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Use is made of a form of the stress energy tensor of a perfect Ruid, previously derived for special relativity,
to show that for irrotational isentropic motions a co-moving coordinate system exists in which both sides
of the Einstein gravitational field equations may be expressed in terms of the dependent variables of the
self-gravitational problem for a perfect fluid. It is shown that for a space-time with plane symmetry the field
equations and the assumption of isentropy imply the conservation of mass. General methods for dealing with
these field equations are given for the static and spatially independent cases. Approximate solutions are
obtained for other specific cases. The general exact solution is obtained for the incompressible case. Properties
of the incompressible case are discussed.

1. INTRODUCTION

HE problem of determining the motion of a Quid

subject only to its own gravitational field and
internal forces and further such that various initial and
boundary conditions are satisfied is a problem in general
relativity. It is the purpose of this paper to restate this
problem, using a form of the stress-energy tensor
previously given by Eckart' and derived by Taub' for
special relativity by kinetic theory arguments, and to
obtain some solutions of the equations involved. We
shall restrict ourselves to situations where the space-
time and the Quid motion have plane symmetry. That
is, the problem is invariant under transformations of
the form

and
y*=y+u, s*=s+b,

y*=y cos8+s sin8, s*=—y sin8+s cos8.

where F, G, and H are functions of x and t alone.
We take the stress energy tensor of a perfect Quid

to be

However, the methods developed will apply equally
well to the spherically symmetric case.

The metric of a space-time admitting plane sym-

metry may' be written as

1 1
ds' = e'~dt' e'cd'' e'—H (—dy'+ ds'—),—

c2 c2

where p is the density as measured by an observer at
rest with respect to the Quid, c is the special relativity
velocity of light, and e is the internal energy of the Quid
as measured by an observer at rest with respect to the
Quid.

The Quid is characterized by specifying its caloric
equation of state, that is, by specifying e as a function
of pressure and density

In case
e= e(p, p).

e—=0) (1.6)

the Quid is said to be incompressible. We note that the
form of the stress-energy tensor usually used in works
on general relativity is that here used for the incom-
pressible Quid.

For gases we shall require [as is the case in special
relativity, cf reference (2)] that

3p 9(p1+-&——+ 1+—
i

—
ic' 2 pc' 4 &pc')

If the equality sign holds in this relation, we shall call
the gas in question a "limiting gas. " If

p/pc'»1,

the gas will be said to be "hot."A degenerate gas is said
to be one which is limiting and hot, that is, for which

TI""=au"u" g~ "p(c', —(1.2)

where I& is the four-dimensional velocity vector of the
Quid and satisfies

3p
1+

C' pC2
(1.7)

g Q"0"=I"I
p is the pressure and

= p ~~i+—+—
~,c' pc ]' (1.4)

*This work was supported in part by the National Science
Foundation.

' C. Eckart, Phys. Rev. 58, 919 (1940).
' A. H. Taub, Phys, Rev. 74, 328 (1948).
' A. H. Taub, Ann. Math. 53, 472 (1.951). (p&");~= 0) (1.10)

It follows from Eqs. (1.2), (1.3), (1.4), and (1.7) that

4p ( e q 3p2'= T""r"= ——=pl 1+—
I

——=o (1 g)
c' ) c'

The equations determining the motion of the Quid
are five in number, namely,

T~" =0
and
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R""——'~""R=—kc'T ""
2g (1.12)

where the semicolon denotes the covariant derivative
with respect to the space-time with the metric tensor

ds'= g„„dg"dg".

In problems in which the self-gravitational effects of
the Quid may be neglected, the g„„aretaken to be the
gravitational potentials of some external gravitational
field determined by the Einstein field equations

Before going into the detailed discussion of the
program outlined in the previous paragraphs we shall
discuss the significance of Eqs. (1.9) and (1.10). The
former equations are the generalization of the classical
equations of conservation of energy and momentum.

If Eqs. (1.2) are substituted into Eqs. (1.9) we have

T&" =on. & n"+ n.&(ou") —(1/c') gl""p =0. (1.14)

Multiplying this equation by N„and summing, we
obtain

where RI"" is the Ricci tensor of the Riemannian space
whose metric is given by (1.11), R is the scalar curva-
ture of this space,

(ou")., „=(1/c')u"p, .
„

after using (1.3) and its consequence

(1.15)

Q = gtrG/c' (1.13)
N„N".„=0. (1.16)

with 6 being Newton's constant of gravitation, and
T'&" is the stress-energy tensor of the matter creating
the external gravitational field.

If the only matter creating the gravitational field is
the Quid whose motion is to be studied the problem will
be said to be a self-attracting one. In this case the tensor
T"&" in Eq (1.1.2) is the tensor T"" given by Eq. (1.2)
and is the same tensor which occurs in Eqs. (1.9) which
are now a consequence of (1.12) as follows from the
Bianchi identities. The self-attracting problems are
those in which one attempts to determine the functions

g„„,n", p, and p satisfying Eqs. (1.12), (1.2), (1.3),
(1.10), and hence (1.9).

Because of the assumption of plane symmetry
equation (1.1) replaces (1.11) and there are only three
nonvanishing g„„.Our problem then becomes one of
determining eight independent functions, namely, three
functions which determine the gravitational potentials
and five other functions which determine the velocity
field of the Quid and the pressure and density fields. The
fundamental relations between these functions are given
by Eqs. (1.12) and (1.10), where the right-hand sides of
Eqs. (1.12) involve the unknown functions p, p, and ut'.

In order to proceed with the solution of Eqs. (1.12) and
(1.10) where we know neither the right-hand sides nor
the left-hand sides we show that in the isentropic case
there exists a coordinate system, a co-moving one, in
which the velocity field has a particularly simple form
and then determining the metric tensor and the pressure
and density fields.

For nonisentropic flows the system of Eqs. (1.12) and
(1.10) may be made more tractable by using the method
devised by McVittie. 4 In this method the metric tensor
first is reduced to a simple form and then use is made
of the fact that the coefficients of the metric tensor
must satisfy certain consistency equaticns in order that
the Einstein tensor R„„——,'g„„Rbe of the form (1.2).
These consistency equations are di6erential equations
which involve only the coefficients of the metric tensor.
We shall restrict this paper to a discussion of isentropic
Rows.

4 G. C. McVittie, J. Rational Mech. Anal. 4, 201 {1955).

When Eq. (1.15) is substituted into (1.14) we obtain

o.u";,u"= (1/c') (g"" u "u—")p, , (1.17)

in virtue of Eq. (1.4). This in turn may be written as

(o c'/p) (pu").,„+e,„.u"+p (1/p), „n"=0. (1.18)

When Eq. (1.10) holds, Eq. (1.18) is the equation of
conservation of energy for it states that along the motion

de+Pdv =0,

where v is the specific volume;

i =1/p

igf =f; n".

Thus the five Eqs. (1.9) and (1.10) are the generali-
zations of the five conservation laws on which the
classical theory of hydrodynamics is based.

Incidentally, we may note that it follows from Eqs.
(1.10) and (1.18) that if e=—0 then

p., „I"=0, (1.19)

and therefore the conservation of mass equation reduces
to

u" —0t

in this case. Equation (1.19) states that the density is a
constant along the world lines followed by the elements
of the Quid. Thus if the density is initially independent

These four equations contain, among them, three
independent ones in view of Eq. (1.16). They are the
generalization to general relativity of the classical
equations of conservation of momentum. Equations
(1.17) and (1.15) are of course equivalent to (1.14)
which in turn are a consequence of the Einstein field
equations (1.12).

Equation (1.10) is the general relativity form of the
conservation of mass equation. With its aid we may
interpret Eq. (1.15) which may be written as

( e p') 1
( /'p)(p ");.+pl 1+—+—

I

"= "P;—
I c' pc'] . c'



A. H. TAUB

of the coordinates it will always remain so. This is the
justification for stating that the caloric equation of
state e—=0 is the appropriate one for an iticompressible
Quid.

de+pd(1/p) = Tds, (2.1)

where T is chosen to be an integrating factor so that dS
is a perfect diGerential.

For a degenerate gas Lsee Eq. (1.7)$,

2. ENTROPY

The specification of the caloric equation of state, that
is, the specification of e as a function of p and p, deter-
mines the rest temperature and the rest speci6c entropy
S of the gas as functions of p and p. This result has been
noted by Kckart. ' The equation de6ning these quantities
1s

That is, the entropy along the world-line of a "particle"
of the Quid is independent of the position along the
world-line. If on any surface intersecting the world-
lines of the particle of the Quid, the entropy does not
vary from world-line to world-line, then we have

S=constant (2.10)

throughout the Quid.
Motions in which Eqs. (2.10) holds are called

isentropic motions. For a degenerate and a classically
perfect gas these are characterized by

p= po(plpo)', (2.11)

where po and po are constants and where y=4/3 in the
former case. For the incompressible case, isentropic
motions are characterized by

de= 3(1/p)dp+3pd(1/p),

and Eq. (2.1) becomes

TdS= 3(1/p)dp+4pd(1/p).

From this it follows that we may write

(2.2) p= pa= constant. (2.12)

In all of these cases, it follows that for isentropic

(2.3
motions the equation

(2.13)

p/p~
7—1

(2.6)

where y is a constant equal to the ratio of specific heats
of the gas, then Eq. (2.4) holds and

E.
dL»g(PP ')j.

(v —1)
(2 &)

The constant (y —1)/E is then the specific heat at
constant volume. The entropy of a degenerate gas is the
same function of pressure and density as is the entropy
of a perfect gas in classical theory with ratio of speci6c
heats y= 4/3.

In the incompressible case

&=0,

and taking (2.4) as the definition of temperature, we

then obtain from (2.1)

&&=p(1/p), (2.4)

where E is a constant which may be identi6ed with the
gas constant.

Substituting (2.4) into (2.3), we obtain

dS= 3Rd(log (pp
—4")). (2.5)

If, as is the case in the classical theory of a perfect
gas)

where the lower limit is the same constant that enters
into Eq. (2.11) in case that equation is used to define

p as a function of p in the expression for 0., and po is
arbitrary if Eq. (2.12 obtains, defines a function p such
that

(2.14)

where the comma denotes the ordinary derivative.
Equation (2.13) may be used to express p, p, and 0.

as functions of p. This will be done for certain specific
caloric equations of state below. We 6rst obtain some
general expressions in terms of p. Equation (2.14)
implies that

p =dp/dp= —oc . (2.15)

where all quantities are functions of p alone as follows
from the assumption of isentropy and its consequence,
Eq. (2.13).

It is a consequence of Eq. (2.10) and the definition of

entropy, Eq. (2.1), that

~,.—(p/) ')p, .=0

Hence it follows from Eqs. (1.4) and (2.14) that

(gc p 1 oc
l =(+p/p). .= p, »= 4.' (2-16)—

(p), p p

E
dS =— d (1/p).

(1/p)
(2 g) Integrating this equation, we obtain

pooc'/p= Ee~= —pop'/p,
'

Equation (1.18) may now be rewritten as

TS,.„N,~=0. (2.9)
where E is a constant.

It has been shown' that the special relativity theory
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expression for a, the velocity of sound, is given by

a' p' d (ay

c 0 dp (pe

where cr is considered as a function of p alone in virtue
of the isentropy assumption. We may also write this as

of light. The latter limiting case will therefore be called
the classical one and the former the relativistic one.
The case of the degenerate gas is seen to be an extreme
relativistic case.

In the classical case, we may write

(2.25)

a p d (o.c) dp p

c ec dQ 4 p ) dQ p
(2 17)

and in the relativistic one,

(2.26)

It is a consequence of Eqs. (2.15) and (2.18) that

ac~= —P'=e(1+5)Poe &lt" '.

In the incompressible case, since m= 1,

p+ p'= ~po

If e/1 we have
ego—4

p+p'=pi 1—n
e~o e—1l

(2 18)
Whel'ep= po&"

P= (1+8)e &—6,

8= ppc /Bpo,

~=v/(v —1)

e~'= 1+(1/8).where
Hence when(2.19)

y«yo ——log[1+ (1/5) ],(2.20)
we may write

p+ p'= (1—&)p/po

P=Po(1+.$)~e ~e

In the incompressible case, Eqs. (2.18) through
(2.20) hold and Eq. (2.21) is replaced by

where again the prime denotes the derivative with
respect to Q.

Ke now turn our attention to expressing various
quantities as functions of g. That is, we evaluate the
integral occurring in Eq. (2.13) for a specific e(p, p),
using the relation between p and p given by the re-
quirement that the entropy is a constant. It may be
verified that if e is given by Eq. (2.6) and hence Eq.
(2.11) holds, then

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

6=0.

It now follows from Eq. (2.11) that

(2.23)

(2.24)

if e is given by Eq. (2.6) and the motion is isentropic.
In this case it follows from Eq. (2.17) that

h' —1)
Pe".

c' p' 1+8

If we evaluate this expression when p= po, (p= po), that
is when P= 1, and hence &=0, we obtain for the square
of the ratio of the velocity of sound to the velocity of
light

o'/c'= (7—1)/1+ &).

Hence the case B«1 is that in which the state po, po is
such that velocity of sound is as large as it can be. The
case 8»1 corresponds to the state po, po being one
usually contemplated in classical hydrodynamics where
the velocity of sound is small compared to the velocity

(2.22)

For a degenerate gas, Eqs. (1.4), (1.7), and (2.13)
define g for arbitrary motions, that is, isentropic and
nonisentropic ones. For such a gas, Eqs. (2.18), (2.19),
and (2.21) hold with y=4/3 (that is, e=4) in the
latter and Eq. (2.20) becomes

The quantity P is positive for P in the range

(2.33)

and is a monatonically decreasing function of @. It
approaches —8 as P approaches infinity. Since we
require both p and p to be non-negative, the range of
the variable p must be restricted to that given by the
expressions (2.33).

VI'=e @II' (3.1)

where p is the function defined by Eq. (2.13) and I& is
the velocity 6eld of the Quid. Then

(4' &+a 4 v+&)3& (3 2)

where
O)pv= Np; v Nu; p- (3 3)

Hence

U) Q„.+V„Q.y+ V,Q).„=e '~(N)(u„,+u„co„)+u~g„),(3.4)

3. VELOCITY FIELD IN ISENTROPIC MOTION

In this section, we prove that for isentropic irro-
tational motion of a Quid, there exists a co-moving
coordinate system in which the metric tensor has a
particularly simple form. The theorem is then applied
to space-times with plane symmetry. It may equally
well be applied to space-times with spherical symmetry.

Consider the vector 6eld
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VI'Qlv„=e s~gu~ro„v $—
, „(8v~ u—"uv) 7

It follows from Eqs. (1.3) and (1.17) that

vP
u~+ = —u . u~= ——-~8 I"—ut"u ~

PV V;P v Vg ~

Co

Therefore Eq. (3.5) becomes

In a coordinate system in a space-time with plane
(3.5) symmetry in which the line element is given by Eq.

(1.1) we have Ns ——us=0 and ui and st4 functions of x
and t. It may readily be verified that Eq. (3.7) is satis-
fied. Hence for isentropic motion we may introduce a
coordinate system such that

rts'= e'&dt' (e'o/—c')dx' (e'~/—c') (dy'+ dz'), (3.12)

and in this coordinate system
r' P, sVII„„=—e

—
'&~ —+y „~(6„'—Wu, ) =0. (3.6)

& oc'

An irrotational motion' is one for which

N&ropv+Nprovi+stv(oyy= 0. (3.7)

Thus for an isentropic irrotational motion, Eq. (3.6)
holds and the right-hand side of Eq. (3.4) vanishes.
The latter fact implies that in a coordinate system in
which V*=0 (i =1,2,3), V'WO.

0;;=0.

In this coordinate system we have, as a consequence of
Eq. (3.6),

u"=e &64". (3.13)

4. FIELD EQUATIONS IN ISENTROPIC FLOW

The field equations (1.12) may be written as

, f P
R I' ', 6„~R=——-kc'] au'I, . ti„"—(. —

c'
(4 1)

In view of Eqs. (3.13), these reduce t.o

We note that for a degenerate gas, Eqs. (3.12) and
(3.13) hold irrespective of whether the motion is
isentropic or not, since Eq. (2.13) defines the function
@ for such a gas for an arbitrary motion.

Q4;——0.

Hence, in this coordinate system,

0„„=0. (3.g)

R4' ——,'R= —kc'[o.—(p/c') 7

Ri' —-'R= kp

Rss —-'R= kP (4.2)

Since Kq. (3.7) is a tensor equation, it holds in all
coordinate systems.

Therefore there exists a function T(x) such that
where

Eg4=0 )

R=R4'+ R,'+2R,'. (4.3)
V„=BT/Bx".

If we introduce a coordinate system in space-time

x4"= T(x),

and the curves of parameter x'* (s=1,2,3) are the
geodesics orthogonal to the surface T=constant, the
line element becomes

since Rss=R '
These may be rewritten as

R 4—E '= —kfTC',

(R '+R ') = —kp

E.,4=0
) (4 4)

ds'= e'sd T' g,,"(x&)dx"dx*'—,

where g,,*(x') are functions of T and x'*, since

(3.10)

8T 8T
g44 —gtt v =g&'V Vv=e '~g&'u uv=e '~.

Bx" Bx"

In the coordinate system in which (3.10) holds, we have

Vv* —e
—~4$4t

Hence

The right-hand sides of the first two of these equations
are functions of Q as determined in Sec. 2. Moreover P
and its 6rst two derivatives with respect to x' and x4

enter into the left-hand sides of these same two equa-
tions since g44

——e'~. Hence the field equations (4.4) now
involve only the functions P, G, and II. of the line
element (3.12).

The four equations (4.4) are not independent, since
we have the relation

e~V *=e (3.11) Bp/Bx" = —csa 8$/Bx"

Thus for isentropic, irrotational Aow there exists a
coordinate system, a co-moving one, in which the line
element is given by Eq. (3.10) and the velocity field by
Kq. (3.11), with p as yet an undetermined function of
the coordinates.

5 K. Godel, Revs. Modern Phys. 21, 447 (1949).

as follows from the definition of @ given in Sec. 2. If the
left-hand sides of Eq. (4.14) are substituted for p and o-

in this equation, we obtain equations involving the
derivatives of the Ricci tensor. It may be verified that
these are satisfied as a consequence of the Bianchi
identities, which will be discussed in the next section.
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S. FIELD EQUATIONS IN THE PLANE
SYMMETRIC CASE

When the line element of space-time is given by Eqs.
(3.12), the nonvanishing components of the Ricci
tensor are

R4'= e '"[G«+2H«+2H4'+G4' («+—2K)4 i]
—"-"[~..+e.Q.—G.)+2~*H*],

R 1 e "[G«+«(« (t)~)—+2G4H4]
—c'e—' [y..+4„.(4.—G.)

+2H, +2H, (H,—G )],
Rp' R2' e——'p[H«——+2H p+H4(G4 $4)]-

c'e 'G[H—„+2H,'+H (P, G,)], .
—

Ri' ——2e 2@[H„H,414 —HG +—H4H, j.
The subscripts denote partial di6erentiation with
respect to the variables indicated.

The 6eld equations (4.4) then become

R4' —Ri' ——2e 2&[H«+H42 H, (G,+y,)—]
+2e 'Gc'[H. ,+H,'—H( G„. +(t)]

= —ko-c',

-', (R4'+Ri') = e 'P[G4~+ (« 44) («+H—4)+H«+H~']
c'e "[0,+ (—0*+H*)(4. G.)—

+H,+H,']= —kp,

R 4 R2'= e 24[—G« H«+ (G( —H4) («—4—'~)

+2H, (G4—H()]
—"-"[~..+H-+ Q.—G*) (&*-H.)
—2H G,]=0,

Ri' 2e 2&[H, 4
——H,G4 H, (t2,—+H &H,—]=0.

(5.2)

We introduce the dimensionless variables

where
(=x/x(), r=ct/xp,

xp = (kpp/c'):

(5.3)

and pp is a constant with the dimensions of a pressure,
which may be taken to be the same constant used in

Sec. 2. Equations (5.2), after being multiplied by
xp'/c', become

2e 2&[H„+H,2 H, (G,+P,)j-
+2e "[Hpt+HP —Ho(Gp+«)]= —«'/Po,

e 2P[G„+(G,+H,)(G, P,)+H„+H,2]—
—e "[Ao+H«+Ho'+ (@+Ho)(«—G~)j

= —p/po, (5 4)

B=e '&[G„H„+(G,H)(G 4—+2H )]— —
"[4p$—+H-o~+ (4 ~ G~) (« —Ho) 2H—oGrj=—o,

2e 2&A =2e 2&[H~, H, (t2~ H~G, +H,H2]—=0. —

In these equations, o and p are functions of p, since
the motion is assumed to be isentropic and irrotational.
For the various specific fluids treated in Sec. 2, explicit
forms of these functions have been obtained. YVe wish

(eG+'Hp) =0, (5.5)
v'( —g)

where p is a function of p alone.
The five differential equations in the system of

Eqs. (5.4) and (5.5) are not independent. Because
of the Bianchi identities there are two differential
relations between them. We shall now examine this
system in detail.

On subtracting the third of Eqs. (5.4) from the
second, we obtain

e 2&[2H„+3H' 2H,&,j-
e 'GH—,[H-,+24j= p/p, —(5.6).

We subtract this from the first of Eqs. (5.4) and get

e 2~H, [H,+2G,] e2G[2Hpo+—3Ht2 2HtG p]—
= («'/po) —(p/po). (5.7)

The 6rst of Eqs. (5.4) may be obtained by subtracting
(5.7) from (5.6).

If we differentiate Eq. (5.6) with respect to g, we
find after some manipulation that the result may be
written as

2e '4'[A, +(G, 4t), +2H, )A]+2—HrB=O, (5.8)

where the functions A and 8 are defined in terms of G,
JI, and p and their derivatives by the third and fourth
of Eqs. (5.4). In deriving (5.8) the first of Eqs. (5.4) is
used to replace the term Oc' which enters in the evalu-
ation of pp= —«2&t.

If we differentiate Eq. (5.7) with respect to 2- and
use the first of Eqs. (5.4) we may write the result after
some manipulation, using Eqs. (2.16) as

Oc—
~

G,+2H, +—
~

+2H,B
po& po

—2e 2G[At+ («+2H) G()A]=0. (5.9)—
Equations (5.8) and (5.9) may be written as

and
e (G+4+H) (AeG P+2H) +H B——0—(5.10)

e (G+P+2H) (AeG 4+2H)— H B—
oc2 (' p, q= ——

~
G,+2H, +—

~. (5.»)
2p, ( p)

Thus, the 6eld equations, Eqs. (5.4), imply the con-
servation of mass, Eq. (5.5). Conversely, Eqs. (5.5),

to discuss the solution of these equations subject to the
additional condition that the density p, which is also a
function of qt, satisfy the conservation-of-massequation

~(v'( —a)s ~")
(p«'); =

Q( —g) Bx"
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(5.6), and (5.7) together with the fourth of Eqs. (5.4),
namely, the equation A =0, imply 8=0. The reason for
this is that we cannot have II~=—0 and II,=—0 where
pAO and 0 40, that is, where there is matter.

Ke shall therefore take as the system of equations to
be solved, the Eqs. (5.5), (5.6), (5.7), and the fourth of
Eqs. (5.4). Equation (5.5) may be written as

G,+2H, + (p,/p) =0 (5.12)
or

ceding sections, Eqs. (6.1) become

dx'/ds =exp[—y (x',x4)j,
Cx'/ds= 0, i = 1,2,3,

and have as their solution

x'=x ' 1=1 2 3or

s—so= I exp/(xo', x4)dx'.
(6 3)

G= —2H —log(p/po) —logP($). (5.13)

Equations (5.6), (5.7), and the fourth of Eqs. (5.4)
may then be written as

2e ~(H,e ~),+3(H,e &)'
I

e'~—Ho I

Xl "—H„+2""e.—I=—,(5.14)
po uo& po

pg pv—$(e'"),pe 'j„=(e'),—(e'")„—,
p P P

(5.16)

respectively, where the spatial variable q is such that
for any function

f.=P(k)fr

6. BOUNDARY GONDITIONS

The equations (5.14) to (5.16) must be supplemented

by additional information in order that we may deter-
mine the functions P, and H. This information is in the
form of initial and boundary conditions. That is, values
of p and H and their first derivatives on certain loci in
space-time must be prescribed in order that we may
determine P and H over a region of space-time.

AVe now describe two types of physical problems that
have been treated both in classical hydrodynamics and
in special relativistic dynamics and deduce for these
problems certain boundary conditions. In subsequent
sections, we show that these boundary conditions are
indeed sufFicient to determine a unique solution to the
problem.

%e erst discuss the paths followed by particles in the
Quid. That is, the curves

dxl'/ds =I"(x)

subject to the initial conditions at s=0 given by

x"=xo&.

(6.1)

(6.2)

In the co-moving coordinate system used in the pre-

p.—.-&H, .-'H, +2~ '——2-1 ""—H. l

p 4 po ~ o po

(, ~ l' «p-3l.o~—H„ l

=———, (5.»)
po & po po

and

That is, the world-line of any particle of the Quid has
constant x', x', x' throughout the Quid's motion.
Thus the co-moving coordinates are the analogs of
Lagrange coordinates in classical hydrodynamics. The
function p(x', x') evaluated at x'=xo', describes the
motion of the "particle located at xo"' and as this
function changes, the motion of this particle changes.

One class of plane-symmetric problems in classical
physics may be stated as follows. The gas is initially
(at x4=0) at rest and at constant entropy with pressure
distribution p(x'), and the motion of one of the particles
is prescribed. Determine the subsequent motion of the
gas from the laws of conservation of energy, mass, and
momentum. In classical theory and in special relativity,
the prescribed particle motion is such to increase the
volume occupied by the gas, the motion is isentropic,
and the Qow variables are continuous and are deter-
mined by the boundary data. In case the volume
occupied by the gas decreases, shocks occur. One would
therefore expect that the corresponding data would
determine a unique solution of the field equations of the
preceding paragraph for the cases where the volume
occupied by the gas increases, and that physically
unacceptable mathematical solutions of the field
equations will arise in the other case where, for example,
N&(x, t) Lthat is @(x,t)) will not be single-valued func-
tions of x and t as they must.

Since p is a function of p and since the particle motion
is also determined by @, the corresponding problem in
general relativity is as follows: Given p(x,O) and
p(xo, t), determine a solution of the field equations.
This problem will be discussed after the treatment of a
second type of problem which will now be formulated.

Consider a body of gas confined to a region of space-
time subject only to the self-gravitational force and the
hydrodynamic forces. The space-time outside of this
region is presumed to be empty, that is, the metric
tensor satisfies

(6.4)

in this region.
The boundary between the region where Eqs. (5.14)

to (5.16) hold and the region where (6.4) holds is given
by the "outermost" particJe's world-line, say by the
w'orld-line of the particle at xo. On this world-line we
assume that p= p(p) =0. There are therefore two
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equivalent characterizations of the boundary: one being in turn that it is static inside the matter, that is, the
functions H and P and hence the function G are inde-
pendent of

and the other being

Q(g, t) = constant.

These will be the same if and only if

(6.5)

That is, p is independent of t and hence p and o. are
independent of

Ke shall assume, as is customarily done in general
relativity, that the metric tensor g„„andits first
derivatives are continuous across the boundary p=0
(that is, at x= gp). Thus (6.5) obtains both in the region
occupied by the gas and on the boundary of the region
where (6.4) holds.

The justification for the assumptions: p=0 on the
boundary, the coincidence of this locus and the world-
lines of the outermost particles, and the continuity of
the metric tensor and its derivatives across the bound-

ary, is to be found in the general relativity formulation
of the Rankine-Hugoniot relations. That is, the rela-
tions that must replace the differential form of the
conservation laws across surfaces where these cannot
apply, surfaces where discontinuities in the dependent
hydrodynamical or gravitational variables may occur.
We shall discuss these generalized Rankine-Hugoniot
equations in a subsequent paper.

If Eqs. (6.5) hold, it follows from Eq. (5.12) and the
fact that p=p(P) that

p~
[(oo ).too 'j.=G o '(o' ).3—.

P

and
e 'AH((—Hp+2yt) =P/Pp (7.1)

e 'g(2Hpt+3Htz 2HtG—p)
= p/pp oc—'/pp .(7.2)

These may be written as

Ho(Ho+2otoo) =p/pp

2Ho„+3H,o =P/PP oco/PP, —

where the spatial variable g is such that

cod& = dot.

(7.3)

(7.4)

(7.5)

We may consider H„asa function of p and write

H, = F(y).

Equation (7.3) may then be written as

(7.6)

&.= LP (ohio) I 'j/2 I,— (7.7)

from which we may determine P as a function of rt by a
quadrature

Qp
"p P(4)—I" (7.8)

V. STATIC SOLUTIONS

If in Eqs. (5.5) to (5.7) and the fourth of Eqs. (5.4)
the dependent variables are independent of 7, then the
first and last of these are automatically satisfied and
the system of equations becomes

Hence,
eo~=K(r)e&+L($),

Furthermore we may also determine H as a function of
(6.6) p (or ot) by a quadrature

where E and I, are arbitrary functions of their argu-
ments. It is a consequence of previous results' that the
only solution of Eqs. (6.4) in a coordinate system in
which (3.12) holds satisfying (6.5) is given by the
static solution

where a and b are constant. In this coordinate system
then

—2G= —2&=H=-', log(a+bx). (6.8)

It then follows that on the boundary (&=Pp), E(r) =0.
This implies that H is independent of v inside the region
occupied by the gas. Thus it is a consequence of the

assumption that p=0 coincide with the world-line of
one of the particles that in the coordinate system used
the metric is static outside the matter and this implies

ds'= (a+be) oi dt' dx' i-—
c'

1—(a+be) (dy'+dz'), (6.7—)
C2

We def ne pp by the equation

P(~o) =0. (7 11)

Then rtp, and @p and Hp determine the values of the
independent variable and the metric tensor on the
boundary between the regions occupied by matter and
empty space-time. If the metric is to have continuous
derivatives at ot=otp (or P=obp), the initial value of Y

H Hp = H—„d„= —+= dp. (7.9)
"oo po po ~ @o p/pp —Y'

The constants Hp and Pp are the values of H an, d g,
respectively, at p =pp.

The equation determining V(p) is obtained from
substituting

H„„=Y'Q)p„=P(p/po —I")/2V

into Eq. (7.4), where the prime denotes differentiation
with respect to p. Thus

I"r(P I')/Pph+3I'=L—(P+P')/PpjI' (7 10)
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for the differential equation (7.10) must be the value
of I' taken on by the solution of the equation

I"F2—3V'=0

at P=Po. Equation (7.12) is obtained from

H„(H„+2&„)=0

2H„„+3H„(=0,
the field equations

E„„=O,

(7.12)

(7.13)

(7.14)

Vo ——I'(@o)= 2Ce'&o. (7.16)

In the region occupied by matter the line element is

given by

in the same way as (7.10) is obtained from (7.3) and

(7.4).
The solution of (7.12) is

I"= 2Ce'&,

where C is a constant. Hence the initial value for the
function defined by the Eq. (7.10) is

Since I' and H depend on the constant C in virtue of
Eq. (7.16), it is clear that the value of C determines the
value of 3II and conversely.

In the next section, we shall give a parametric
representation of the function V(g) defined by Eq.
(7.10). This representation is particularly suitable
when the function p(g) is one of those discussed in
Sec. 2.

is given by
P(~) =0

&=&o= logL1+ (1/~) 7

In case e/1, we shall use the approximation repre-
sented by Eqs. (2.31) and (2.32) in discussing Eq.
(7.10). It is convenient to discuss the function VQ)
defined by the latter equation in terms of the parameter
II. It is a consequence of Eq. (7.9) that

8. EXAMPLES OF STATIC SOLUTIONS

For the various functions o(p,p) discussed in Sec. 2,
the function p(p) is given by Eq. (2.18). In particular,
the value of p determined by the equation

x(P x(P ( 2V
d~o — eogdro

) (
dyo

c' c' (p/po —V')

p/po F'—
dII 2V2

Then we have from (7.10) and (8.1)

(8.1)

——-(dy'+ds'), (7.17)
C2 L(p+P')/Po7 3I"—

dII 2V

We define the variable I by the equation

I"= (P/Po) u.

(7 18) Equations (8.1) and (8.2) then become

dy/dH = (1—u)/2u

Xo
—4$

e &d$ L (dy +dz ), — —
O'C2 C2

$0
.1 (.2 e2pd7-2

C2

where V(P) is determined by (7.10) and (7.16), and

H(g) is given by (7.9). In empty space-time, in the
same coordinate system, the metric tensor is given by

(8.2)

(8.3)

(8 4)

pu'Q( g)dy= t pe ~Q—( g)d&=M, (7.19)—
~so Po

where the integration is carried out over the region
occupied by the gas. From (7.17) and (7.19), we have

2 P'e2II

p dP= M.
"~o p/po —I" (7.20)

where L is a constant which may be taken to be one by
changing the units of length in the y and s directions.

Thus we see that specification of the function o(p,p),
that is, a statement of the gas that is present, deter-
mines the function p(p) (see Sec. 2) which in turn
determines the coefficients of the first-order differential
equation (7.10). The line elements (7.17) is then
determined. It will of course be a function of the
constant C. This constant may be related to another
constant M, the mass per unit area present, by the
relation

du p+ p'——=———3u ——', (p'/p) (1—u).
dH p

(8.5)

In the region where Eqs. (2.31) and (2.32) hold, Eq.
(8.5) becomes

Therefore

du n ) eq—-=1———
/

2+—fu.
dH 2 & 2J

s—2
u= — (Ae i"+"'~—1),

6+v

(8.6)

(8.7)

where 8 is another constant of integration.

where A is a constant of integration. Substituting this
value of u into (8.4) and integrating, we obtain

x+2 1
H log(Ae l"+"'~——1)—+8—, —(8—.8)

e—2 s—2
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Equation (2.32) is

Hence
p p (1+g)ne—n4

I/'2 —
Pp (]+/1) ne ng24—

The line element (7.17) may then be written as

(8.9)

The solution of this equation is given by

II2 —1P (A 2e 2II— 1) (9.1)

where A is a constant of integration whose evaluation
will be discussed later.

Equation (8.11) may be written as

g p
2 g p

2 dH 2 e2H

ds =—e d7
c2

(dX'+«'), (8»)
c' I 2 c'

dQ 5(e&' 4' —1)
1

dH 2V2
(9.2)

where p and V2 are given as functions of H by Eqs.
(8.8), (8.10), and (8.7). The constants of integration,
A and 8, occurring in these formulas may be evaluated
when. the line element is known for values of p which
do not satisfy the condition Pp»4i. We shall illustrate
the procedure for doing this by making the inconsistent/

assumption that the line element determined above
extends to the boundary given by Pp. This assumption
is inconsistent in that Eq. (8.9) is not the correct
expression for the pressure at the boundary and in
particular this p does not vanish at the boundary. This
will have the eR'ect of causing a violation of the bound-
ary condition which requires that the components of
the metric tensor have continuous derivatives at the
boundary. Nevertheless, for illustrative purposes we
determine the constants of integration A and 8 by
requiring that the components of the metric tensor
given by the line element (8.11) take on the values of
the metric tensor given by Eq. (7.18) at t,he boundary.
The latter equation may be written as

x2 xo2 1 e'H
dg2= eHdr2 — epH—dH—2 —(dy2+dz—2).——(8.12)

c2 C2 C2 c2

If we normalize the variable H so that H= H p is the
value of H at the boundary then at the boundary we
must have

where II' is given as a function of H by Eq. (9.1).
Multiplying this equation by e& and setting

we have
C =e&—e«,

dC ~8—-= —
2l

—+1 l
—2e"

dH 4 I'2

(9.3)

The solution to this equation satisfying

c(H,) =c(—2y, ) =o
lS

(9.4)

~H eu/2dN

@(H)= —22e4'oe 2H(A2 —epH) 2 —— . (9.5)
—2p, (A' —e'")'*

A2&1 (9.6)

Equations (9.4) are consequences of Eq. (9.3) and the
first of Eqs. (8.13) which define Hp as that value of II
so that p=gp and further state that Hp= 2&p.

The region occupied by the incompressible Quid is
represented by the range of variation of the variable H.
This range must be such that given by Eq. (9.5) is
negative and V2 given by (9.1) is positive. Both of these
conditions will be satisfied if we choose the constant of
integration such that

2$(Hp) = —Hp ——2pp, Y(Hp) =Ce —:Ho. (8.13) and restrict H to the range

We may of course choose Hp=o. Then

y(0)=y, , I2(0)=C2. (8.14)

—2@p&H&-22 logA.

The total mass present will be given by

(9.7)

It is a consequence of (8.8) and the first of (8.14) that
we must have p pg( g) 244d x'dx'—dx'

1
/

Ae—l"+"&H—1)

(n —2)

—(~+2)H+»gl — ( ) This quantity will be proportional to the number
A —1

It then follows from Eq. (8.10) that

V2(0) =Pp(1+0) "24(0)e "4'4

(22 2)—
= pp5"

l

—
l (A —1)=C'. (8.16)

&42+6)

9. INCOMPRESSIBLE CASE—STATIC SOLUTIONS
or

~-', logA e2H &-'s logA

M=
-2Po & "-2Pp

~2~ lo A e2Hd(e2H/2)
=2

3
(A2 epH) i

m/2

e'HdH

(Ape —2H

In this case, Eq. (2.28) holds and as a result Eq. (8.2)
may be written as

d F/dH= —(8+3I'2)/2 7
where

M = 2,—. A4~3

N g&p

sin4tsmdu,

e'H= A since

(9.8)

(9.9)
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and
g
—340

SlIlCOO =
A

second gas and &=pi corresponds to the boundary
between the two gases.

9.10
10. SPATIALLY INDEPENDENT SOLUTION'S

e 24'(2H„+3H,'—2H,&,) = p/p—2 (10.1)

Equation (9.8) serves to determine A as a function of M. In this case the functions p and H are independent
If Hisinthe range givenby (9.7), thenit followsfrom of the variable P and the field equations (5.6), (5.7),

Eq. (9.5) that C(H) is negative and hence p(H) is and (5.15) reduce to
positive as must be the case. We may write Eq. (9.5) as

e~4 cosM I' dc'—e~2F (M) =C'= ——
2 sin'co ~ 0 sin'co' e "H.PH.+2(p'/p)4. l= (p+p')/p' (1o 2)

The pressure is then given by

0(cop((o( —. (9.11)
2

We define

Then

Y(p) = e 4'H, .

e &(H„P,H,)= Y—'y„

(10.3)

(9.12)

We have thus determined a solution of the field
equations for an incompressible Quid which have the
property that the pressure vanishes for the beginning
of the range given by the inequalities (9.7) and is
positive throughout this range. However, this solution
cannot be joined to the solution for empty space-time
at the point H= —2&2. The reason for this is evident
from the di6erential equations satisfied by 7 on both
sides of the point H= —2&2. For the empty region, we

have
dY/dH= —-', Y,

whereas for the region occupied by the incompressible
fiuid we have the equation before (9.1). Since BNO,
d Y/dH cannot be continuous across the boundary and
hence we cannot satisfy the boundary condition that
the derivatives of the metric tensor be continuous
across the boundary. We then have the result:

An incompressible Quid cannot bound a vacuum in a
space-time with plane symmetry unless the boundary
condition of the continuity of the derivatives of the
metric tensor is violated. As is well known, a similar
result holds in the spherically symmetric case.

Equation (9.1) is the general solution of the field
equations for Y(H). The general solution of the field
equations for C (H) is obtained by adding a const:ant
to the right hand side of Eq. (9.5). The constant of
integration occurring in Eqs. (9.1) and the modified
(9.5) may be evaluated by fitting these solutions to
other solutions of the field equations, say to solutions
corresponding to another gas.

If the. same boundary condition is not to be violated
we must have that the equation

pi(41) =p2~(e" "—1)

must imply the equation

(pl+ pl )ii =41 ~po

where pi(p) is the pressure as a function of p for the

where the prime denotes the derivative with respect to
P. Equations (10.1) and (10.2) may then be written as

2e 4'Y'4 +3Y'= —p/p2

3Y'+2Y(p'/p)e '4.= (p+ p'/po

(1o4)

(10.5)

Eliminating e &g, from these two equations, we
obtain

p (p, l /p+pY'= —Y—
]
—+3Y'

I (
—3Y'

I (106)
p &po ) E po )

~ (p+p
p'Y ( pp )

(10.7)

p/po= e-'~.

Equation (10.6) then becomes

Y'= —Y(e 4&+3Y2)/(e 4&+ Y').

If we de6ne
T (e2$ Y)2

the differential equation becomes

T'=4T+2e44' YY'=4T 2T(1+3T)/(1+T)—
that is,

T'= 2T(1—T)/(1+T).
Hence T is defined as a function of @ by the equation

e24'= A T/(1 —T)'

where A is a constant of integration.

(10.8)

Equation (10.6) is an Abel differential equation for
the variable Y'. When it is solved for Y= Y(P) we may
substitute its solution into Eq. (10.7) and determine
4'(2.) We shall .illustrate the method of dealing with
these equations for the special case of the degenerate
gas where

p/p, =e-'&
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Equation (10.7) may be written as

d$ 1
2e &—=—(e '&+V')

d~ F
or as

2T& AT:
e4'dr = —e'—&dP = dT—.

1+T (1—T)'
(10.9)

The last equation follows from Eq. (10.8).
The function II may be determined as a function of

T from Eq. (10.3) which may be written as

3—e 'eH, ' e—~(2H +7H ') = —(p+p')/pp b——(11.3)

2e '& (H, H—,g„+3H,H„)=0, (11.4)

respectively, where we have used Eqs. (2.18) to (2.22)
and Eq. (2.28).

Equation (11.4) may be written as

Hence
H„,+3H„H,=H,@„.

(e'~),=V3n (r)e~, (11.5)

where n(r) is an arbitrary function of its argument.
Equation (11.5) may be integrated further to give

AT:
H= ~ePVdr= t VdT

~ (1—T)
e'"= v3n(~)e~dr+P(q), (11.6)

where 8 is another constant of integration.
The line element is given by

xp xp (pp)ds'= e'&dr—' e——
l

—
I dV e' (dy'—+—ds').

&pi c'

In view of Fqs. (10.9) and (10.8), this may be written
as

x 'A'T xo' A'T'dP
ds =

c'(1—T) c' 8'(1 T)'—
1 8'

(dy'+ds'). (10.11)
c' (1—T)'

In deriving Eq. (10.11), we have used Eqs. (10.8),
(10.9), (10.10), and the fact that

H„'= ', pe 4~+ 'n'—e -" + ', p(~-)e ', -(11.8)

where c(r) is an arbitrary function of its argument, as
may be verihed by diRerentiation. If we set

Equation (11.8) may be written as

h„'=3h '&'
]

n'-+-', —
[
—aj h ——.

[

„(,,"I ( 1 I'
S) & 2S)

or as

(11.9)

where P(g) is an arbitrary function of its argument.
Substituting from Eq. (11.5) into (11.3), we have

n'e '~+e'~(2H +7H ') = —k (11.7)

This equation may be considered as an ordinary differ-
ential equation for II provided the constants of inte-
gration are functions of v.

A first integral of equation (11.7) is given by

p/p
—e

—4g —(1 T)4/A 2T2 (10.12)

11. INCOMPRESSIBLE CASE—TIME-DEPENDENT
SOLUTIONS

(pplp)'= e"=A' T'/(1 T)'—
for the degenerate gas. The pressure distribution is
given by

ph

F(h, r) —=

&ho '+
~)

=g —gp, (11.10)

We may now turn our attention to the second type of
boundary conditions discussed in Sec. 6. The problems
in which these conditions occur involve time dependent
solutions of the system of equations consisting of Eqs.
(5.5) to (5.7) and the fourth of Eq. (5.4). We shall
confine our discussion of these equations to the incom-
pressible case. Then by introducing the variable g used
at the end of Sec. 5, we may write Eq. (5.13) as

G= —2H. (11.1)

Equations (5.6), (5.7) and the fourth of Eqs. (5.4)
become

e '~(2H„+3H,' 2H,@,) e~H„(H„+—2y„)—
P/Po= ~(" ' 1), —(11.2)—

where 7. is kept constant in the integration and hp(r)
is the value of h at g=go.

Equation (11.5) may be written as

h, =%3n(r)eP (11.11)

Multiplying by —,'e@ and substituting h for e'~, we may
write the resulting equation as

1
(e ph, ),+—h&ep(h„„h„g„)= —p2bep&—

h

We must now examine the remaining 6eld equation
(11.2). Subtracting Eq. (11.3) from (11.2) one obtains

—',e ' ' [(e' )„—(e' ),@,)+pe [(e' )„„—(e' )„y„)
= —gebo—4
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This in turn may be written as

1 )e~y
-(v3.,)-h:h„

I

—
I

= —;ceo.
Lh„)

„

Substituting from (11.11), we have

1 hlh„' ~h, q—(v3n, )——I
—

I
= ——,'5e»'. (11.12)

Eqs. (11.10) and (11.11) give the general solution to the
field equations (11.2) to (11.4) subject to the continuity
of mass equation (11.1).

The line element may be written in terms of the
function h(it, r) defined by Eqs. (11.10) as

X,'h, 2 &,2 h-:

dso= — dro h—»—t drip (d—y—+de ). (11.15)
C23O2 C2 C

Ke may replace the variable ~ by a new variable 7'

We may evaluate h, from the first of Eqs. (11.10) as such that

Thus

f o
p ( $

o

3
I

n+-,'—
I

—~I h —-', —
It)

Fhh„=1

h.= —F,/Fo,

where the subscript denotes the partial derivative and
hence

dr'= dr/&3n.

This is equivalent to choosing 3n(r) =1. Then the line
element (11.15) becomes

Sp Xp h-:

ds' = h, 'dr—' h—"'d—ri' (dy—'+—ds') (11.16)
C2

'
C2 c2

where h(q, r) is given by

and

h,
P

T

h„

hp'hp,

p'
t

3 n'+i» ——
&I ho —r'-

I's)
and .= (1+&)(r—«). (11.18)

= rl
—

ri p (11.17)

3
I l+l —I

—
~l h —l-

Is)

Hence

hidh (3nn, + -', p,h)

p)'
(11.13)

If in the above discussion we had chosen n(r) =0
and o(r) = pp a constant, we could have obtained a static
solution for the incompressible case. Equations (11.11)
would no longer determine the function p. However,
this function could be determined from the equation
preceding (11.12), namely,
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The right-hand side of Eq. (11.20) is identical with
the right-hand side of Eq. (11.13) if hp(r) entering in
that equation is such that at 7 = 7 p the value of the
first term is equal to the constant in Eq. (11.20) and if
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Hence, if we choose c such that

p, =v 3npe»' =&3n (1+p), (11.14)

hp'= hp(ro) (11.21)

The line element (11.16) which represents the general
time-dependent solution for the metric due to the
motion of an incompressible Quid depends on one
arbitrary function hp(r). If this function is such that
the above conditions are satisfied, we may interpret
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the solution as follows: At time 7 = ro the gas is at rest
for g/$0 and in gravitational equilibrium in the sense
that the pressure forces balance the gravitational ones.
This is the physical interpretation of the fact that at
v = 7O the metric is given by a static solution of the field
equations. At rl=rlo, h=ho(r). This determines P(qo, ~)
via Eqs. (11.11) and (11.13) and P(qo, r) determines
n" (qo, 7) and p(go T). These equations reduce to

Since at g=go, h=ho(~) and

I
o

h7J (l7 To) =3&o '
] o+4 —

[ B( Eso——
~) & 2~)

Thus if P(g, ro) is chosen so that at time r= ~o we
have a solution of the static field equations, then in the
incompressible case the specifications of p(go, ~) deter-
mines, aside from a constant of integration, a general
time-dependent solution of the field equation. Thus
for this case the second type of boundary value problem
discussed in Sec. 6 corresponds to the general time-
dependent solution of the field equations.

12. CONCLUDING REMARKS

It should be pointed out that for the incompressible
case discussed in the preceding section, the stress
energy tensor used here reduces to that usually treated
for an arbitrary perfect fluid. The restriction to isen-
tropic motions implies that the density is constant

throughout. The results obtained in Sec. 9 state that
the plane-symmetric analog of the Schwarzschild in-
terior solution has the same difficulty with the boundary
conditions as that solution.

The results obtained in Sec. 11 give a complete
solution of the field equations and the equations of
motion of an incompressible fluid in terms of an arbi-
trary function of time. This function may in turn be
determined from conditions obtaining at a plane of
particles located at the plane q=go. The actual deter-
mination of the function g(go, r) depends on further
specification of the problem. Thus if, as may be the
case, the space-time is created by an incompressible
fluid bounded by a compressible one and this in turn
is bounded by a vacuum, these gases being initially at
rest, then the determination of the function g(iso, ~) is
accomplished by knowing the space-time on the com-
pressible side of the compressible-incompressible bound-
ary. This knowledge is in turn dependent on obtaining
the solution of the field equations for the compressible
case. An approximate method for dealing with these
equations can be given and will be discussed in a later
paper.

%e finally remark that although there seem to be
some conceptual difficulties in the notion of an incom-
pressible fluid in special relativity, these are not en-
countered in general relativity if the definitions given
above are used. The results of Sec. 11 show that such a
fluid may be started from rest and no difficulties com-
parable with those occurring in the special theory
arise


