FORMAL THEORY OF NUCLEAR MODELS

order to reproduce the level structure of the real
nucleus; in our opinion, nuclear models should thus be
described in terms of the wave function.

A concrete calculation has not been made in this
paper, since our primary concern was how to define
and construct the model operators in various nuclear
models. Such a calculation will be done at another
opportunity.
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A covariant form of the polarization formalism of Wolfenstein and Ashkin is developed. After the hole-
theory boundary conditions are incorporated, the theory may be transformed into a form in which the
positive- and negative-energy components are separated. This form involves two-by-two matrices of the
Pauli type and its similarity to the form of the nonrelativistic equations allows the relativistic contributions
to be extracted. It is concluded that, with suitable interpretations, the nonrelativistic formalism may be used
if an additional rotation of the polarization vector is added at each scattering. The relativistic forms of the
Wolfenstein equations for various polarization parameters are then derived.

INTRODUCTION

N recent experiments at Berkeley' and elsewhere,?
the spin dependence of the nucleon-nucleon inter-
action has been investigated by scattering beams of
nucleons in which the spin directions have been partially
aligned by means of previous scattering processes. The
analysis of these polarization experiments has been dis-
cussed by several authors,>~® and the more recent of
these discussions are based on the polarization formalism
introduced by Wolfenstein and Ashkin. Except for a
brief note by Michel and Wightman® and the early work
of Mott” on the double scattering of electrons by fixed
source centers, the treatments have been based upon the
nonrelativistic Pauli approximation. However, since the
present cyclotron energies are within the relativistic
range and because of the increased energies now be-
coming available, it is of importance to extend the
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polarization formalism into the relativistic region. Such
an extension is the object of this paper, and a completely
covariant formalism for the description of polarization
phenomena in the collisions of relativistic particles is
developed.

In the first two sections, the covariant forms of the .S
matrix and the density matrix for the collision of a
Dirac particle with a finite-mass spin-zero particle are
obtained and the restrictions upon these forms implied
by the hole-theory boundary conditions are imposed. In
the third section, these forms are used in the manner
developed by Wolfenstein and Ashkin for the non-
relativistic treatment of polarization phenomena and a
covariant polarization formalism is obtained. This
formalism may be transformed into a relativistic but
noncovariant form which separates the scattering of
positive and negative energy particles into two distinct
parts, each of whichis expressed in terms of a form which
involves two-by-two matrices and which is quite similar
to that obtained in the nonrelativistic treatment. The
relativistic effects may be extracted by comparing the
theory in this form to the nonrelativistic theory. It is
shown that the relativistic effects modify the non-
relativistic formulas by the effects of an additional
rotation of the polarization vector, a rotation whose
magnitude depends upon the scattering angle in a
manner which is explicitly exhibited. The effects are of
order (y—1), where v is the relativistic contraction
factor for the Dirac particle as seen in the center-of-
mass frame.

In the fourth section the method is extended to the
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collision of two Dirac particles and similar results are
obtained. Special attention is paid to the triple-scat-
tering and correlation experiments and the relativistic
generalizations of the nonrelativistic formulas are
derived.

I. COVARIANT S-MATRIX

In this first section, the covariant form of the S
matrix for the collision of a Dirac particle with a spin-
zero particle is developed. Relativistic invariance re-
quires that the element of the .S matrix which trans-
forms the spinor in the initial state into the spinor in the
final state be of the form®

8$p (R t,k)= A+ Buyu+t3CuoutDu(ivsy,)+Evs, (1)

where A, By, Cu, D,, and E are respectively scalar,
vector, antisymmetric tensor, pseudovector, and pseudo-
scalar functions of the three independent four-momenta
k, ®, and {. The k and %' denote the relative four-
momenta in the initial and final states respectively,
while ¢ is the total four-momentum of the system, the
sum of the initial or the final four-momenta of the two
particles. The general matrix of this form is not con-
sistent, however, with the requirements of hole theory.
This interpretation of the Dirac equation requires that a
Dirac particle which is in a plane wave state at both
T=+« and T'=— « must have the sign of its energy
the same at these two times. To state this in physical
terms: the Dirac particle cannot be changed from an
ordinary particle at 7'=—co to an antiparticle at
T=- o, or vice versa.’ Before this condition is ex-
pressed in mathematical form, some notation must be
introduced. If the incident Dirac particle is in a positive-
energy state, then its wave function may be expressed
ale

I;binczexp(if'x)[*A1[]1(](,)_4,_14 2U2(f):|)

while for a negative-energy state

Yine=exp(—if-2)[A:Us(f)+A4Us(f)].

Here fis the four-momentum representing the physically
measured energy and momentum of the Dirac particle.
Thus fo>0; and the space part of f has the same direc-
tion and sense as the incident velocity. Notice that f is
not the relative momentum, like %, but rather the
momentum in the basic reference frame. The four

8 8, (k' ,t,k) is a matrix element in momentum space and a matrix
in spinor space. The subscript p distinguishes it from a symbol to
be defined later.

9 Cases in which 7eal particles are created during a collision may
be treated by an extension of the S-matrix formalism, but will not
be considered here.

 Lower case italic letters without Greek subscripts will repre-
sent four-vectors. The dot product f-x represents fux, where re-
peated indices are to be summed from one to four if they are Greek
and from one to three if italic. As usual, fi=ifo, etc. Italic or
numerical subscripts other than zero on lower case italic letters
usually denote special four-vectors and not components of the
four-vector. (The subscript four in this footnote is the sole ex-
ception.) Three-vectors will be in boldface type [viz., p] and
scalars will be capitalized, as will most other nonvector quantities.
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spinors U;(f) each have four components U.;(f) which
are given by

Us(f)=(Fif-vet-M)2M (fot-M) T -

Here, and in what follows, the upper sign refers to
indices =1, 2 (positive-energy states) and the lower
sign refers to i=3, 4 (negative-energy states). The
covariant normalization condition,

Ut )U;(f)=UF(f)BU;(f)==3ds,

is satisfied by these spinors. In this relativistic treatment
an asterisk is used to denote complex conjugate trans-
pose and Ut denotes U,;*3, the adjoint of U;. The U(f)
introduced above are easily seen to be solutions of the
Dirac equation

(if v+ UL f) =0,

It is now convenient to introduce for any four-vector v
the symbol

Y@= (-v)/(@-v)} )

where the square root in the denominator is to be taken
as positive or positive imaginary. The Dirac equation
then becomes

YNU(H)==x=U:(f). ®3)

When this relation is used, the hole-theory condition
may be expressed by the equation

SN =y(I8(f"tH)v(f), 4)

where 8(f',t,f) denotes the S-matrix element between
states in which the Dirac particle has the physical
momenta f and f’ in the initial and final states re-
spectively. It will prove convenient, however, to cast the
condition expressed by Eq. (4) into the form of a
commutation relation. This may be done with the help
of the operator

v (ww) =7y (u]u-u|"wlw-w| =) < [y () +v (w)],

where the proportionality is valid if # and w are both
timelike or both spacelike. Using the equations

v(w)y (1) =1=7(w)y (),
one finds that

v (w)y () = (u0)y (). )
With the aid of this equation and $,(%',4,k) defined by
S(f ) =7(f )8 t,k)y (t,f), (6)

the hole-theory condition may be expressed as
SRt k)=~(8)S (k' \t,k)y (). (7)

Since the .S matrix and the v (%,w) have covariant forms,
the 84(k',t,k) must also be covariant and it may be
written in the form given by Eq. (1) with the subscript p

Uf=c¢=1; M=proton rest mass. The lower case Greek v will
represent the matrix four-vector {—iBe, 8}, and the Roman
subscripts on it select a particular matrix element.
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replaced now by ¢. The commutation relation, Eq. (7),
may be used to restrict the coefficients in this expression
for 8, to the forms

BM= —iNB(BtM);
(=)

2]
8)
X[tn(kv"‘ kr) —t (ku,'— ku)] )

Cuv=NcClEb, — bk, —

Dy=NpD(—i)lrk, tsemnpe= Dy,
E=0.

Here the coefficients B, C, and D are scalar functions,
M’ is the rest mass of the second particle, and the
normalization factors N, N¢, and Np are chosen so
that

B,B,=B*, C.C.,=2C* D,D,=D 9)

The eunpo is the antisymmetric symbol and # is a unit
pseudovector which satisfies

(k-n)=(k'-n)=({-n)=1—n-n)=0. (10)

This pseudovector # is the four-dimensional generaliza-
tion of n, the three-dimensional vector normal to the
plane of scattering. The auxiliary operator 8,(¥ k),
which has just been introduced, has a rather simple
interpretation. To see this let Eq. (7) be substituted
into Eq. (6) to give

$(f' 1, 1)= (v (f D)y ()8 (K k) vy (1,£)).  (6)

The operator (y(£)y(,f)) is closely related to the
Lorentz transformation between the center-of-mass
frame and the rest frame of the incident Dirac particle,
and the operator (y(f’,t)v(¢)) is similarly related to the
rest frame of the scattered particle. This may be seen by
reducing the Lorentz transformation

L(f)=exp[—30(c-f)|f[]
to form

L(f)=B(—iv- f+MB)2M (fo+I) T (11)

In the center-of-mass frame, in which v () =p, one may
immediately identify terms to obtain

v @)y (tfr)=L(f1),
vy(fi )y () =L7(f),

where the subscript one indicates the center-of-mass
value. Thus

$(f1 b1, f1)=L2(f1")8 o (k' t1,k1) L(f1).

This equation has the following interpretation: the S
matrix in the center-of-mass frame may be decomposed
into a product of two Lorentz transformations and a
scattering matrix 8, The first factor is a Lorentz
transformation which converts the spinors of the inci-
dent-wave function from their values in the center-of-

(12)
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mass frame to their values in a rest frame of the incident
Dirac particle. It converts the spinors to their “proper”
values, one might say. Then the unitary operator §,
gives the effect of the scattering upon the “proper”
spinors, and finally a Lorentz transformation converts
the “proper” spinors of the scattered particle back to
their value as seen in the center-of-mass frame.

The form of 8, in the center-of-mass frame is particu-
larly simple. Equations (8) give in this case

B,y.,=Bg,
1CL0=Cao;N,,
D iv5yu=DBo;N;,

E=0.

(1=1,2,3), (13)

Here the o, are the usual four-by-four Dirac matrices

og; O
()
0 o;

and N is the three-vector which is normal to the scat-
tering plane in the center-of-mass frame. Combining
these, one obtains

, (F++-G*oy) 0
SQ(kl 7t1)k1)= 0

(F-~G—;N)) » (19

where oy is the Pauli ¢;V; and

Ff=A+B, Gt=D=C. (15)

The F’s and G’s are scalar functions which completely
describe the scattering. The upper two-by-two matrix
operates only on the positive-energy “proper” spinors
and the lower matrix operates only on negative-energy
parts.

In the general frame, also, the 8§, may be put into a
form which clearly separates the parts referring to
positive- and negative-energy states. The desired form
is obtained by first writing

%C#v"'nvz %Cw(_ 1/2) ('Yu’Yv"'YV'Yu)
= (i/z)cﬂﬂlﬁﬂv
= (i/4)cnv"/a')’p€ponv'ys~ (16)

The condition that 3C,.0,, commutes with + (f) requires
that

8,Cpv=—C,ut,=0. a7
Using this relation, Eq. (16) may be written
3Cwowm=1y()ysy -, (18)
where
cr=3(—ils)€ponC|t-t| 72 (19)

If the expression for Cy, from Eq. (8) is put into Eq. (19)
and the definition of # from Eq. (8) is used, one obtains

c=Cn. (20)
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Equations (1), (8), and (18) now combine to give
84(K t,k)=A+ By ()+D(ivsy - n)+Cvy () (bysy-n). (21)

With the introduction of the covariant projection

operators
AE()=3[1xy(1)], (22)
this reduces to
Sq(k 1k) =2 L AX()[F++-G¥iysy-n].  (23)

In this form of §,, the o, type of term has been elimi-
nated in favor of projection operators and terms of the
tvsY, type. Alternatively the 7ysy, may be eliminated in
favor of projection operators and o,,’s. The form of the
S matrix obtained by substituting Eq. (23) into Eq. (6")
is covariant and clearly separates the parts referring to
the positive- and negative-energy states. This form will
be used in the analysis of the polarization experiments
in the third section. In the next section, the covariant
form of the density matrix will be introduced and re-
duced in a manner quite similar to the reduction of the S
matrix in this section.

II. COVARIANT DENSITY MATRIX

In the treatment of polarization phenomena it is
necessary to consider mixtures of states, and a density
matrix formulation is convenient. The expectation value
of an operator 4 in the incident beam is expressed in
terms of the density matrix p(f) by the equation

(4);=Trp(f)A/Tro(f). (24)

For the scattered beam the corresponding equation is

(A)y="Tro"(f)A/Trp" (f). (25)
The differential cross section is
I="Trp'(f")/Tro(f), (26)

where the density matrices before and after the scat-
tering are related by'?

o' (F)=8(/" 1 Np())SI(f' 4.1 @7)
The adjoint At of an operator A is defined by the
equation
(AU)t=U141,
and thus
81=ps*B,

where the asterisk denotes complex conjugate transpose.
The covariant density matrices p(f) and p’ (") may be
expressed in the forms

p() =011 Tro(f) H1+Nviut35u0ur
+ivsYuputJvs),
o' (f)=01% Tro’ (f ) 1Nyt 550 0
+i757ﬂpul+]l75},

12 See Appendix for a discussion of the covariant density matrix
used here.

(28)
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where A, 5., pu, and J are respectively vector, antisym-
metric tensor, pseudovector, and pseudoscalar, and
similarly for the primed quantities. The condition that
the Dirac particle must be definitely in a positive-energy
state or definitely in a negative-energy state in the
asymptotic region may be expressed by the equations

p(N=rNe(Hv(f),
o' ()= (0" (v (f).
By a treatment very similar to the reduction of the form

of 8,1in Sec. 1, the density matrices may now be reduced
to the forms'"

p(f)=L1z Tro(H UL s AE(N=(L+ivsy p5)),
P (f)=L153 Trp' (F) HE £ AX(FIN=(1tivsy - p'4)},

where

(29)

(30)

pf=1-1'=0

AE=Trlp(NA=() T/ Tro( /) =(A*(f)),
L Trle(NA=(Niver]
Trlp(/)]

and similarly for the primed variables.

The value of A+ specifies the energy state. For a
positive-energy particle A*=1 and A~=0, whereas for
the negative-energy particle A*=0 and A~=1. The
pseudovectors p= are the relativistic generalizations of
the polarization vectors of the nonrelativistic treatment
and describe the spin of the particle and antiparticle.

This form of the density matrix, used in conjunction
with the form of the S matrix developed in Sec. 1, will
give a covariant description of polarization phenomena.
In the following section, this covariant treatment is
applied to double- and triple-scattering experiments and
relativistic corrections are obtained.

(31)
and

=(A%ivgy),

III. COVARIANT POLARIZATION FORMALISM

To find the state of polarization of a nucleon after a
single scattering, one may put the expressions for
8(f'4,1), p(f), and p'(f") given in Egs. (¢), (23), and
(30) into Eq. (27), which relates p(f) and o’ (f’). With
the help of the relations v (u)=+v(») and ~(u,w)
=+1(u,w) for timelike » and w, one then obtains

T s A (PN )
Trp(f)
= DY ONT s A=) (FE+iGrvey )
X (O (DT 2 A= (PN ivsy- 1))
X (0 (FD7 (DN e A% (1) (FE3+iG 25y )
X GOV, (32)

13 This form has been used by L. Michel and A. S. Wightman.
See reference 6.
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By reducing the right-hand side of this equation to the
form appearing on the left, one may obtain the polariza-
tion p'+ of the final beam in terms of p=, the initial
polarization, and F+ and G%, the scattering parameters.
At the same time the differential cross section

I="Trp'(f")/Trp(f)

will be obtained. Before performing this reduction, how-
ever, it is convenient to transform the equation into a
simpler form. In particular the equation may be sepa-
rated into two equations, each of which involves only
two-by-two matrices and refers to a single type of
particle. This not only simplifies computations but
allows a more direct comparison to the nonrelativistic
formulation.
To obtain this simplification, the relations

v () () =7 (u,w)y (u,w) =1
may be used to first transform Eq. (32) into

Ty (O AN At-aysy- )} (r (07 ()
={Z AW (F+iGysy-n)}
X Oy (LONZ AN A+dvsy-p)} (r (L)v ()
X{Z A (F*+iGrysy-n)},  (33)
where the &+ signs are now to be understood. Using the

Lorentz transformations L(¢) and L' ()= L71(¢), we may
write this

TIL() Gy (f ) AN (A4-dvsy-p)}
: X (v (f" 0y ()L ()
=LO{XZ A@) (F+iGysy-n)}L1(2)
XL (r Oy (SO APINA+dvsy-p)}
Xy (f;0)y@O)L()

XLO{X AQ) (F*+iG ysy n)} L1 (D). (34)
The L(#) has the property that
L(OyuLt ()= Lur(Ds, (35)
where £,,(¢) satisfies
xw’euva) = (%1), (36)

%y = L,y () (%1),,

(%1)x being the components of any arbitrary vector x in
the center-of-mass frame. Using Egs. (35), (36), and
(12), one finds

L@ @y ()L ()= (t)y (w1,11)

=L(x), @37

where ¥ may be f or f’. Equation (34) may then be
written

T(LALONZ AN A+dysy-p)} L OLT(f1)
=LO{Z AW (F+iGysy-m)} L1 ()
XLLONEZ AN A+dysy- p)} (LI OL(f1)
XLW{Z A@) (F*+iG*ysy-n)} LT (1).  (38)
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With the introduction of the pure space-rotation
transformation

R(w1)=L(x1)L() L' (), (39)

one obtains

IR(AL(E AN (A-dysy - )Y LI(FORT(F1)
=L AW (F+iGysy-n) L)
XR(FOLEZ AS) (Aivsy- p)} LT ()R (f1)

XLOLZ A (F*+iG gy - )} LT(1).  (40)

Defining
Pu=1Lu(f),
p=p/Ln(f),
n=n,L,,(0),
A(0)=3(1£8),

and using equations similar to Egs. (35) and (36), one
obtains

IR(fI)){2 AON (1+dvsy- D)} R (f1)
={X A(0) (F+iGysy-n)}
XR(f{2 AON(1+dysy-D)}R(f1)
X{2Z AQ)(F*+iG*ygy-m)}.  (41)
According to their definitions the », ¥’, and n are the
values of p, p’, and # in the Lorentz frame where f, f/,

and ¢, respectively, are purely timelike. Thus from the
conditions

p-f=p" f'=n-t=0
the four-vectors p, §’, and 1t must have vanishing fourth
components. Considered as three-vectors, the vectors
and )’ are, in fact, just the proper polarizations of the
incident and final beams, and 1 is the normal to the

scattering plane as measured in the center-of-mass
frame. With the definition

R(x1)v iR (1) =75(%1)7,
Eq. (41) reduces to
I3 AN =(AFdvsd Fr i (f1)v )
= {Z:t Ai(O) (Fi+iGimmi)}
XA £ AFONE(L+-dysp it (f)v5) }
X{2x A (0) (FH*+iGF ysyny)},  (43)
where ¢ and j need be summed only from 1 to 3. Since
(1=1,2,3),

this equation splits into two parts, each of which is an
equation in two-by-two matrices which refers to a single
type of particle.

For the cases A*=1 or A"=1, the equations may be
written

IF(1+P/%¢;)= (Ft£GEN 0;)
X (1:&:P¢io‘i) (Fi*_—_tGi:*AU 0'{),
thereby defining I+. The o; are now the two-by-two

(42)

Y5y :=Po;
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Pauli matrices and the vectors P and P’ are defined by

Pi=yir;i(fi)  Pi=piri(fi). (44)

These equations are, except for a sign change in ¢; for
the negative energy states, identical with the equations
obtained from the nonrelativistic treatment, except that
the vectors P and P’ replace the polarization vectors of
the nonrelativistic treatment. In the analysis of double-
and triple-scattering experiments one may proceed
much as in the nonrelativistic case, remembering, how-
ever, that it is the proper polarization vector p, rather
than P, which is the same in the outgoing beam of one
scattering as in the incoming beam for the next. The
connection between the P of one scattering and the P’
of the preceding scattering is

P =P/ Dy (fr i )rri(fn), (43)

where Eq. (44) has been used in conjunction with the
identity p/™=yp,» V. The superscript (#) will denote
the quantities referring to the nth scattering and the
subscript # on the four-momenta denotes their center-
of-mass values. The rotations appearing on the left of
Eq. (45) will introduce certain differences between the
relativistic and nonrelativistic treatments. These will be
called the rotational corrections.

A second type of correction comes from the use of the
relativistic transformation of momenta between the
successive frames. Thus the relation between the in-
coming momentum for the mth scattering and the
outgoing momentum for the preceding scattering as
measured in their respective center-of-mass frames is

(fn)u: (fn—ll)be)\ﬂ—l (t(nvl))oem (t(n))- (46)

The major portion of the transformation appearing here
will, except for extreme relativistic cases, be given by
the nonrelativistic Galilean transformation. The re-
mainder will be called the kinematical corrections.

To analyze double- and triple-scattering experiments,
it appears most convenient to choose the laboratory
system as the basic reference frame. Assuming the target
particles to be at rest in the laboratory system, one
notices that

P =P,

since the three Lorentz transformations that give the
rotation

T () =L ([) Ln () L2 (f) (47)

will be colinear and their product will be unity. For the
scattered beam, however, the p’ and P’ will differ. The
formal manipulations in the relativistic treatment will,
therefore, be identical with those of the nonrelativistic
treatment except for the following two modifications:
first, the connection between the momenta in the suc-
cessive center-of-mass frames is given by Eq. (46); the
second, an exira rotation 7,,7(fi’) is applied to the
polarization vector in the outgoing beam before it is
interpreted as the incident polarization of the next
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scattering, or as the proper polarization. The rotation
7,2 (fy) is the effect of the three successive Lorentz
transformations, which take a vector from its value in a
rest frame of the scattered particle to the center-of-mass
frame; then from center-of-mass to laboratory system;
and finally from laboratory system back to a (new) rest
frame of the scattered particle. This rotation may be
specified by an axial vector Q, whose magnitude is given
by the equation

sin| Q| = |V, X V5|
1+ () @+ (1) O+ (1)@
[1+ @1+ )P I+ )@T

where (v)@, (y)(®, and (v)(® are the Lorentz contrac-
tion factors associated with the three transformations
listed above and V,, V4, and V, are the space parts of the
three relative relativistic velocities, respectively. The
transformations and the corresponding rotation are
schematically represented in Fig. 1, where 8 and 6, are
the laboratory and center-of-mass scattering angles re-
spectively. Since the rotation is about an axis perpen-
dicular to the plane of scattering it may be neglected in
the simple double-scattering experiments and in the
depolarization experiments; in these experiments the
polarization vector is always perpendicular to the scat-
tering plane and the rotation will not affect it.

In triple-scattering experiments of the rotation cate-
gory the polarization vector will have components in the
plane of the second scattering. The asymmetry in the
differential cross section after the third scattering will
measure the component of proper polarization which is
in the plane of the second scattering and which is
perpendicular to the laboratory direction of the scat-
tered beam. Both the kinematical and rotational effects
will play a role. As an example, the important case in
which the masses of the Dirac particle and the second
target particle are equal will be treated. The considera-
tions of the next section show that the results obtained
here will be applicable to the case in which the second
target is a Dirac particle.

Because of the kinematical corrections the second
laboratory scattering angle 8 is not 65/2. The difference
may be defined as

a=30,—0® =126, . —O1ap.

RF

(48)

Fi16. 1. Diagram show-
ing the sense of rota-
tion of the polarization
vector caused by the
relativistic effect. The
vectors represent sche-
matically the relative
velocities of the center-
of-mass frame, the labo-
ratory frame, and the
rest frame of the
scattered particle.

Lab Vp GM,
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Since it is the component of polarization perpendicular
to the laboratory direction of the scattered beam that is
measured, there will, for a fixed s, be a kinematical
correction of the direction that specifies the component
of polarization which is measured by the angle a. There
will also be a rotational correction which changes the
direction of the polarization vector by the angle §= | Q]|.
The effect of this second correction may be accounted
for by letting the polarization vector remain fixed but
rotating the direction of the component which is in
effect measured, by the angle —4. Taking the various
senses into account, one finds that the net effect of the
two corrections is to rotate the direction of the effective
component by (§—a) about the normal vector N. A
calculation shows that §=2a, and the rotational effect
just reverses the kinematical correction. This has the
simple physical consequence that the direction of the
effective component makes an angle ® with the normal
to the center-of-mass velocity. The relativistic expres-
sion for the rotation parameter* R in the P— P system,
therefore, takes the relatively simple form!®

IoR= (|a]?— [m|?) cos(Bc.m.— Oran) —4 Re[gh* cos (B1an) ]
+2 Re[ic(a*—m™*) sin(@e.m.—01un) ], (49)

where 0...,. and 0y, are the center-of-mass and labora-
tory angles at the second scattering. To obtain this last
equation it was assumed that the prescription for ex-
tending the nonrelativistic formulas into the relativistic
domain will continue to be valid when the target
particle has internal coordinates. In the next section, the
case in which the target is another Dirac particle is
considered and this assumption is validated.

IV. POLARIZATION FORMALISM FOR
TWO DIRAC PARTICLES

In the developments in the preceding sections, it was
assumed that the target particle had no internal coordi-
nates. The form of the results suggests that the rela-
tivistic corrections involving the spin state of the first
particle would not be changed if the second particle
were to possess internal coordinates. Indeed, one finds
that the manipulations involving the first-particle spin
state may be carried out almost unchanged if the second
particle possesses spin. In this section, the important
case in which the second particle is also a Dirac particle
is considered and the expected generalization is obtained.
In this treatment, it will be assumed that the two
particles are distinguishable. Indistinguishable particles
may then be treated by an appropriate antisym-
metrization of the results.

The S matrix for the system of two Dirac particles

14 This is the R parameter which is measured in experiments in
which magnetic fields are not used to rotate the directions of
polarization vectors. See reference 5.

15 In the notation, used elsewhere by this author, where the M/
matrix is written M=a+c(o1v+o2n)+m(oinoan)+g(o1poer
+o1x02k) +h(o1poep—o1k02K), With the vectors N, P, and K as
defined by Wolfenstein and Ashkin.
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may be expressed as a sum of terms, each of which is a
product of an operator in the first spin space times an
operator in the second spin space. Thus one may take all
possible bilinear combinations of the matrices

(ID, 7D, 3o, 75D 7@, 55
I(z)) 7“(2)7 %a-l“’(2)? i’ya(z) ’YM(2)7 75(2))7
which are linear in the first and in the second subsets.
In exact analogy to the case treated above, the matrix
$¢(#,t,k) may be defined by
S(f1 L f)= GO (f ey @ () (v ® (W, 1)v @ (1))
X8q(k 1,k) (v® (D)y® (1))
X OOy (1), (50)
where % and %’ are the initial and final momenta of the
second Dirac particle. The hole-theory condition may be

introduced and used in a manner analogous to the
reduction to Eq. (7), with the results that

YO @)84(K' 1, R)y (1) =84(K',1,k),
Y@ ()8 (R 1, k)y® (1) =8 o (' ,1,k).
Consider now the term in Sq(k k) of the form
Cuvon(30,P) (30,,2). \

The condition that this term commute with y®(z) re-
quires, in analogy to Eq. (17), that

8Curap=—1Cousp=0.

Now, applying the arguments that led to Eq. (18), one
obtains

Cruvep (%a'uv(l)) =y® (t) (i'yﬁ(l) 'Y)\(l))c)x; opy

where £HCx;sp=0. The dependence on o,, may be
similarly transformed to give

Cuwp (%‘Tw(n) (%‘T‘m@))
=y @ (@) @rsO®)y® () (ir5@y,®),
where Chfy=HCx,=0. Eliminating all terms containing
ou’s In a similar manner, one obtains
8o (F t,k) = F+FOyO ()4 F@y@ (1)
+Cr\D (Gy 507 D)+ GA® (375 @7\ @)
GO0 (O D)+ G (03 )
+Gnp (1D D) iy, )
F OO @ GrsOD)y® (1) (FysPy,®)
+FOyO 0y ()
FEOYE () (GysI®)
FEXDyD (@) (v O ®)
F DA Oy @ )y @ (0) (s O ®)
+ DOy Oy (1) (i Pa®)
o+ H O Grs Oy 0) s ,2)
+H® 1@ @y (1) (7507, 0).
The coefficients appearing here are functions of %/, ¢, &
and are pseudovectors and tensors which are orthogonal
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to ¢ on all indices. Thus, for example, HH\,'=1,H),’=0.
Now the first two terms may be transformed into a more
suitable form:

F_,_F(l),-y(l) (t) = Zﬂ: %[lﬂ:'y(l) (t):]F:k7
where

Y(FHP)=F, J(P—F)=FO.

In the same way, the rest of the terms may be grouped
in pairs to give

8q(k' k) =21 31y ® () HFE+G Oy O ©
+FOE O ()-GO (77 ?)
+Cr @2y @ (1) (175 Py @)
+ G, 2 (7507 ©) (77527, @)
+ Hy O (Gys Oy )y @ (1) (y5 @y, @)
+ ExDEy® (1) (45D ©)}

Performing the analogous grouping relative to y®(/),
one obtains

Sk D)= Taal 11O OB ()]}
X {F:\::i:_f_G)‘(l):i::h (’Z’Ys(l)’Y)\(l)>
+Gx(2)ii (i75(2)7)(2))
+Gr iy N ) (1, ®),

where

WG\VEE= G\ DEE= G\ =G, F5,=0.  (51)

The G\®P*£ and G\®@*= must be pseudovectors and may
therefore be written

G\DEE=GWEdy, GO E:= GO Ey,

where 7, are the components of the only available unit
pseudovector, that is,

’
NC R Rl u€popn.

The tensors Gy, ** are, on the other hand, not restricted
to a single type of term. The classification of possible
tensor terms is facilitated by introducing the normalized
vectors

sv= Ntk —0{t,(k,+k,)) (t-1)71],
dy= ZVd[k)— kxl:l.

The vectors ¢, #, s, d form an orthogonal set. The condi-
tion in Eq. (51) limits the possible terms in the Ga,** to
those bilinear in the components of #, s, and d. If the
requirement of invariance under spatial reflections is
invoked, the G),** reduce to the form

Gt = CEmym,+ Dsys,+ E2dyd,
FG (v, drs,) +GEE(vd,— drs,).

Just as in the nonrelativistic case, the required invari-
ance under time inversion removes the last two terms,
since dy retains its sign under time inversion, whereas s
changes sign. Thus the 8,(#,.,%) finally takes the form

HENRY P.
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84(k1,k) =2 1a (ADE(NAPE(D))
X [FtA GOty Dy O gy f GOy Dy @) gy
+ (CEEnyn,+ DEEsys ,+ EX*dyd,)
X (@O ®) (Bys®y,*) 1.
In a very similar way, the density matrix is reduced to
the form

p(fil)=1 Tro(fl)[ 2 10 (AOE(S)APE(R) NFE
X1 iy50y @ p Oty Dy @ ek
+ (s PD) (FysPy @) engtE ],

where p, V% p, @£ and ¢y, F+ are the polarization and
correlation parameters for the four types of systems, and
satisfy

PuOEE = p OFE) = ¢\ Xy — fro) =),

(52)

(53)

These forms for p and 8§, may now be substituted into

o (0= 8(f" 1, e ()8! (1 b, fil).

The transformations carried out in Sec. 3 may then be
performed upon the matrices in the two spin spaces
independently and the equation will split into four
equations in the two-by-two matrices, each of which is
identical in form to the nonrelativistic equations. The
quantities appearing in the places of the nonrelativistic
polarization and correlation components will be

P W=p;Wr;:(f1),
Pi®=p;r;i(h),

P{O=p/Or;i({), Y
P/®O=p/r;:(h),
C 5= Com? ki (fO)7mi(Br), _
(55)

Cij = Com'rre(f1)rmi(B1),

where now the superscripts refer to the first or second
particle and the 7,,(%) is defined as

7ur(®1) = Ly (@) Lp (1) L5 (1) (56)

The modifications of the nonrelativistic formulas which
the relativistic effects introduce are seen, now, to be
completely parallel to those obtained when the target
had no spin, and the assumption used at the end of
Sec. 3 is valid.

In the treatment of the correlation experiments the
relativistic effects on both particles must be considered.
In the Cyy type of correlation experiment, where the
components of polarization perpendicular to the scat-
tering plane are measured, the rotations will again play
no role. In the Ckp experiment the relativistic correc-
tions will not vanish. The application of Egs. (55) and
(56) shows that the expression for the quantity meas-
ured in these experiments is, in the relativistic region,

I()CKP=4 Re(wh*)

—2 Re[g(a*—m*) sin(@e.m.—261ap) . (57)
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CONCLUSIONS

It has been shown that the covariant treatment of the
polarization effects may be transformed into a form
which separates the positive and negative energy states.
The formulas for either energy state are in terms of
two-by-two matrices and the theory is very similar in
appearance to the nonrelativistic theory. The three-
dimensional vector, which in these relativistic equations
takes the place of the polarization vector of the Pauli
treatment, is the proper polarization vector. The proper
polarization vector is defined as the axial three-vector
whose components are equal to the space components of
the four-dimensional pseudovector p, (which specifies
the polarization in the relativistic theory) when these
components are measured in a particular rest frame of
the particle in question. This particular rest frame is the
one generated by transforming the basic reference frame
(which is conveniently taken as the laboratory frame)
by means of a single timelike Lorentz transformation
into a frame in which the particle is at rest. (A timelike
Lorentz transformation is defined to be one involving
the time axis and only a single space direction. It is
important to recognize that the rest frame which would
be generated by a succession of timelike Lorentz trans-
formations would in general have a different orientation
of its spatial axes.) Except for a rotational effect to be
described below, the manipulations in the relativistic
case may be carried through exactly as in the non-
relativistic case; as in that case the successive collisions
are described in their resecptive center-of-mass frames.
The spatial orientations of these center-of-mass frames
are again to be determined by transforming the basic
reference frame to the appropriate velocity by means of
a single timelike Lorentz transformation. Thus the
transformation of the outgoing momentum vector for
one collision into the incoming momentum of the next
collision involves transforming from the value in the
first center-of-mass frame to the laboratory frame and
then to the second center-of-mass frame.

The relativistic treatment differs, however, in one
important way from the nonrelativistic treatment. In a
particular collision, rotations must be applied to the
incident and final proper polarization vectors to trans-
form them from those rest frames of the incident and
final particles which are associated with the basic
reference frame, by means of single timelike Lorentz
transformations, to those rest frames which are as-
sociated with the center-of-mass frame in the same way;
it is these latter three-vectors which are transformed
from initial to final values by means of the two-by-two
form of the S matrix. Thus, in a sequence of collisions,
one must take into account the rotations induced by
changing between the various rest frames. In the labo-
ratory frame, the rotations associated with the incident
beam vanish if the targets are at rest in the laboratory
system, and the rotational effect reduces to an addi-
tional rotation of the polarization vector which must be
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added after each scattering. This rotation gives the
effect on the components of a vector which is induced by
transforming the coordinate system from a frame in
which the particle is at rest to a frame in which the
center-of-mass is at rest, then next transforming to a
coordinate system in which the laboratory is at rest, and
then finally transforming this coordinate system to the
new coordinate system in which the particle is at rest.
Each of these transformations is supposed to take place
by means of a Lorentz transformation which involves
the time axis and a single space direction. The effects of
these transformations of coordinate systems upon the
coordinates of the polarization vector may be expressed
as the effect of a rotation of this vector with respect to a
fixed frame. It is this rotation of the polarization vector
whose magnitude and sense are given by Eq. (48) and
the accompanying diagram. This is the additional rota-
tion of the polarization vector which must be added
after each scattering if the relativistic results are to be
obtained from the nonrelativistic formalism.
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APPENDIX. COVARIANT DENSITY MATRIX

In situations in which statistical mixtures of states are
considered, it is convenient to introduce the density
matrix p, which in an appropriate representation may be
written

p=Za|¢a>W¢x<\/’a|,

where W, is the probability that the system is in the
state a, so that ) W,=1. The probability of finding the
system in a region R may be written

w(R)=Spp®,

where Sp is the trace over both coordinate and spin
variables, and @ is the operator that projects onto the
region R. If R is taken as the three-dimensional mo-
mentum region (df)=df:df.dfs, then

w(df) = (df) Trps(f),
where Tr is the trace in spin space and

ps(=2al Qu(d) [*{| UIW (U (D[}

The amplitude G.(f) is a function of the three-momen-
tum f defined in terms of y,.(f), the momentum-space
wave function, by

Ya(B)=Ga(D) | Ua()).

The U,(f) are spinors which can be expressed as linear
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combinations of the U;(f) of Sec. 1, and like the U,(f)
they may be defined in terms of their values in the frame
in which =0 by the equation

U.()=L71(f)U(0).
Then

w(df)= (d) | &) [* ()= (DX We| Ga(D) 7} (v)7,

where (y)’/ is the Lorentz contraction factor. Since
df/(v)’ is an invariant, the required invariance of
w(df) requires that |@(f)(y)’|? is unchanged in a
Lorentz transformation.

Notice that the density matrix and the volume ele-
ment are not invariants separately. If, however, the
particle is definitely in a positive energy state or
definitely in a negative energy state one may write
(dropping now the summation signs),

ps()=[@ua(®) [*| Ua®)WU*{D)|
= Qu(®) 2| Ua@®)Wa(Ua*B | Ual®)) (£) (Ul B
=M/ Ca®* | Ua®)EW) UL D/ ()
=o(f)/ ()’

The [(y)’ ] may now be put with the (df) to form
an invariant. The matrix p(f) defined by the foregoing
equation will be called the covariant density matrix.
Since its matrix elements

pii(H=UHDINIU))
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are invariants, it must be of the form

P(f) = [i Trp(f)]].—_l+)\n’)’u+%sw‘7w+i’)’5’¥u?ﬁt+J'Y5]:

where the coefficients Ay, Suy, pp, and J transform in the
evident manner,

The expectation value of the operator 4 over meas-
urements in the region R= (df) is

(4)as=SppA®/Spp®
_LO)7T(@) Tro(f)4
[()71(@df) Tep(f)

If the region R restricts also the three-momentum h of
the second particle, then the element (dh) will also
appear in the invariant combination dh/(y)".

For the final state the matrix p’(f’) is defined in the
analogous way. It is related to p(f) by the equation

o' (f)=8(f 1N (IS (f' 4, 1).

Here the invariant elements dkdh/(v)*(y)! and
dt/(y)* have been incorporated into the definitions of
o(f) and p’(f') respectively and the trivial integration
over t and k performed, allowing these variables to be
considered as fixed and discrete. The condition Spp=1
becomes then Trp(f)=1, and the differential cross

section is
I(f)=|ad)(v)! =T (f).




