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Approximation Method for High-Energy Potential Scattering*
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An approximation method for high-energy potential scattering is developed that expresses the scattered
amplitude in terms of a quadrature, similar to the Born approximation but superior to it in accuracy. It is
valid when the potential is slowly varying compared to a wavelength,

~
V

~
/E is small compared to unity, 8

is either small or large compared to lkRl, and
~

V
~
R/Itv is unrestricted in magnitude, where E', 8, k, and v

are the kinetic energy, scattering angle, wave number, and speed of the scattered particle, and V and R are
rough measures of the strength and range of the scattering potential, which may be complex. For compari-
son, the Born approximation requires that

~

V ~R/tzv be small compared to unity. The procedure consists
in summing the infinite Born series after approximating each term by the method of stationary phase. Both
the Schrodinger and Dirac equations are treated, and it is expected that the method can be extended to the
scattering theory of other wave equations. The relation of the present work to previous work of others is
discussed, and the limitations of WEB or eikonal-type approximations are explored. The method is expected
to be especially useful for calculating the scattering of fast electrons, neutrons, and protons from non-
spherical nuclei.

I. INTRODUCTION

CCURATE calculations of potential scattering

~

~ ~

~

~

at high energies have been based on the method
of partial waves. ' This method can only be used when
the potential is spherically symmetric, and becomes
very laborious when the reduced wavelength of the
scattered particle is somewhat smaller than the range
of the potential. It would be desirable to find an expres-
sion for the scattered amplitude in terms of a quadra-
ture, similar to the Born approximation but superior
to it in accuracy. One would hope that such a closed
form would be better adapted to numerical computation
than the partial wave series, but in any event it could
be applied to nonspherical scattering potentials. The
present investigation was directly stimulated by this
last point in connection with the experiments of
Hofstadter and collaborators' on the scattering of
high-energy electrons from heavy nuclei, since it is
known that such nuclei often depart significantly
from spherical symmetry, and that electron scattering
from them cannot be treated reliably by the Born
approximation. '

As is well known, the Born approximation is expected
to be reliable when the true wave function in the scat-
tering region does not differ significantly from the
incident plane wave. %e shall be concerned with po-
tentials that do not change by an appreciable fraction

high incident energies and 6nite, continuous potentials.
A rough approximation to the true wave function in
the scattering region can then be obtained from a kind
of %KB approach, in the following way. The classical
trajectories are nearly straight lines in the direction
of the positive s axis, so that the situation is approxi-
mately one-dimensional. Then the phase of the wave
function di6ers from that of the incident plane wave by

[K(x,y,s') —k]ds',

where

gzs~sk2+ vtvsc4 —~ fz2~2x2+ trvsr4 —(g V) s

Here E and m are the total energy and rest mass of the
incident particle, and V is the scattering potential
energy. Then if ~x

—k~&&k, which is the same as the
condition

~

V
~

&&(8—mc'), Eq. (1) is equivalent to

z

—(kv) '~ V(x,y, s')ds',

where e is the speed of the particle. The incident plane
wave exp(iks) must then be replaced by

z

expi ks —(hv) '
1 V(x,y, s')ds' .

of their value in a reduced wavelength, that Is, with
An amplitude change of order (x—k)/'k has been

* Supported in part by the United States Air Force through the neglected here.
Air Force 0%ce of Scientific Research Air Research and De-
velopment Command. 4 Equation (2) or its equivalent appears in a number of earlier

'For electron scattering, see Yennie, Ravenhall, and Wilson, papers: G. Moliere, Z. Naturforsch. 2, 133 (1947); G. Parzen,
Phys. Rev. 95, 500 (1954); for proton scattering, see Melkanoff, Phys. Rev. 81, 808 (1951);E. W. Montroll and J. M. Greenberg,
Nodvik, and Saxon, Phys. Rev. 100, 1805 (1955); for neu. tron Proceedings of the Symposium on Applied Mathematics 5, 103
scattering, see Culler, Fernbach, and Sherman, Phys. Rev. 101, (1954); B.J. Malenka, Phys. Rev. 95, 522 (1954); I. I. Gol'dman
1047 (1956). and A. B. Migdal, J. Exptl. Theoret. Phys. U.S.S.R. 28, 394

' Hahn, Ravenhall, and Hofstadter, Phys. Rev. 101, 1131 (1954) or Soviet Physics —JETP 1, 304 (1955). Montroll and
(1956). Greenberg attribute it to Moliere and to R. J. Glauber, Phys.

'A useful approximation based on a modified plane wave has Rev. 91, 459 (1953);Malenka attributes it to Glauber; Gol'dman
been described by Yennie, Ravenhall, and Downs, Phys. Rev. and Migdal attribute it to L. D. Landau and E. M. Lifshitz,
98, 277 (1955). Quanta Mechanics, Part I, p. 184 (1948).
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Thus we expect: the Born approximation to be useful
at high energies when

II. SCHRODINGER SCATTERED AMPLITUDE

We wish to find a solution of the Schrodinger wave
equation

(hv) ' V(x,y,s')ds' «1, (3) (Vs+ ks —U)lt =O, (4)

throughout the scattering region. ' In the nonrelativistic
case, this condition is always satis6ed at sufliciently
high energy since v can be made as large as desired.
On the other hand, e cannot exceed c in the relativistic
case, so that for potentials that are large enough in
magnitude or range, the Born approximation is never
valid. As an example, we expect that high-energy elec-
tron scattering from nuclei can be treated by Born
approximation if (Ze'/Ac) 1nP«1, where P is the ratio
of the atomic screening radius to the nuclear radius.
However, this criterion may be too severe, for we need
only require that the change of the phase diGerence
between Eq. (2) and the plane wave throughout the
principal scattering region be small in order for the
Born approximation to be valid, since the constant
phase diGerence is of no significance in potential scatter-
ing. This leads to the validity criterion (Ze'/Ac)«1.

We shall derive an approximate expression for the
scattered amplitude that is valid w'hen ku»1,

~ V~

«(E—@ac'), and the quantity which appears on the
left side of Eq. (3) is unrestricted in magnitude. Here,
a is the distance over which the potential changes by
an appreciable fraction of itself. Our procedure will

consist in summing the infinite Born series after
approximating each term by the method of stationary
phase. This will be justified if the angle of scattering 0
is either somewhat larger or somewhat smaller than
(k&) '*; the form of the calculation is different in the
two cases. ' Here, R is the range of that part of the
potential which contributes appreciably to the scatter-
ing; in the Coulomb case, it is probably more nearly the
nuclear radius than the atomic screening radius. We
shall generally assume that R and a are of the same
order of magnitude.

This derivation for the Schrodinger case is given in
Sec. II, and for the Dirac case in Sec. III. Sections IV
and V are devoted to a more detailed study of the
Schrodinger case, in order to understand the limitations
of the present procedure and to clarify its relationship
with earlier work. The wave function is found in Sec.
IV, and the WEB or eikonal approximation is examined
in Sec. V.

' A condition equivalent to Eq. (3) was derived for the partial
wave analysis by G. Parzen, Phys. Rev. 80, 261 (1950).

' A somewhat similar procedure has been employed by Glauber
and Malenka (reference 4), and by I. I. Shapiro, thesis, Harvard
University, May, 1955 (unpublished). Rather than use the sta-
tionary phase approximation explicitly on an integral like Eq. (7)
below, they approximate the Green's function by itself in a way
that is only justified if it is later to be multiplied by a plane wave
and integrated over as in Kq. (7). The 6nal results obtained by
them are only correct for small angles of scattering (see Sec. II 8
below).

where Asks/2m is the kinetic energy of the incident par-
ticle and is'U/2m= V is the scattering potential energy,
with the asymptotic form

f —+ exp(iks r)+r ' exp(ikr) f(kr, ks).

Here, ke is a vector of magnitude k along the direction
of incidence, kr is a vector of magnitude k along the
direction of observation, and f is the scattered ampli-
tude. As is well known, f can be expressed as the in-
finite Born series

f(kr, ks) =P, exp( —ikq r„)U(r„)G(r„—r„&)
n=i J

X U(r r)G(r„ t—r„s)U(r„s) U(rs)

XG(rs —r,) U(r, ) exp(ikp rr)drr dr„, (5)

where 6 is the outgoing wave Green's function for the
operator (7's+ k')

L

G(0) = (—4s.p)
' exp(ikp).

We wish to take advantage of the assumed slow varia-
tion of U over distances of order k '. This can be done

by rearranging the exponents of the initial and 6nal
plane waves and all the Green's functions so that the
regions of the integrand which are not oscillating
rapidly are explicitly exhibited. In this connection
consider the quantity exp/i(kp —lt 0)g as a function
of y. For a particular value of the magnitude p of g,
when it is assumed to be somewhat larger than k ', this
exponential oscillates rapidly as the direction of y is

changed, except when 0 is nearly parallel to k. The
phase of the exponential is stationary when g is parallel
to k, and the approximation procedure based on this

property is called the method of stationary phase. ' It
follows that most of the contribution to the integral

I=~ p 'g(0) expLi(kp k0)]d—r

comes either from a region shaped like a paraboloid of
revolution about the direction of k with vertex at the
origin and radius of order (p/k)' perpendicular to its
axis, or else from a spherical region with radius of order
k ' about the origin. It is shown in Appendix A that
for large k

I=(2 i/k) ~ g(kp)dp+O(k '),
0

where k is a unit vector parallel to k.
7 The method of stationary phase is discussed by C. Eckart,

Revs. Modern Phys. 20, 399 (1948), who gives references to earlier
work.
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A. Large Scattering Angle

We de6ne vectors y»=r2 —r», p2=r3 —r2, gn —1

= r„—r„». In terms of these we can write

where

8'p=
Jp

~00

U(r„—kps)ds.

This is easily evaluated to be—kr r +ko. r, = —kf y„,—k1 g„2— —kf p„
+q r —ko. to —1

— .—ko y2
—ko pt, (9)

Wp '/(rt2 —1)!
where q=kp —kf and rt2 can be any of the integers
1, 2, . n T.he Jacobian of the transformation from

r», r2, . r„ to y», p2, y„», r is unity, and it is
easily seen that the in6nite limits on the first set of
variables transform into infinite limits on the second
set. Substitution of Eqs. (6) and (9) into (5) yields a
sequence of integrals over p», - g„», each of which is
of the form (7), where the functions g involve products
of U's. Application of the leading term of Eq. (8) to
these e—1 integrations yields

00 -m—1

= [(222—1)!]—' U(r„kps) —ds . (11)
kp

In similar fashion we introduce new variables

Sm=Pm, Sm+1 —Pm+Pm+1=sm+Pm+1,

' ' 'Sn 1 Pm+ ' '—'+—Pn 1 $~—2+P—~——1,

and find that

Q0

f(kr, kp) = (—42r)-' p g (-i/2!'0)" '
n-» m=1

4 p

dpm
aJ 0

dP„ 1

X dr dpi dp„ 1 exp(iq r).f
0 o

XU[. +k,(. ,+ + )] U( +k )U(.)
X U( k P —) UL - &o(P= +—. +P )] (1o)

dsm dsm+1' ' '

o ~am

f
d$~-»

aJ 8n—2

X U(r„+kqs„ 1) U(r +krs„)

XU[r +kf(p„ 1+ ~ +p )] U(r +Ipyp )

To simplify the integrations over p», p 1 we

introduce new variables
= [(22—212) t]—1

dp
U(r„+kfs) ds . (12)

$1 Pl+ ' ' '+P 1 =Pl+$2 —$2 P2+ ' ' '+pm —1 p2+$2 When (11) and (12) are SubStituted intO Eq. (10), the
summations over n and ns become trivial, and we obtain

$m—1 Pm—1~

Then since the Jacobian is unity,
f(ky, kp) = (—42r) '~ exp(iq r) U(r)

fI f
dSm-1 4$m-2' ' ' d$1

0

x U(r —kps 1) . U(r„—kpsl).

We now define another set of variables

F00

Wl —— U(r —kos)ds, 1=1,2, . " 222 —1,
8$

and rewrite the last multiple integral as

~
Wo (Wm

—1

dW 1 dW
0 0

~
W'3

~
W'g

dt/t 2 d8"1,
0 ~0

dpi .
) dp

0 0

x U(r„—kpp 1) ~ U[1' —kp(p 1+ +pl)]

Xexp ( i/2k) — U(r kps)ds—

+ U(r+ krs) ds dr (13).
0

Equation (13) is our approximation for the Schrod-
inger scattered amplitude. It is valid so long as (a) the
higher-order terms in Eq. (8) can be neglected, and (b)
the stationary phase regions that correspond to the e
different values of m are actually distinct from each
other, since these e contributions were added together
to obtain the 12th term of Eq. (10). In regard to (a),
we see from Eq. (A.2) of Appendix A that the ratio
of the second to the leading term of I is of order 8/ka2,
where a is the distance over which the potential changes

by an appreciable fraction of itself and R is the range of
that part of the potential which contributes appreciably
to the scattering. In most cases a and E. are of the same
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order of magnitude, and even in the Coulomb case E
is not expected to be much larger than a. Thus (a)
requires in the first place that M be substantially
larger than unity. Further, the leading term of I gives
rise to the curly bracket term in the exponent of Eq.
(13), which is of order UR/k=2VR/he. We therefore
expect inclusion of the second term of T. to change the
exponent by an additive amount of order (2VR/hv)
X (R/ka') = VR'/E'a', where E' is the kinetic energy of
the incident particle, and thus change f by a multiplying
factor of this order. Thus in the second place, (a) is
roughly equivalent to the requirement that the scatter-
ing potential energy be small in comparison with the
kinetic energy of the incident particle.

In regard to (b), we note from the discussion of Eq.
(7) and Appendix A that the angle by which y can
deviate from k and still lie within the stationary phase
region is of order (kp) '*, which we can replace in order
of magnitude by (kR) '. Now the e stationary phase
regions that are added together to obtain the eth term
of Eq. (10) differ from each other in that each of the
vectors gi, g„ i is nearly parallel to either kp or ky.
Unless the angle 0 between kp and kf is substantially
larger than (kR) &, these e regions are not distinct. .
Thus (b) is equivalent to the requirement that the
scattering angle 0 be large in comparison with (kR)

It is interesting to note that Eq. (13) satisfies two
general symmetry requirements. ' The first of these is

f(kq, kp)=f( kp, —kr—), which expresses the reversi-
bility of the scattered amplitude between any pair of
directions; it is easily verified when it is remembered
that q=k, —kr. The second of these is f(kq, kp)

f(k=pki), and, is valid only when the scattering po-
tential is symmetric with respect to inversion: V(r)
= V(—r). It can be verified by interchanging kp and

ki in Eq. (13), replacing r by —r as the variable of
integration, and making use of the assumed inversion
symmetry.

B. Small Scattering Angle

When 0 is substantially smaller than (kR) '*, the
different stationary phase regions coalesce into a single
one for each value of e. We choose the s axis in the
direction of kp, then q, =pk8' is small in comparison
with 1/2R, so we replace exp(iq, s ) by unity. The
integrals that appear in Eqs. (11) and (12) may be
written

U(r„—k ps) ds= U(x„,y, z) ds,
*

0 —oo

U(r„+k~s) ds= Jt U(x,y, s)ds,
0 ztn

since k~ is very nearly parallel to the s axis. Equation

R. Glauber and V. Schomaker, Phys. Rev. 89, 667 (1953).

(10) then becomes

f(kq, kp) = (—4pr)
—' P (—i/2k) "—'

n=l

dx dy„exp[i(q, x +q„y„)]

ds„U(x„,y, s )[(nz —1)!(m —m)!]-'

~zm I—1 )+&

U(x„,y„,s)ds U(~,y, s)ds
Zfn

The factor exp[i(q, x +q„y )] cannot be replaced by
unity since the transverse components of q are of
order kg and hence can be considerably larger than
1/R. If now we substitute

sit= U(x„,y, s)ds, pp= U(x,y, s)ds

into the integration over s, it becomes

J [(m —1) I (ip —'m) t]—ig)~ i (~—~)" ~dg) =pp&/ii t

0

and so is independent of m, as of course it must be.
The summation over e is now trivial, and the scattered
amplitude becomes

f(kr, kp) = (ik/27r) e xip( qx+ qy)

00

1—exp (—i/2k) t U(x, y, s)dz dxdy. (14)

X 1—exp (—i/2k) U(b, z)dz bdb (15).
! —QQ

Equation (14) is our approximation for the Schrod-
inger scattered amplitude when 0 is substantially
smaller than (kR) ', and also 1/kR and V/E' are small

compared to unity. It appears in some of the earlier
work' as a small-angle approximation, although no
discussion of its validity appears to have been given
previously. Equation (14) has the form of an integral
over impact parameters, denoted by their coordinates
x and y on a plane perpendicular to the direction of
incidence. If the scattering potential is axially sym-
metric with axis parallel to the direction of incidence,
the variables x, y can be replaced by b, p, where
b= (x'+y')' is the magnitude of the impact parameter.
The integration over p can then be performed at once
to give

f(kfkp) = ,ik " Jp (qb)
kp
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We have been unable to obtain a result analogous to
Eqs. (13) and (14) that is valid when 8= (kR) l. It
should be noted, however, that when VE/Az is very
small, (13) and (14) reduce to the Born approximation
amplitude

fbi(kf, kp) = (—4zr) ' exp(iq r) U(r)dr, (16)

and hence are valid regardless of the magnitudes of 0

and kR.

C. Total Cross Section

As is well known, the total cross section is related to
the imaginary part of the forward scattered amplitude

a = (4zr/k) Imf (kp, kp)

exponents of Eqs. (13) and (14) are multiplied by —i,
the integrands decrease exponentially rather than in-
crease as the imaginary part of V or the range of V
increases, as of course they must. There is nothing in
the analysis that prevents the results obtained in this
paper from being applied to complex potentials.

III. DIRAC SCATTERED AMPLITUDE

Since the infinite Born series for the Dirac case is

perhaps less well known than the analogous Eq. (5) for
the Schrodinger case, we start with the Dirac equation

(—iAcn V+mc'P+E)f= Vf,

where n and P are the Dirac matrices. We operate on
this from the left with

iAcn V mc'P—+E

1—cos (2k) ' " U(0:,y, z)dz dxdy. (17)
to obtain

(P+k')P= (0+zn V pP) of, — (20)

Here, use has been made of Eq. (14).
It is interesting to compare Eq. (17) with the integral

over angles of the differential cross section obtained
from Eq. (16), when k is very large and V is spherically
symmetric. In this case Eq. (17) gives

P(r) =ap exp(ikp r) —(4zr) ' t
~

r —r'~
00 F00 -2

o. —+ (2zr/k')
J

~ J" (r' —b')—:U(r)rdr bdb (18).
0 — 6 Xexp(ik

~

r —r'~) (0+in V' —zzj3) v(r')1b(r')dr',

where k'= 0 —zz', 0= E/Ac, zz= mc/A, u= V/Ac. Equatioll
(20) can be converted into an integral equation by
making use of the Green's function (6) for the operator
on the left side to obtain'

Equation (16) can be written

f~ —
q

' sin——qrU(r)rdr, q=2k sinpo,
0

so that the total Born approximation cross section is

where a0 is one of the two unit spinors associated with
the incident plane wave of momentum Ak0 and positive
energy, and the prime on the gradient operator denotes
differentiation with respect to r'. Integration by parts,
followed by transfer of the gradient from r' to r in the
Green's function. leads to

X "~r—r'~ 'exp(iklr r l)U(r)p(r )dr (21)

p(r) =ap exp(ikp r) —(4zr) '(0+zn Vzzp)'
o.zi

—+ (2zr/k') ' sinqr U(r)rdr (dq/q). (19)
i';-+o0

0 - 0J

Equation (18) has the form of an integral over impact
parameters, and Eq. (19) the form of an integral over
momentum transfers. If the q integration is performed
first in (19), it becomes

, 00 ~ 00

(zr/k') t U(r) U(r') inI (r+r')/
~

r r'
~

7rr'drdr'—
J, ~,

Equation (18) can also be put in this form by doing
the b integration first, although the calculation is
slightly more complicated in this case. Thus the two
expressions agree, as expected.

The integral equation (21) is exact, and can be
iterated to obtain the infinite Born series, which has
the asymptotic form

P —+ ap exp(ikp r)

+Q (—4zrr) ' exp(ikr) (0—n. kg —ziP)
n=l

X . ~ exp( —ikr r„)u(r„)(0+in V zzp)—
D. Complex Scattering Potential

In order for a complex scattering potential to repre-
sent an absorbing medium, its imaginary part must be
negative. Then, since the integrals involving U in the

XG(9 —i)&(r —i) ' ' ' (0+zn'Vz Zzp)G(91)&(rl)ap

Xexp(zkp ri)dri dr . (22)

0 G, Parzen, Phys. Rev. 80, 261 (1950).
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Here, G is given by Eq. (6), the j's are defined just
above Eq. (9), and the subscript on each of the gradient
operators denotes the particular r on which it operates.
Ke wish now to proceed as in Sec. II A, and associate
a factor exp( —ik». y) or exp( i—kf g) with each G,
in order that the stationary phase approximation may
be applied. The difficulty is that these exponejitials do
not commute with the gradient operators which appear
in the integrand of Eq. (22). We note, however, that
for any constant vector k and. function g(r)

vg=exp(ik r)(v+ik)[exp( —ik r)g],

so that the substitution (9) can be used to put the
exponentials in the right places if each gradient is re-
placed by v+ik» or V+ikf, as appropriate. The Dirac
scattered amplitude in Eq. (22) then becomes

fD (kr, kp) = ( 4ir)—'(» nk—f—pp)

oo

Xp .(r„)[»y~ ('v. kg) u—pj—
J

XG(e=) p( —k .e=) ( --) .

X [»+a. (&v~+i kf) pp—]-
XG(g ) exp( —il, g )U(r )

Xexp(iq r )[»yn (iv„—ko) —pPJ

XG(p i) exp( —iko. y i) U(r i)

x[»y~ (iv, —k,)—pp$

u,fo(kf, ko) = (are») (8/mc') f(kf)ko)) (24)

where f is given by (13) or (14); it must be remembered
that U/2k and»U/k are both equal to V/Ail.

The differential cross section in the Dirac case (ig-
noring polarization effects) is obtained by averaging the
absolute square of Eq. (24) over the two initial spinors

ao and summing over the two final spinors af. The
result is

0~(kr, k») = (E/mc ) [1—(n'/c ) sin (i8)J0 (kf,ko), (25)

where

where again we have assumed that the e stationary
phase regions are distinct. We are actually interested
not so much in fo itself as in the scalar product of fD
with uf, which is one of the two unit spinors associated
with the final plane wave of momentum Akf and positive
energy. This quantity arfri can be simplified by noting
that ao and af satisfy the spinor equations

(»+c kp+pp)c» ——0,

f(+ kr+pp) =o,

so that

ar (» n'. kf —pp) ™I(» n ~ k» —pp) so = (2») afa».

On substitution into Eq. (23), it can be treated in

exactly the same way that Eq. (10) was treated in

Sec. II to yield Eqs. (13) and (14) in the large- and
small-angle cases. The result is

XG(yi) exp( —ik» yi) u(ri)Godri ' ' 'dr„, a (kr, k») =
( f(kr, k»)

~

' (26)

where m can be any of the integers 1, 2, e.
Before applying the stationary phase approximation

(8) to each of the factors G(yi) exp( —ik yi), we note
that

('v+ —k)[G(e) e p( —ik e)l
= —pi ~y&(kpi+i)G(g&) exp( ik yi)—.

It is plausible, and can be verified by direct calculation,
that i can be neglected in comparison with kp~ in the

parenthesis when only the leading term of (8) is re-

tained. We thus obtain, to the same approximation as

Eq. (10),

fD(kf, k») = (—4ir)
—'(» —n kr —pp)

is the differential cross section in the Schrodinger case.
Equations (25), (26), (13), and (14) give the Schrod-

inger and Dirac cross sections when 0 is large and small

in comparison with (kR) '. The relation (25) between

the Dirac and Schrodinger cross sections in our approxi-
mation is the same as that derived by Parzen' for the
Born approximation.

It is to be expected that this approximation can be
extended to the scattering theory of other wave equa-

tions (electromagnetic, acoustic, other spin values, etc.),
although this has not as yet been done. In general, the

validity conditions are kR»1, 0 large or small in com-

parison with (kR) l, and Ak (the change in wave num-

ber within the scattering region) slowly varying and

small in comparison with 0, with Rhk unrestricted.

Xg g ( i/2k)" '—dr„, —dp, dp„,
n=1 ~1 Jo 0

Xe px(iq. r )v[r +k&(p„,+ +p )]
X u(r +kgp )U(r )u(r„—kpp„,)

X '[r-—ko(p- —i+ +pi)]

X (» c ' ky pP) (»»» kp pP) cp& (23)

IV. WAVE FUNCTION

In this section and the next we examine the Schrod-

inger case in more detail than the preceding sections,

in order to understand the limitations of the present

procedure and to clarify its relationship with earlier

work. We start by calculating the wave function to the

same accuracy as the scattered amplitude (13) and

(14), and by the same method.
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The infinite Born series for P is yieM

f(r) =exp(iko r)+P p„(r),
n=l

P.„(r)= . G(r —r„)U(r„)G(r —r„ i) U(r„ i)

(—4m p)
—' exp (ikp) ( —i/2k)"

f p—pm

dPm+l' ' 'X dp
~o &p 4p

p—pm — .—pn,—2

~P~ l

X U(12)G(r2 ri) U(rl) exp(iko' rl)drl' ' ' dT . (27)

In analogy with the development between Eqs. (5) and
(10), we put

ko ri ——ko r —ko (r —r, )— . .—ko (r2 —ri).

There are now two classes of terms which give rise to
stationary phase regions: (a) those for which r =r,
r i——r„, etc. , and (b) those for which m is any of the
integers 1, 2, m,. The (a) term for each I is immedi-
ately approximated by the methods of Sec. II to give
the following contribution to f„:

~00 00

( i/2k)" —exp(iko r)~ dpi ! dp„U(r —kop„)
p 0

XU[. +p(p. + +p )j U(r„+pp ),

where p is a unit vector parallel to y. This may be
simplified in the same way that Eq. (11) was obtained,
and leads to

(—4'p)
—' exp (ikp) ((I—m)!j—'

pp

(—i/2k) U(r +ps)ds . (30)

Substitution of Eqs. (29) and (30) into (27), and sum-
mation over m and e, gives for the contribution of the
(b) terms to P

J (—4&p)
—' exp(ikp) U(r') exp(iko r')

X U[r —ko(p + +pi) j, Xexp (—i/2k)
0

U(r' —kos)ds

where p„=r—r„and the other g's are defined just
above Eq. (9). This can be simplified as in Sec. II A,
and the sum over e performed. Inclusion of the incident
plane wave of Eq. (27) then leads to the following con-
tribution to f:

exp i(ko r) —(i/2k) U(r —kos)ds
~o

(28)

We now consider the (b) term that arises from a
particular choice of e and m. The integrations over

r~, r ~ can be converted into integrations over

l and evaluated as

( i/2k)™—1

4O
dPl '

4p

X U(r kop —1) ' ' ULr ko(p 1+ ' '+pl) j
=

t (nz —1)!]—' ( i/2k) ! U(r ——kos)ds " '. (29)
0 J

To evaluate the integrations over r +l, - r„, we note
that the rapidly varying part of the integrand is

exp$ik(p +p i+ +p~)$. It is apparent that the

phase of this term will be stationary when the g's are
lined up parallel to the vector g= r—r, in which case
the exponential will be equal to exp(ikp). It is shown

in Appendix 8 that the integrations over r~l, ~ r„

+ r U('+p)d d ', (31)

where now y=r —r'.
Before adding together Eqs. (28) and (31) to obtain

our approximation for lt, it is essential to realize that
we have assumed that the various stationary phase
regions are distinct. In the (a) terms that led to Eq.
(28), the ri scatterings that give rise to the nth term
in the Born series are all nearly forward, so that the
particle may be thought of as propagating from s= —~
to r along a nearly straight line parallel to its initial
direction ko. In the (b) terms that led to Eq. (31), the
particle may be thought of as propagating from s= —~
to r' along a nearly straight line parallel to ko, then
being scattered at r' and propagating along a nearly
straight line to the. point r. The (++1) stationary phase
regions that contribute to P„[one from the (a) term
and e from the (b) termsj are thus distinct only if the
point r' is not too close to the line parallel to kp that
extends from s= —~ to r; more precisely, the angle
between y and ko must be somewhat greater than (kp)
Thus either we must exclude this range of r' from the
integration in Eq. (31), or we must replace Eq. (28) by
exp(iko r) and recalculate the (b) terms that led to
Eq. (31), taking into account the coalescence of the
stationary phase regions for this range of r'. The two
procedures are of course equivalent; we use the erst,
and express our approximation for the Schrodinger
wave function as the sum of Eqs. (28) and (31), where
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we introduce a prime on the r' integration to denote
the exclusion just mentioned:

P(r) =exp i(kp r) —(i/2k) t U(r kps—)ds

+ ' (—4irp) ' exp(ikp) U(r') exp(ikp r')

Xexp (—i/2k) U(r' kps—)ds
0

pP
+ U(r'+ ps) ds dr'. (32)

Equation (32) can be used as it stands in the vicinity
of the scattering potential. In the asymptotic region,
for 0»(kE) '*, the first term becomes exp(ikp r) and
the second term becomes r ' exp(ikr)f(kf, kp), where

kf is parallel to r and f is given by Eq. (13). However,
for 0«(kR) i in the asymptotic region, it must be
remembered that the first term of (32) cannot be taken.
literally as implying that the integral in the exponent
vanishes if r»R/8, so that the line from s= —~ to r
along ko misses the scattering potential. The reason is
that the g's from which this integral arises can have
directions that deviate from that of kp by angles of
order (kR) ', so that the integral always fails to vanish
in the small-angle case. It is simpler then to follow the
second procedure outlined in the preceding paragraph,
in which case the calculation is exactly that which led
to Eq. (14) for the scattered amplitude in the small-

angle case.
It is interesting to substitute Eq. (32) into the well-

known formula

f(kf, kp) = (—4'ir) ', exp (—ikf r) U(r)p(r)dr (33)

for the scattered amplitude, which is exact if P is exact.
The first term of P yields

Now the first term of P given by Eq. (32) is of order
unity, while the second term can be shown to be of
order U/E' since the stationary phase region that would
normally arise from that part of the integrand for which

p is nearly parallel to kp is excluded. Thus since the
derivation of the first term neglected corrections of
order U/E' Lsee the discussion of Eq. (13)7 one might
think that the second term of P should be dropped.
However, we shall show in the next paragraph that in
the large-angle case, there is a diRerent stationary
phase region in the integrand of (35), that in which y
is nearly parallel to kf, which brings (35) up to the
same order of magnitude as (34). On the other hand, in
the small-angle case where kf and kp are nearly parallel
to each other, this second stationary phase region is not
distinct from the first one, which is excluded; thus (35)
has to be neglected for consistency in this case. Ke thus
conclude that Eq. (34) by itself is the scattered ampli-
tude in the small-angle case; but for small angles, as
pointed out at the beginning of Sec. II 8, q,s is small

compared to unity and may be neglected. The s integra-
tion is then easily performed, and leads immediately
to Eq. (14).

In the large-angle case, where kf and ko are not close
to parallelism, we can put kp r' —kf r+kp=q r'

+kp —kf g in the exponent of the integrand of Eq.
(35). Thus there is a stationary phase region when g
is nearly parallel to kf, which is distinct from that
excluded by the prime of the r' integration. Then, using

Eq. (8) to evaluate the leading term of Eq. (35), we

obtain

(4~) '(2~i/k) ~dr', dp exp(iq r') U(r') U(r'+kfp)
J,

~ GO

Xexp (—i/2k) U(r' —kps) ds

U(r'+ kfs) ds

(—4m) ' exp(iq r)U(r)

I

Xexp ( i/2k) —U(r kps)ds —dr, (34)

while the second term leads to

(4rr) ')t dr t dr'-U(r)U(r')p

Xexp/i(kp r' —kf r+kp)7

where we have replaced p by k~. The p integration is

now easily performed, and leads to

(—47r) ' exp(iq r)U(r)

Xexp (—i/2k) U(r —kps)ds

OQ

exp (—i/2k) U(r+kfs)ds —1 dr, (36)

Xexp (—i/2k) ~I U(r' —kps) ds
0

pP

+ U(r'+ js)ds . (35)

where we have replaced r' by r as the variable of in-

tegration. It is now apparent that Eqs. (34) and (36)
are of the same order of magnitude; indeed, when they
are added together, the second term in the curly
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bracket of (36) just cancels (34), yielding the scattered
amplitude (13) obtained earlier.

We see then that Eq. (32) represents the wave func-
tion in the vicinity of the scattering potential to an
accuracy that is consistent with the calculation of the
scattered amplitude by means of Eq. (33), and that
both terms of (32) must be retained for this purpose.

V. EIKONAL-TYPE APPROXIMATIONS

As pointed out in Sec. I, Eq. (2), which is the same
as Eq. (28), has appeared in several of the earlier
papers, ' usually being derived by a WKB or eikonal-
type argument as was done in Sec. I. We have seen in
Sec. IV that if this form for P is used in conjunction
with Eq. (33) to calculate the scattered amplitude, it
gives useful results for small angles but not for large
angles.

The reason for this failure may be put in the following
way. Equation (2) or (28) is incorrect beyond zero
order in V/E' for two different reasons. The first of
these appears in the neglect of the amplitude change
mentioned just below Eq. (2), and also appears in the
neglect of the next to the leading terms of the stationary
phase approximation that took the (a) terms of Eq. (27)
into Eq. (28). The second reason why Eq. (28) is in-
correct beyond zero order in V/E' is that the second
term of Eq. (32), which arises from the (b) terms of
Eq. (27), is not included in it. While both the second
term of (32) and the neglected corrections to (28) are
of the same order of magnitude, we have seen in Sec. IV
that the former leads to a large-angle scattered ampli-
tude that is of the same order as that obtained from
the uncorrected Eq. (28), so that the V/8' corrections
to (2) or (28) can be neglected consistently. Now as
pointed out by Gol'dman and Migdal, 4 continued im-

provement of the WKB approximation will improve the
wave function along the classical traject. ories, but will
never help in the classically inaccessible regions in
which the second term of (32) is significant. Thus the
iP of Eq. (32), which is essential for a correct calculation
of the scattering, is beyond the reach of the WKB or
eikonal approximation.

In an interesting but unsuccessful attempt to cir-
cumvent this limitation, Gol'dman and Migdal have
adopted a somewhat different procedure from that
represented by Eq. (33). Equation (33) can be derived
in the following way. We write the Schrodinger wave
equation (4) as

(7'+k')P= UP,

and put

p(r) = exp(iko r)+u(r), (37)

so that u satisfies the equation

(P+k')u= Uf.

With the help of the Green's function G of Eq. (6)

we obtain

u(r) = G(r—r') U(r')P(r')dr',

and the asymptotic form of this immediately yields
Eq. (33).

As an alternative, Gol'dman and Aligdal rewrite
Eq. (4), with the help of Eq. (37), in the form

(V'+k' —U)u= U exp(iko r), (38)

and solve this by using the WKB approximation to the
Green's function for the operator on the left side,

G(r, r') = (—4n.p)
—'

&&exp ikp —(i/2k) U(r'+ps)ds, (39)
I

where p=r —r'. The resulting asymptotic form of n
gives a scattered amplitude that resembles Eq. (13),
but contains only the second of the two integrals in the
exponent. This approximation fails for the same reason
that the substitution of Eq. (2) or (28) into Eq. (33)
fails; the error involved in the use of (28) without the
second term of (32) has its counterpart in the neglect
of a similarly important term in the approximate
Green s function (39). A further possibility, not dis-
cussed by Gol'dman and Migdal, is to substitute the P
obtained from Eqs. (37), (38), and (39) int;o Eq. (33).
While the scattered amplitude obtained in this way is
closer to Eq. (13) than either of the WEB results dis-
cussed above, it is still not correct.

In conclusion, the author wishes to express his
appreciation to Professor D. R. Yennie for several
helpful discussions, and in particular for pointing out
an error during the early stages of this work. He also
wishes to thank Professor H. Levine for an interesting
conversation on these matters.

APPENDIX A

We wi.sh to evaluate the integral I of Eq. (7) when
it is assumed that g varies slowly over distances of order
k '. We choose spherical coordinates p, 8, p with the
polar axis along k, and put p=costt:

~2m ~1
I= g(p, p,g) expLikp(1 u)5pdpd&gu —(A.1).

~o ~o

Now if kp is somewhat larger than unity, the exponential
will oscillate rapidly except near p, =1 or 0=0; most of
the integral will come from the angular region 1—p,

&(kp) ' or 8&(kp) l. This region is shaped like a
paraboloid of revolution about the polar axis, with
radius perpendicular to the axis of order pe (p/k)**.
Thus if in I we put dgdu 2~/kp, we find the order of
magnitude of I to be (2m/k) Jt"g(p, 1,0)dp. All of this
assumes that kp is somewhat larger than unity. For



452 L. I. SCH IF F

40 ~0
(~/k~)X(~, ~A) expt ~k~(1 —~)]

(f/kp)g (p p 0') exp[&kp(1 &)3~&
—1

p&k ', the exponential in I is of order unity, and this
part of I is of order (2m/k')g(0, 1,0). Thus if R is the
range of g, the first term is larger than the second by a
factor of order kE, which is assumed to be large com-
pared to unity. We can therefore obtain the leading
term of I by assuming that p is always somewhat larger
than k '.

Our formal procedure consists of integrating Eq.
(A.1) by parts with respect to p':

With p= x—k, I can be written

I= (2m') ' lim ~(P'+2p k —ie) 'g(y)~
~

Xexp(iy p)d7dr„.

The assumption that g is slowly varying is equivalent
to the assumption that the integrand is only large
where p«k. We therefore expand the factor in the
denominator in powers of p', to obtain for the first
two terms

I—(2m') —'lim f (2y k ie) 'g(—p) exp(ip g)drd7. „e~oJ

where the prime on g denotes di6erentiation with
respect to p. The second term is of order (kp) ' with

respect to the 6rst term, since another partial integra-
tion will introduce an additional power of kp in the
denominator. Further, the contribution from the lower

limit of the first term will be small compared to that
from the upper limit, since the former will contain a
rapidly oscillating factor exp(2ikp). The leading term
of I is then just the upper limit of the first term

I= (2~i/k) " g(p, 1,0)dp+O(k ')
0

as quoted in Kq. (8).
It is possible to go farther in this way, and obtain

the next term. To do this it is necessary to break up the

p integration into two parts, according as p is less or

greater than po., po is assumed to be large compared to
k ', and small enough so that a few terms in a power

series of g suffice for p~ pq. When the power series ex-

pansion is used for popo, and the partial integration

procedure for popo, it is possible to keep terms con-

sistently through order k ' and 6nd that the precise

choice for po drops out of the end result. We obtain in

this way

I= (2~i/k) J g(P, 1,0)dP

—(2m') —' lim (2p k —ie)
—'g (p) p'

~ oJ

lim (2kp. —ie) ' exp(i p,s)dp.
e—+0

is zero for negative s and equal to ~i/k for positive z.
Thus the 6rst term of (A.3) becomes (2vri/k) X
Jo"g (0,0,s)ds, in agreement with the first term of (A.2).

For the second term of (A.3), we first replace
p' exp(iy p) by —'72 exp(ip g), and transfer the
Iaplacian operator to g by two partial integrations.
The p and p„ integrals are evaluated as before, and
the p, integral

lim (2kPg 2E) exp(tp~s)dp-

is zero for negative s and equal to —7rs/2k' for positive
s. Thus the second term of (A.3) becomes —(m/k2)

XJo"sk(0,0,s)ds, where k=&'g, in agreement with the
second term of (A.2).

Xexp(ip y)drdr„(A. 3).

We put g(ti) =g(x,y,s), and let the s axis be parallel to
k. Then the integration of exp[i(P,x+P„y)) over P,
and p„gives (2m)'5(x)8(y). Also the p. integral

f—(~/k2) pk(p, 1,0)dp+0(k s), (A.2)

h= V'g

Equation (A.2) can also be derived by a Fourier

transform procedure which is equivalent to that used

by Malenka and by Shapiro. ' We replace p
' exp(ikp)

1n Kq. (7) by

(2'') 'lim J (a2 k' ie) '—exp—(ix y)d~„..-OJ

APPENDIX 3
It seems to be more convenient to treat the factor

exp[ik(p„+ +p )] that appears in the (b) terms of
Sec. IV by an extension of the 6rst method of Appendix
A rather than by the Fourier transform procedure. We
imagine a straight line running from r to r; s, denotes
the component of g, along the line, and x„y, denote
the two mutually perpendicular components of the
transverse displacement of r, from this line. We obtain
the leading term of the multiple integral for large k if
we assume that the x's and y's are small in comparison
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with the s's. Then we may expand

p + . .+p —z.+ . . +z
+l(. '( -'+y. ')+ = '[(*.—=)'+b- —y=)']
+ ' ' '+Zm+1 [(+m+2 +m+1) + pm~2 pm~1) ]

+Zm (+m+1 +pm+1 )}~

If now we apply this result to the evaluation of the
leading term of the integral

(—1/42r)n~+'~ ~ (P„P ) 1 expzk(p„+ ~ +p )

X U(r„) . U(r~, )d2~1 . .dr„, (8.2)

We consider first the part of this expression that
depends on x„:

Zn 2t n +Zn —1 (+n +n—1) (Zn+Zn —1) +n—1

+ (Zn+Zn —1) (Znsn —1) [+n +n—lsn(Zn+Zn —1)

Integration of exp[ik(P„+ +p„)] over x„may be
extended from —~ to +~, since for large k most of
the integral comes from small values of x„.This yields
a factor [(22ri/k)znz 1(z„+z„ 1) ']'*, and an identical
factor comes from the integration over y„.The x„~,y„ I
integrations can then be performed, and together yield
a faCtOr (2 lri/k)(Z„+Z„ 1)Z„2(Z„+Zn 1+Zn —2)

' ThiS.
can be continued until the last integrations, over
x +1, pm+1, which together yield a factor (2 lli /k)

X(z + +z +1)z (z„+ +z ) ". When all these
factors are multiplied together, we obtain

and remember that the U's are slowly varying, we find
that the product of z's in the numerator of Eq. (8.1)
cancels the product of p's in the denominator of Eq.
(8.2), since the P's are now to be taken as oriented
along the line from r to r. Also, the sum of s's that
remains in the exponent and appears in the denominator
of Eq. (8.1) can be replaced by p=

~

r—r ~, provided
that all of the points r~~, r„ lie in this order be-
tween r and r. If they are out of order, the exponential
factor exp[ik(z„+ .+z )] is rapidly oscillating, and
we are not in a stationary phase region. We thus obtain
as the stationary phase approximation to Eq. (8.2):

r

(—42rp) ' exp(ikp) (—i/2k)"

P P—Pm- ~ —Pn-2

X dp~ . .
dpi' —z

(22ri/k)"
—"Z. Z (Z„+ .+Z„)—'. (8.1) X U[r +P(p + .+p )] . U(r +PP )


