(9)

 (11)

Reduction of the Dirac Equation

J. SUCHER Columbia University, New York, New York (Received March 22, 1956)

A method is given for reducing the Dirac equation for an electron in an external field to small components, leading to reduced equations linear in the time-derivative operator.

HERE exist at present several methods¹⁻³ for reducing the Dirac equation for an electron in an electromagnetic field $(A; V)$ to "large components." Aside from the Foldy-Wouthuysen transformation,³ which cannot be exhibited in closed form, all of these lead to equations which are nonlinear in $p_0 = i \partial/\partial t$ and hence to nonlinear eigenvalue problems for stationary states.

We should like to point out a reduction method which is in closed form and yields equations linear in p_0 . Thus, a linear eigenvalue problem results for a stationary state.

Consider

$$
p_0\psi = 3\mathfrak{C}\psi = (\alpha \cdot \pi + \beta m + V_0)\psi, \qquad (1)
$$

with

$$
\pi = \mathbf{p} + e\mathbf{A}, \quad V_0 = -eV,\tag{2}
$$

and $(A; V)$ independent of t. Let \mathcal{L}_+ and \mathcal{L}_- be the projection operators on the positive and negative energy parts, respectively, of the spectrum of \mathcal{R} . In operator form,

$$
\mathcal{L}_{\pm} = (1 \pm 3\mathcal{C}\mathcal{S}^{-1})/2, \tag{3}
$$
\n
$$
\mathcal{L}_{\pm} = \mathcal{K}_{\text{red}}\mathcal{L}_{+}, \tag{13}
$$

where

$$
\mathcal{E} = |\mathcal{K}| = + [\mathcal{K}^2]^{\frac{1}{2}} = m(1+Q)^{\frac{1}{2}}
$$

= $m(1+\frac{1}{2}Q-\frac{1}{8}Q^2+\cdots),$ (4)
 $Q = (\mathcal{K}^2 - m^2)/m^2.$

Using the decomposition

$$
\psi = \phi + \chi, \quad \phi = \mathcal{L}_+ \psi, \quad \chi = \mathcal{L}_- \psi, \tag{5}
$$

 $(5):$

 $p_0\phi = 3C\phi, \quad \mathcal{L}_+\phi = \phi,$ $(6a,b)$

 $p_0x=3C\chi$, $\mathcal{L}_x=\chi$. $(7a,b)$

Using (6b), and the decomposition

$$
\phi = \phi_+ + \phi_-, \quad \phi_\pm = \left[(1 \pm \beta)/2 \right] \phi, \tag{8}
$$
\n
$$
\phi_- = \theta_+ \phi_+, \tag{9}
$$

$$
\quad \text{where} \quad
$$

where

$$
\mathcal{R} = [m + (\mathcal{E} + \mathcal{E}')/2 - V_0]^{-1} [\mathbf{\alpha} \cdot \mathbf{\pi} - (\mathcal{E} - \mathcal{E}')/2],
$$

$$
\mathcal{E}' = \mathbf{\beta} \mathcal{E} \mathbf{\beta}.
$$
 (10)

Multiplication of (6a) by $(1+\beta)/2$, and the use of (9) then gives

 $p_0\phi_+ = 3C_{\text{red}}\phi_+,$

$$
\mathcal{K}_{\text{red}} = \alpha \cdot \pi \mathcal{R} + V_0 + m \tag{12}
$$

is an "even" matrix operator since α is "odd." Equations (7a,b) can be handled in similar fashion. For a bound state of energy $E>0$, we set $\chi=0$ and $p_0=E$ in (11), obtaining the eigenvalue problem

$$
E\phi_{+} = 3C_{\text{red}}\phi_{+},\tag{13}
$$

where we may consider ϕ_+ and \mathcal{K}_{red} as a Pauli-type spinor and operator, respectively.

For the hydrogen atom \mathcal{K}_{red} is Hermitian at least to order α^2 Ry, and expansion of (12) in powers of p/m yields the usual fine-structure operators plus α^4 Ry corrections. In general, \mathcal{K}_{red} cannot be completely Hermitian, since even if $\chi=0$, only $(\phi,\phi)=(\phi_+,\phi_+)$ $+(\phi_-, \phi_-)$ is conserved and not (ϕ_+, ϕ_+) or (ϕ_-, ϕ_-) separately.

The preceding operator formalism, although possibly of no practical advantage for the one-body problem, has been found convenient in the reduction to nonrelativistic form of a Bethe-Salpeter type equation for two electrons in an external field, in a study of the radiative corrections to the helium fine structure.

we get the following equations, equivalent to (1) and

^{*} 3oese Fellow, Columbia University, New York, New York. 'See, e.g., L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1949), p. 321 for the standard

method. ² B. Kurşunoğlu, Phys. Rev. 101, 1419 (1956).

³ L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).