4+V')

1—a(y+p') m

+lC~'+IV(e+~') I'+Pi'(4+~')'3 dr, (2&)

where the operator in the denominator is defined by
the expansion

a a'
C1—a(4+v') j '=- 1+—v'+ —

v "+
7- 7 7'

and we use the abbreviation

(29)

Ordering the terms and using partial integration, we

Anally get

1 E~
H;„&'+H„'= —1—— — am' p+ 2 C I V4 I

'+pi'4')
y m.

1 &xq—y V 4 Pi@+I 1 IamP
p2 m)

~2 ~~2 g
+ Ezp 1+—v'+

+i2C~"+
I
V&«'I'+»'~" +»' ~o" j)d~ (24)

with the additional conditions,

In this case, however, the classical potential does not
fully describe the interaction of the nucleons with the
meson field. The mesons corresponding to the 6eld y'
are still coupled by nonlinear terms. YVe will again
assume that these terms can be neglected.

The essential part of the total Hamiltonian (14) now
has the form

I'
I

I' 1 Eir)H'=
i Eirp —

I
1—— Ia~p+bm4op

+DECI «I'+p '&' J lCI «—oI'+»'4o'J ~, (32)

with the abbreviation (29) and the secondary conditions,

( 1 Eir)—V'p+p, i'p=
I

1—— lamp,
p' m j

—V 4'0+@290=bmp.

(33)

(34)

Obviously these field equations lead to Yukawa type
potentials. Since p will always be a positive quantity,
both potential functions g and @0 will be positive if u

and b are chosen positive. One therefore sees that the
scalar field interaction, which gives rise to a negative
term in (32), is attractive, while the vector meson field,
is repulsive, since it gives rise to a positive term. The
formulas hold only for small kinetic energies and hence
the source function for the scalar field never becomes
negative as may appear in formula (33) but tends to
zero for high velocities (see Sec. 2).

(33)

SATURATION CONDITION

We wish now to minimize the total Hamiltonian (32)
with respect to the nuclear density p. This is the only
free variable assuming fixed interaction constants e
and b and meson masses pi and p2, since Q and 4o are
expressed in terms of p by the field equations. We are
only interested in the volume energy and consequently
will drop all V' terms in these equations. We further-
more want to assume a constant nuclear density p= po,
which leads also to the constant fieM amplitudes,

We shall define p in such a way as to eliminate the

P2 $0 = bmpo.

Observing the normalization condition,

~pd7'= po d'r=A,

(36)
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and defining the radius of the nucleus by

(38)

with
~= (& ~)/(&+ Z) =P Py/P +Pn= &P/P (48)

where A is the number of nucleons, we get

po ——3/4irros. (39)

a'
Ev = = Ez—' &—i+ &—s+Ri

A
(40)

The energy per particle (neglecting surface terms) will
be designated by E&. We find

where X is the number of neutrons, Z the number of
protons.

Minimizing with respect to the total density p leads
to the binding energy formula

(1 4) 1 5 (10 1) 1
E.= —

I

——I-E~'+-I ——I-E~'~'
Ey 3)y 9&3

+Eco+surface terms. (49)

with the abbreviations

jVKo —CPos

t/ g= am@,

Vs= bmgo,

Ri s» 4—'/Po~

Rs= oPs 4o /Po

(41a)

(41b)

(41c)

(41d)

The first term is the volume energy as determined by
(46). The second term is the symmetry energy, and the
third term is the Coulomb energy.

This formula has to be compared with the empirical
Weizsacker mass formula, which we take from Green's'
"best fit" values (re= 1.22&&10 "cm):

Eii= —15.75+23.42lV+Eco+surface terms. (50)

(Numbers are given in Mev. ) With this value of

It is interesting to note that in (40) one may consider

Q aild Qo as independent parameters by disregarding for
the moment the field equations (35) and (36). Setting
the variation with respect to p and go equal to zero,
one obtains

P~Ev/~4 = (W/V')Exo —&i+2Ri=0, (42)

PoBEv/Bgo Us ———2R,=0,

which gives us back the field equations (35) and (36).
That the derivatives of EI vanish with respect to the
classical fields P and Po is, of course, a consequence of
the assumed time independence of these 6elds. Mini-
mizing (40) with respect to Po will give us the saturation
condition

or
y =0.559=0.56,

a&=0.44.

(53a)

(53b)

This would mean that the nucleons act inside the
nucleus if they had an apparent mass

m, gg
=ym =0.56m. (54)

~0——1.22X10—"cm,

we get for the Fermi energy, using (41a), (39),and (11),
EK'= 19.25 Mev.

We adjust p in such a way that the volume terms in

(49) and (50) should become equal. This gives

po&Ev/Bpo= s (1/y)Ego —Ri+Rs 0.

If we subtract (42) from (43), we obtain with (44)

(44) Using (49), one finds

Ea= —15 75+29.6A'+ (55)

(1 1)1
&is= &i—Vs= ]

-+- )-Ex'.
E3

Inserting this into the energy equation (40), we get,
with (44),

The symmetry energy is comparable with the value
obtained empirically by Green (50) and therefore will

lead to approximately the proper neutron-proton ratios.
We point out, however, that in case neutrons and

protons occupy the diferent volumes

V„=VL1+-',&V/V3 and Vu ——VL1 —s~V/V],

respectively, then 5P/P/5=% —Z/iV+Z but

V —V„18V
=6 1———

26 V

1 6V
E,y =29.6 1———— (29.6,

2A V

This expression is the volume part of the binding energy.
Up to now we have treated protons and neutrons + ~

equally. If we take into account the electrostatic
repulsion experienced by the protons and treat neutrons The symmetry energy then will be only

and protons as separate Fermi gases of density p„and
p~, respectively, we obtain the following total kinetic
energy per nucleon:

(57)

EzP'= E~ot'1+ (5/9) a'$ (47) o A. E. S. Green, Phys. Rev. 95, 1006 (1954).
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blip =0.363=0.36, (59)

We may point out that the saturation condition does
not fix the coupling constants a and b but rather the
dimensionless products ap and bpp. The meson field
variables are determined completely only if we know
the masses of the corresponding mesons, i.e. , the ranges
of the fields. It may be helpful to express our coupling
constants a and b in a form analogous to the fine
structure constant n= 1/137 in electrodynamics.

Using the nucleon Compton wavelength, A. =m ',
we get

ai= —,'(rp'/M) (ay) (1—Exp/y'm) '(p /imp'), (60)

~p= p (rp'/7') (bA) (pp'/m'). (61)

With the values (51), (53), and (59), and X=0.210
)(10 "cm, therefore,

ni =30.8piP/m',

n p 23 6p pP/——m'.

SURFACE ENERGY

(62)

(63)

Any statement about the surface energy is quite
doubtful since & terms were neglected in the section
on Lagrangian and Hamiltonian. Some of these terms
give strong negative contributions to the surface energy.
Nevertheless let us investigate the contribution to the
surface energy arising from the static potential in a
special case assuming a constant p value up to a radius
E=rpc4& and p=0 outside this radius. We can solve the
field equations (33) and (34) for P and Pp. This will lead
to a potential function which decreases rapidly within
a meson Compton wavelength. In addition to the
volume term an energy term proportional to 3: is
obtained as a first approximation which is identified as
a surface energy. The surface energy per particle is

approximately

because of the expected smaller volume of the proton
distribution.

Using Eq. (45), we get, for the potential energy,

Vip ——m(a$ bQ—p) =73.2 Mev, (58)

and therefore, for the vector field coupling,

meaningful if we introduce all the other possible contri-
butions. As has been pointed out, some contributions
are negative and we therefore cannot conclude that
the mesons used here are heavier than the m mesons.

Qe(f= 6
1—ay 2m'

(66)

i.e. , it decreases with increasing momentum p of the
nucleons (measured relatively to the static field) and
it decreases for p/0 with increasing field amplitude.
The latter can be interpreted as a saturation of the
scalar meson interaction, an effect which is the stronger
the higher the momentum of the nucleon. If two
nucleons approach, P, Pp and the kinetic energy are
expected to increase. The greater values of g and the
kinetic energy will reduce the attraction, but the
repulsive term gp is not reduced. Thus one must not
expect as great Quctuations in the attractive potential
as would result if short-range attractions of particle
pairs would be summed.

SINGLE PARTICLE MOTION

We will concentrate now on the motion of a single
particle in the nuclear field which is produced by the
common action of all nucleons. This over-all field will

have all the features of a classical scalar 6eld in a
nonrelativistic sense. However, we have not yet shown
that the particles will move in erst approximation
independently of each other in such a field as is sug-
gested by the success of the shell Inodel. We do not
want to prove this now, but simply will assume here
that a self-consistent treatment of our theory will

approximately lead to such a behavior, at least for the
particles of highest energies. We shall give an argument
for the weaker statement that actual fluctuations of
the potential will be smaller than would follow from
additive pair interactions.

In our theory, the nucleons are sources of two kinds
of mesons: scalar mesons and vector mesons. The
exchange of the first kind leads to attraction, the
exchange of the second kind to repulsion. However,
the source strength of the scalar mesons is not a
constant, but has the form

E,=4Pm +— bPp A '.
pyr] p2rp

(64)

If we assume both meson masses to be of the order of
the ir-meson mass (p, =p, =@=1/rp), we would expect

E.=4P(Vip/Iirp)A '=552 '*(Mev)=(65)

As in I, we get quite a big positive contribution from
the potential to the surface energy. To account for the
relatively small observed surface energy of E,= 1.5A —'

Mev, we should assume meson masses higher than the
m meson mass. However, such considerations are only

H= u y+Pm Pam4i+b~p. — (67)

We are only interested in the nonrelativistic limit of
this expression. Ke know that in this limiting process
a spin-orbit coupling term (E, , ) will appear. The
contribution of the scalar field to this coupling can be

SPIN-ORBIT COUPLING

Let us now investigate the motion of a single particle
in a central nuclear field which is composed of the self-
consistent classical meson fields p and Pp. The Dirac
Hamiltonian will have the form
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obtained from the well-known Thomas precession, ~

span

= —
s [vXv].

This leads to the spin-orbit energy,

E, , (scalar) = + so [vXv].

(68)

using the Foldy-Wouthuysens transformation,

(74)

Here S is some Hermitian operator which will be chosen
in such a way that the transformed Hamiltonian,

Replacing the acceleration by the force, assuming a
central potential V, (r), introducing the momentum
p=mv and orbital angular momentum l=rXp, we

get the usual form

1 (1 BV)
E, .(scalar)= —

~

— ((o 1).
4msEr ar 3

(70)

From the fourth component of a vector field (which
behaves like an electrostatic field), we will get the same
Thomas precession term since there is no difference in
the nature of a scalar field and the fourth component
of a vector fmld in the nonrelativistic limit. However,
the particle in its orbital motion will not only experience
the fourth component of the field but also an admixture
of the other three components. In fact, a particle
moving in a pure electric field will experience a magnetic
field contribution,

H=- (vx E),
which, with

Il'= &zS~e—, 'S (75)

z
S= — pn

4m
p+p

1—~ 1—~

and get
1 2

v(b4o), (77)
4m(1 —~)s

has only diagonal operators (i.e., operators which do
not mix large and small components). This can be
accomplished in approximate steps for small momenta
(p((m) and potentials which are suKciently smooth
(their variation within a nucleon Compton wavelength
should be small). Then S will be a small operator of
order p/m and we can use the expansion

H'= H+i[S,H]+ ,'i' [S,[S-,H]]+ . (76)

We choose, for our S in Grst approximation,

and
eE=mv O'= Pm+ P p p+ p' + p'

8m 1—~ 1—ag 1—aP

oiz= ppr+pps, =+s[vX v].

The corresponding spin-orbit energy,

1 (1 t}V.I
E, , (vector) =+

~

— ~(~ 1),
4ms&r ar &

(72)

(73)

is similar to E, , (scalar) except that it carries the
opposite sign.

In our theory, we have a superposition of a strong
attractive scalar and a strong repulsive vector potential
(V, is negative but V. positive). Therefore in this case
the vector field precession will add to the scalar field
precession constructively and so will lead to an ex-
tremely strong spin-orbit coupling. This coupling is in
addition enhanced by the fact that the effective mass
in the interior of the nucleus is reduced. The spin-orbit
coupling will also have the. correct sign required by the
shell model.

The stated results can be obtained by Gnding the
nonrelativistic limit of our Dirac Hamiltonian (67) by

'L. H. Thomas, Phil. Mag. 3, 1 (1927). D. R. Inglis, Phys.
Rev. 50, 783 (1936);Phys. Rev. 56, 1175 (1939).

span= (e/m)H,

leads to the Larmor precession

Ml, =VX V.

The total precession resulting from the vector meson
field therefore yields

vb4p1
Pamp+ b~—p+

8m (1—~)'

~ [v(P~+byp) Xp]. (78)
4m(1 —~)s

~ [V(ac+by, )Xp]
4m (1—uf)s

1 1 8
——(~+byp) (o 1).

4m(1 —~)s r Br
(79)

In calculations with the shell model, it is customary to
introduce the proposed strong spin-orbit coupling term
in the form of the Thomas precession term multiplied

by a large phenomenological factor X, i.e.,
1 )1 BVy

( 1). (80)
4msl, r ar)

s L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

This Hamiltonian is Hermitian. To see this for the last
term, one uses the assumption that P and Pp are central
fields. Positive and negative energy states are clearly
separated up to order of p' (higher orders were dropped).
For the nucleons we have to take the upper rows of
the Dirac operators, i.e., P—+1. We at once recognize
the very large spin-orbit coupling term,
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The potential usually chosen for heavy nuclei, if we use
F0=1.22)&10 "cm, is a square well of depth

Vo ——+40 Mev = npsrt =0.043srt. (81)

Let us assume for a 6rst crude estimate that the
eigenfunction for a particle in our velocity dependent
potential is similar to the eigenfunctior1 of a particle in
an ordinary potential of 40 Mev with the same binding
energy. Then we can compare the spin-orbit energies,

tr 1 r" 1cIV
Z, .&=) y*—&(r) P'-(r)r'dr

4m'~0 r ar

E(tr I) )., ~pr(Z) ~'
4

for the phenomenological expression, and

H = )IN'+ p']&+ V.H= E. (87)

By elimination of p' from Eqs. (86) and (87) V,«can
be expressed in terms of the total energy E of the
bombarding nucleon. For convenience, we introduce
the dimensionless quantities,

itself is in a state of minimum energy which does not
change with small changes of p.

For constant values of p and pp, the Hamiltonian
operator (67) for a nucleon reduces inside the nucleus
to the form

H = Lett'(1 —aP)'+P']'*+brttgo= 8, (86)

where a, b, p, and pp have the same meaning as in the
last sections. We will consider this energy as resulting
from an effective potential V,«, which we deine by
the equation

&1~- 1 1a
S*() (~+—b—~.)e( )"d

4Irt& p (1—ay)' r r)r

E(Ir 1) ap+bp
l~(~)l'

4
(83)

and get

e= E/rN,

'off Veff/rrt)

ao ——a&= 0.44,

bo = b4o =0.36,

. = —E( —bo)'+ (2—o)3'*.

(88)

(89)

(90)

(91)

(92)
from our theory, if we define inside the well the con-
stants ap=aP, bp=bPp. With the values ap and bp of
Eqs. (53) and (59),

ao+bo I4(&) I' IIt (~) I'
X= =33

(1—ap)» 14'(~) I'
I
lt'(&) I'

(84)

The value X=33 which one obtains for It (E)=fr(R) is

in reasonable agreement with the estimated phenome-
nological coupling. '" A more careful consideration of
the level ordering in nuclei with our velocity dependent
potential may require higher values of ). At the same
time the change in effective mass near the surface leads
to

I
It'P) I'&

l
It'(&) I' (85)

A detailed discussion of this question will be given
elsewhere. Ke note here that the serious discrepancy
between the ordinary Thomas term and the phenome-
nological spin-orbit coupling is removed.

INTERACTIONS OF NUCLEON3 WITH NUCLEI

We calculate the effective potential which acts on a
nucleon of kinetic energy E'=E—m impinging on a
heavy nucleus at rest. We assume that the potential of
the nucleus will not change appreciably by the presence
of the bombarding nucleon. This approximation should
be quite good for heavy nuclei since here the fluctuation
in nuclear density caused by the addition of the incom-

ing partic)e to the nucleus will be small and the nucleus

' W. Heisenberg, Theorize des Atorrttterrts (Max Planck Institute,
Gottingen, 1951).

'o Ross, Mark, and Lawson, Phys. Rev. 102, 1615 (1956).

t/', ~f = —0.047m = —43.8 Mev. (93)

From the position of the giant 5-wave neutron reso-
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FIG. i. The effective potential, e,«, for nucleons is plotted
against nucleon energy. The upper panel shows the behavior
between 0 and 6 Bev. The lower panel shows the same curve on
a larger scale for low energies including negative energies which
correspond to bound states in the nuclear well. The starting point
of the curve is determined by the depth of the nuclear potential
for zero kinetic energy.

In Fig. 1, v, fg is plotted against &. We observe that
the effective potential is negative up to energies ~= 1.13
(8'=121 Mev) and then becomes repulsive for higher

particle energies.
The effective potential can be compared approxi-

mately with the real (dispersive) part of the potential
introduced in the optical model. For very small kinetic
energies (8'~0), we find
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nances at low energies Adair" and Feshbach, Porter,
and Weisskopf" estimated the depth of the ordinary
square well potential with the radius 8=1.45X10 "A&

cm to be F0=42 Mev. Recent calculations by Lawson"
and Ross, Mark, and Lawson" with a diffuse well,

00

-s -0.E-
I
g "0.2"

g -0.3-
-0.36I-0 04-

C4

E.O 2.0 3.0 4.0 5.0 6.0 &.0 8.0
I I i I I

- -E00

- .200

V —Vs51+e~'&" ~&$ '

indicate that a potential depth V0=42.8 Mev with a
radius 8=1.3&(10 "A' cm and o.'=1.45)&10" cm '
also reproduces the experimental data. Comparing the
values VsR' (which roughly takes into account the
different definitions of E) with our V,«E' as given by
(93) and (51) leads to a fair agreement. We will point
out, however, that this comparison can be made only
in an approximate way since the behavior of the wave
functions on the surface of a velocity-dependent well
will be a little different from the behavior on the surface
of an ordinary well. The correct resonance positions will
therefore be reproduced at a slightly different (smaller)
value for the eGective depth of the potential than given
by these authors.

The analysis of proton elastic scattering at 5, 17, and
31 Mev on the basis of a diffuse well" indicates an
energy dependence of the real part of the potential in
agreement with our theory.

Calculations by Taylor" based on total neutron
cross sections between 30 and 400 Mev" indicate a
strong decrease of the real part of the potential around
120 Mev. On the basis of our theory such an effect
should be expected. Calculations of cross sections in
collisions of nucleons with heavy nuclei will be given
in a later paper.

INTERACTIONS OF ANTINUCLEONS WITH NUCLEI

Up to now we have discussed the interactions of
nucleons with nuclei. It is possible, however, to draw
some conclusions on the negative energy states, i.e.,
the antinucleons. Our Dirac Hamiltonian (67) and its
nonrelativistic limit (78) clearly exhibits a striking
difference in the behavior of nucleons and antinucleons.
In case of nucleon-nucleus interaction the difference of
the scalar meson and vector meson potential constitutes
the effective potential. In case of antinucleon-nucleus
interactions the vector meson potential also becomes
attractive since it is similar to the electrostatic field in
the case of opposite charges. Therefore it will add to the
scalar meson potential which is always attractive. On
the other hand the spin-orbit coupling will be only of
the order of the ordinary Thomas term.

We can describe the interaction of heavy nuclei with
the bombarding antinucleons of total energy E by an

"R.K. Adair, Phys. Rev. 94, 737 (1954).
"Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954)."R.D. Lawson, Phys. Rev. 101, 311 (1956).' Melkanoff, Moszkowski, Nodvik, and Saxon, Phys. Rev.

101, 507 (1956).
's T. B. Taylor, Phys. Rev. 92, 831 (1953)."J.de Juren and B. Moyer, Phys. Rev. 81, 919 (1951);A. E.

Taylor and E. Wood, Phil. Mag. 44, 95 (1953).
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Fio. 2. The effective potential, v', ff, for antinucleons is plotted
against antinucleon energy. In contrast to the nucleon potential,
this potential is always negative.

eGective potential,
~ eff & eff~

We only have to give bs the opposite sign in (86) and
(92). We get

In Fig. 2, this effective potential is plotted against the
total energy E=ee, of the bombarding antinucleon. We
observe that this potential is always strongly attractive.
The decreasing attraction with increasing energy is
again due to the decreasing contribution of the scalar
interaction.

The strong attraction between nucleons and anti-
nucleons may give rise to a bound state of the nucleon-
antinucleon system'7 analogous to the electron-positron
system. Perhaps this could lead, as in the case of the
positronium, to a 'S ground state which would exhibit
the properties of a pseudoscalar meson. Since our theory
is not based on the m-meson field it may be quite
satisfactory to explain the x meson as a consequence
of these nuclear interactions.

As a consequence of this strong attraction a cross
section higher than the geometric cross section was
predicted" for collisions of high energy antinucleons
with nuclei. Recent measurements on the attenuation
of the intensity of the antiproton "beam" by Cu and
Be at the Berkeley Bevatron, indeed, seem to indicate
such a result. ""

We will try to give an estimate of this cross section.
As in the section on surface energy we describe the
nucleus by a meson source distribution of constant
density po up to a radius E.=rod& and p=0 outside this
region. This will give rise to an effective potential for
antinucleons which decreases exponentially for r&R
(Fig 3)

V'=-,'V', tr(E/r)e ~&' ~&.

Here n is a measure for the slope of the potential which
'7 E. Fermi and C. N. Yang, Phys. Rev. 76, 1739 (1949).' H.-P. Duerr and E. Teller, Phys. Rev. 101, 494 (1956).' Brabant, Cork, Horowitz, Moyer, Murray, Wallace, and.

Wenzel, Phys. Rev. 101, 498 (1956).
~' Chamberlain, Keller, Segrh, Steiner, Wiegand, and Ypsilantis,

Phys. Rev. 102, 1637 (1956).
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gives the factor multiplying the geometrical cross
section for a certain particle energy E and cutoff angle
8O of the experimental arrangement.

We consider an impinging antinucleon of classical
energy

EFFECTJVE POTENTIAL

FIG. 3. The nucleon density and effective potential assumed in
the calculation of the antinucleon cross section is shown in this
figure.

in general will not only depend on the meson masses of
the vector and the seal.ar field, but perhaps can have
contributions from other fields which were dropped in
the calculation of the volume energy. It also will

depend on the slope of the p distribution which has
been assumed here to be infinitely steep. We therefore
will take for n some semiempirical value as suggested
by calculations on energy levels in nuclei using disuse
wells. "

For simplicity we will treat the high-energy anti-
nucleons as classical particles which have a certain
impact parameter d. This approximation will be valid
for momenta p»(A/4Z) (8V/Br). In this classical
picture we then have to distinguish four cases:

(1) Particles with impact parameter d&R will inter-
act with the nucleons. We will assume that they are
all annihilated.

(2) Particles with impact parameter R&d&Rr will

be strongly deflected by the attractive field and as a
consequence fall into the nucleus, thus increasing the
annihilation cross section from xR' to mRi'.

(3) Particles with impact parameter Rt&d&RS will

be elastically scattered and will contribute to the scat-
tering cross section.

(4) Particles with impact parameter d)Rs will be
scattered by angles smaller than the angle 80 given by
the geometry of the experiment and will not contribute
to the cross section.

In case of gradually decreasing p-distribution and a
finite "annihilation length, " (3) would also include

annihilation and inelastic scattering events.
In an attenuation experiment with poor geometry,

where shadow scattering is not measured, the total
cross section for high-energy particles will therefore be

where

dp/dt = —(~1')„
dp dp dg—=—s'+ —Xp .
dt dt dt

(100)

Here s' is the unit vector in the direction of the path
of the antinucleon and dx' is the infinitesimal rotation
of this direction. We are only interested in small
defiections and consequently will replace in the calcu-
lation of the force, instantaneous velocity and momen-
tum the actual path by the straight line

d=r cosh, (102)

where (r,b) are the polar coordinates of the particle.
However, the changes in velocity due to the presence
of a velocity-dependent potential will be taken into
account. The velocity of the particle tI(r)=ds/dh of
certain impact parameter d along the path is given by

and impact parameter d in its incident plane (Fig. 4).
p and It's will be constant inside the nucleus but will
have an exponential dependence on r outside the
nucleus. In the Hamiltonian operator, we therefore
have to retain the V' terms which appear from the
comrnutators of p with the potentials and which are
proportional to A. In a classical calculation these terms
can all be neglected (A—+0) and the Hamiltonian reduces
to its classical form (99).

According to the first Hamilton equation, the change
in momentum will be

where
o =rrRss= fxR',

f=Rss (EPp)/R'

(97)

(98) Fro. 4. The classical orbit of the antinucleon in the nuclear field.
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the second Hamilton equation,

v(r) = BH/Bp(r), (103)

where p(r) is the momentum along the assumed straight
path (102) at r.

The radial velocity will be

Since the function F(s) is proportional to s and will

consequently decrease very rapidly with r, we can
approximate the square root in the integral (106) by

r—d
[r'—d']—'= [2d(r —d))-~ 1— + . (114)

4d

dr/dt=v(r) sinb, Introducing the notation104

y= [n(»—d)]',

the integral (106) can be written105

and we get, from (100) and (101),

p(r)v(r)BX/Br= (BH/Br) cotb.

With (102), this yields the total deflection,

(115)

ao+obp R &" y'
8=[2nd)l —e

—&" "~ 1—
e' —1 d. "o

exp( —y')d 1 (BH)
dr.

[r' —d']l p(r)v(r) ( Br i
(106)

R
X 1—Ag—e—&"—") exp( —y')

E.2
+A&—e ' &e ~) exp( —2y) —+ dy. (116)

d2(107a)

This gives

a/= oaps,

bPp=-', bps,

and
v.nd '* ap+ebp R

&-e(d-z)
2 e~ —1

Assuming that g and Pp have the same functional
dependence on r as given by (96), we introduce the
dimensionless quantities,

R=—exp[ —n(d —R)) exp[ —n(r —d)], (108)
with

X[Io A+i+A oIo — ]) (117)—

with approximately

n= n[1+ (1/nd)]. (109)

Io=i 1+( 3

8ndi
' (118a)

Ke can write

BII
F(s)=-

pv Br

(ap+ obp) ——', (ap' —bp') s
= gCXZ

(o'—1)y (ao+ obo) s——,
' (ao' —bo') s'

For high energies E (small deflections), i.e.,

(o'—1)))(ao+ obp) s

(a o b 2)so

1( 7 iRI=
i 1+ i

e-
V2 & 16ndi d

1( 11)Ro
I (1+ i

eo&ez&
v3( 24 di d'

(118b)

(118c)

The deflection angle depends exponentially on the110

impact parameter. According to (111) the expansion
in brackets of (117) converges rapidly for 6«[—',ornR)&.

For a rough estimate of 8, we use the 6rst term in
the expansion (i.e., AiI&=AoIo=0 and Ip 1) and set——

(111) (R/d) l =exp[ —(d R)/2R). This gi—ves

the denominator can be expanded and we are led to 1
exp ni 1+ — i(d —R) . (119)

2 o' —1 0 2nRi

ornR 'ap+obo

ap+ obp

[1—Ags+Aos' —+ ]) (112)
6 —1

F(s) =-,'ns

with

ao+ obo 1 ao' —bo'

Ag —— +
o' —1 2 ap+obp.

For the calculation of the cross section, we have to
express the impact parameter in terms of the deQection
angle. An experimental arrangement with a cutoG angle

(113a) Bp will measure a collision cross section equal to the
geometric cross section times the factor (98):

1 (ap+ obp)'

+4 (ao' —bo')
1 6 1

(113b)
1 |& (o»nR/2)'* ap+obp)

f= 1+ lni —
(

. (120)
0 5+nR (. 8p o' —1 i
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Chamberlain et al."have measured the cross section of
antiprotons of average kinetic energy 8'=430 Mev
(e= 1.4) in an attenuation experiment with Cu (A =63).
The cutoG angle is 80=13' which excludes the shadow
scattering in the cross section. With the choice of

+0.059)X10 '4 cm'. The application of our theory to
this very light nucleus is, however, quite doubtful.

On the basis of our classical model, we can also
estimate the annihilation cross section, which we define

by

o.=1.0X10"cm ' (121) with
o =f,mR',

and the values of ao and bo given in (53) and (59), we get f =RP(E)/R'. (126)

fcu ——2.15.

Using (38) and (51), the cross section will be

a-cu=1.59X10 '4 cm'.

(122)

(123)

The more exact calculation on the basis of (117) gives
fcu=2. 17 and oc„=1.60X10 "cm' which shows that
our crude approximation (119) is already very good.

The experimental value

(o cu)ex& = (1 58&0.22) X 10 "cm' (124)

is in good agreement with our result.
The calculated value for r, however, will depend

strongly on the choice of ot, which is only known within
wide limits. Ross, Mark, and Lawson" have calculated
the energy levels in nuclei with the Saxon potential

and found that the choice n'= 1.45X10"cm ' led to an
improved level ordering. This n is not directly com-

parable w'ith our o,. However, we can show that a
choice a=1.0X10" cm ' will lead to a potential of
similar slope to the Saxon potential with o,'= 1.45X10"
cm in the region d =R2=1.5E which is of interest to us.

Similar calculations on Be' (E'=455 Mev, 8o=19')
gives fs,= 2.51, i.e., os.——0.508X10 '4 cm' which is to
be compared with the experimental value of (0.365

The factor f, can be determined in a classical manner
and depends on the energy of the bombarding anti-
nucleon. In this calculation we explicitly have to take
into account the deviation of the particle orbit from a
straight line in the Geld of the nucleus.

In case of the 430-Mev antiprotons of the Cu attenu-
ation experiment, we get

(f,)c„1.81. —— (127)
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The comparison with (121) shows that approximately
84% of the collision cross section is due to annihilation.

The analogous calculation for Be' (E'=455 Mev)
yields (f,)&,——1.76, which implies by comparison with
the calculated value for the collision cross section that
here only 70% of the collision cross section is due to
annihilation.


