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A number of observed magnetic multipole isomeric transitions
are forbidden on a strict Mayer model of the nucleus, and even
on a number of variations thereof, if the ordinary magnetic
moment operator is used. Possible explanations include modifi-
cations of the nuclear model, of the magnetic moment operator,
or of both. Modifications of the operator involve consideration of
the currents due to the exchange of mesons between nucleons which
give rise to interaction contributions to the magnetic moment
operator. An exploratory investigation has been carried out to see
to what extent these interaction effects by themselves can
account for these so-called forbidden transitions. Using certain
simplicity arguments the operators were chosen from the set

which can be written down, phenomenologically, with the radial
functions arbitrary. The dipole calculations were performed on
both the Fermi model and the shell model. On the Fermi model,
the transition matrix element involves the unknown radial
function only in an integral which is identical for all transitions.
By an appropriate but arbitrary choice of the numerical value of
this integral, the data can be accounted for, though somewhat
crudely; the difference between transitions in odd-proton and
odd-neutron nuclei is not explained. There are very few data on
“forbidden” octupole transitions; the data that do exist can be
more or less understood in terms of the interaction moments.

L. INTRODUCTION

LTHOUGH the Mayer! model of the nucleus
successfully accounts for many observed prop-
erties of nuclei, modifications of this model are necessary
in order to account for some data not in accord with
the Mayer predictions. In particular, the magnetic
moments of nuclei are in qualitative agreement with
these predictions (the Schmidt lines?) but do not agree
quantitatively with them. There are two principal ways
in which these deviations from the Schmidt lines might
be explained. One approach is to assume that the Mayer

scheme determines the parity and angular momentum |

and perhaps the largest part of the true wave function
at least for the ground state but that it must be modified
to include admixtures®* from a few of the outer particles.
For the excited states the above situation may hold
and in addition collective vibrations of the core® may
have to be included in the nuclear wave functions.® The
other is to retain the Mayer picture but to generalize
the magnetic moment operator to include, besides the

* Reported at the Washington Meeting of the American
Physical Society in April 1955 [Phys. Rev. 99, 649 (A) (1955)].
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contribution associated with the orbital and intrinsic
spin angular momenta, the interaction effects arising
from the exchange of mesons between nucleons. These
interaction effects can be treated from a fundamental
meson theoretic viewpoint”:® or, as first pointed out by
Sachs,® from a phenomenological viewpoint.~'? The
underlying theory of these effects is that internuclear
forces are produced by a field bearing charged mesons
which give rise to a charge-exchange potential. Once
the possibility of these exchange forces is admitted,
any meson theory must give rise to an interaction
current in order to satisfy the requirements of charge
conservation. It has been pointed out by Sachs and
Ross® that there are some observed isomeric transitions
in odd-A4 nuclei which would not be expected to occur
on the Mayer model of the nucleus. These are magnetic
dipole (M1) transitions, involving a change of two units
of orbital angular momentum (but of course only one
unit of total angular momentum) and are therefore
forbidden by the ordinary magnetic moment operator
which can connect states differing at most by one unit
of orbital angular momentum. The forbidden transi-
tions, too, can be explained either by admitting admix-
tures to the wave functions and/or by interaction effects.
Ross®? has shown that the types of admixtures which
could explain the forbidden transitions require what
seem to be unreasonably large departures from the
Mayer model. The current trend is not to take the
Mayer model too seriously, and both admixtures and
interaction effects may be needed to explain both the
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deviations from the Schmidt lines and the forbidden
isomeric transitions. However, rather than study both
effects, we want to see to what extent the data can be
explained by isolating interaction effects.** It should be
expressly noted that in spite of our use of the Mayer
model, our results are not completely restricted to the
Mayer model; we need not rule all admixtures out of
consideration, since for many of the possible admixtures
the selection rules are violated for the ordinary magnetic
moment operator. The only effect of these admixtures
would be to require a renormalization of the wave
functions which would change the calculated transition
probabilities only by a few percent for reasonable
admixtures. Once the possibility of interaction effects
is admitted, then they will be expected to contribute to
all isomeric transitions. The forbidden transitions, how-
ever, offer a possibility of isolating the interaction
effects, since the ordinary magnetic moment operator
cannot contribute in these cases. Ross!? investigated
the possibility of explaining the forbidden dipole
transitions by means of interaction effects, but at that
time there was very little experimental data available;
only one lifetime was known with any accuracy. Since
then nearly a score of lifetime measurements have been
made of forbidden magnetic dipole transitions. In
addition, there is some evidence for the existence of
forbidden magnetic octupole transitions. Magnetic
quadrupole and magnetic 2%pole forbidden transitions
are not expected on the Mayer model for the same
reason, pointed out by Mayer!' in her original paper,
that E1 isomeric transitions are not to be expected,
viz., the levels connecting the states between which
transitions would give rise to the radiation in question
lie in different Mayer shells. 25 and higher forbidden
multipole transitions can take place only in the region
of the naturally radioactive and transuranic elements
and because of the small probability for the occurrence
of such transitions, they are not likely to be observed
in competition with other modes of decay.

In view of the fact that so much more data are now
available, it seems then that a reinvestigation of the
forbidden transitions might throw light on the role
played by interaction effects inside nuclei.

II. THE OPERATORS

Because there is no firm foundation for the various
meson calculations, the operators are obtained in a
phenomenological manner; that is, the empirical evi-
dence is expressed in terms of the simplest operators
involving the nuclear coordinates. This is the approach
which has been used with some success in explaining
the deviations of the magnetic moments from the
Schmidt lines,""'* and in investigations of the neutron-
deuteron cross section, the neutron-proton cross sec-

1 Volkov (reference 4) has taken the other point of view and
has studied the effects of admixtures in connection with the
magnetic moments and forbidden isomeric transitions.

15 H. Miyazawa, Progr. Theoret. Phys. Japan 6, 801 (1951).
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tion,'® and the photodisintegration of the deuteron.!”
Also, interaction effects have been considered'® in
calculations of the hyperfine structure splitting in He?.

The problem of writing down the interaction operator
phenomenologically has been considered by several
authors and in greatest detail by Berger and Foldy'®
who wrote down, subject to certain conditions of
invariance and symmetry, the most general two-body
velocity-independent dipole operator. In principle, the
operators for the higher multipoles could be obtained
in the same way. However, this would be a lengthy
procedure which does not seem justified since in any
event the radial functions and the strength of the
individual terms are undetermined on a phenomeno-
logical approach. An idea suggested by Stern and
Schwinger and used by Stern®* and by Villars and
Weisskopf?* seems to be a simple and reasonable
method of choosing a gauge-invariant operator which
gives rise, for all multipoles, to a spin-dependent inter-
action. (Only spin-dependent interactions can account
for the forbidden transitions in which we are interested.)
It gives rise in the dipole case to just three of the
operators written down by Berger and Foldy, and
these are the ones used by Villars® in explaining the
H?—He? anomaly and also by Russek and Spruch" in
dealing with the deviations of the magnetic moments
from the Schmidt lines.

Ross!? has shown that if interaction effects alone are
to account for both light- and heavy-body data, the
operator must change rather markedly in passing from
light to heavy nuclei. Interaction effects may account
for heavy-body data if the interaction is due both to
two-body and to many-body interactions. It is possible
to retain the form of a two-body interaction if it is
assumed that the two-body and many-body interactions
can be combined to give an effective two-body operator
which will not change very markedly over the range of
medium and heavy nuclei. This corresponds to the
assumption that the effect of the neighboring nucleons
on an interacting pair has a smoothed-out average
influence which need not, however, be small.?

In their derivation of the interaction operators,
Villars and Weisskopf? express the two-body charge-
interaction potential, V1, taken from the experimental
data, in a form which often appears in meson-theoretic
calculations, namely,

Vi (r12,01,02,‘=1‘ ‘Vz) =T TzV(l'12,01,0'2)

= (v1-%2)[ (01" V1) (02 V)us (r12) +us(r12) ], (1)
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where = is the isobaric spin operator of the ith nucleon.
The functions %, and %, are determined by this equation.
Then they construct what is probably the simplest
charge-exchange spin dependent gauge-invariant poten-
tial, namely,

ie
W= 211‘*12‘[ (0'1' VL—;O‘Y A(ry) )

C

ie
X (0'2' V2+'h—0'2' A(!z))‘ul‘i-%zl
Cc

ie r2
Xexp{ __h_f A-dr}—i—Herm. conj., (1b)
CY r1

where A is the vector potential and 7£=2%(r%=irY).

For weak fields, a good approximation to Eq. (1b)
can be obtained by expanding in powers of A and
retaining only those terms linear in A. This corresponds
to the assumption that the field is sufficiently weak so
that it does not alter the motions of the mesons nor of
the nucleons appreciably. For magnetic moment calcu-
lations the vector potential associated with the external
field must be used and this gives, upon eliminating the
isobaric spin, the operators

M1= Mlong.= (iE/ZfLC)Zl 22 Y1Xr2V(l’12,0'1,0'2)P12,
M,= (e/Zﬁc)Zl 20 7’122f2(1’12) (0'1—0’2)1)12, (2)
M;= (B/th)zl h) f3(7’12)[1'12‘ (01'—0'2)]r12P12,

where r; and ¢; are the position and spin operators for
the ith particle, V is defined by Eq. (1a), f; and fs=f
can be expressed in terms of the #, which follow from
Eq. (la), and Py, is the space exchange operator.
Only one of these operators, M; has a firm theoretical
foundation,? and an investigation by Spruch? has shown
that it alone cannot account for the deviations of the
magnetic moments of nuclei from the Schmidt lines.
It will be noticed that of these three operators only
the last one, M3, has the possibility of carrying off two
units of orbital angular momentum. (It should be
noted that the operator r;Xr, transforms as an L=1
operator.) For calculations of magnetic transition
probabilities in which the emitted photon carries off L
units of orbital angular momentum with projection M,
we use the vector magnetic potential of order L, M*
generated by the interaction currents themselves, and
normalized to one quantum per unit energy state. The
operators have the same form as those in Eq. (2) but
of course involve the wave number of the emitted
radiation because of the normalization chosen. Of the
operators obtained in this way, the only one which
contributes to the forbidden isomeric transitions can be

22T, Spruch, Phys. Rev. 80, 372 (1950).

2 See, for example, G. Goertzel and N. Tralli, Phys. Rev. 83,
399 (1951).
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written, again after eliminating the isobaric spin,
H!°=24 1('1:6/h6) (3/87!‘) éf(?’m)[(0‘1"‘(‘!‘2) . rm]szlg, (33.)

where HLM serves as the perturbation which gives rise
to a photon with quantum numbers L and M ; zi; is
the projection of rip=r;—r; on an arbitrarily chosen
z-axis and f(r12) is an undetermined function of the
interparticle distance which is expected, however, to
have a range comparable to the range of nuclear forces.
In the Villars-Weisskopf formalism Vi, is considered
known, one then determines u;(712), and f(r12) follows
from the relation

f(r)="[08/08r12(u1) ]/ 112.

From our viewpoint, V1. is the effective potential in
the presence of the other nucleons and as such is not
known. We have therefore attempted to perform the
calculations, wherever possible, in such a way that the
specific form of f(r12) need not be known. It is under-
stood that this operator must be summed over all pairs
of particles and that it acts on wave functions which
have been antisymmetrized separately in neutrons and
protons. A; arises from the introduction of the vector
potential; the general form is given by

Ar=1Q2hc) [wL(L+1)T I/ 2L+
where % is the wave number of the emitted radiation and
QL+n)!=Q2L+1)(2L—1).--3-1.

Similarly for the octupole, keeping only those terms
which can carry off four units of orbital angular
momentum, we find

1577 1\%4e
H30=— ——*) —A3f(r12) { (31222122 212012 112
2 \4r 127 #c

+i(02-112) (12X 0 1)*+2 (01 112) (112X 02) ]
— 22219 @12 T2t (02 112) (01X 112)?
+i(01°112) (02X 112)7]

+2:2212[ 012 79— 1 (01 T12) (02 X 112)?

—i(02 112) (61X r12)*]} P1a.  (3b)

As already observed, use of the suggestion of Villars
and Weisskopf in deriving the operators gives a much
more restricted set than that which arises on a strict
phenomenological basis. The latter gives thirteen dipole
operators,”® only six of which give contributions by
virtue of the selection rules to forbidden transitions. If
the further requirement of charge independence plus no
nucleon recoil is imposed, only three operators con-
tribute. One of these is considered here [Eq. (3a)], and
one gives zero on the Fermi model and is therefore
expected to give a small contribution on a shell model.
Thus the essential difference between the approach
taken here and a strict phenomenological one is the
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neglect of the operator designated Mi- by Berger and
Foldy.'® For higher multipoles there are many more
operators and our approach involves the neglect of
more than just one of the operators arising on a phe-
nomenological basis. In a previous calculation!! only
operators arising on lowest order meson theory were
used. This is inconsistent with the present viewpoint
that many-body interactions are sighificant. However,
the assumption made above that the two-body and
many-body interactions can be combined to give an
effective two-body interaction means that the two
calculations are formally the same.

III. TRANSITION PROBABILITIES

The transition probability for emission of radiation
of multipole order L is found by using the well-known
formula,

wn= (2m/1) 2 1)
XS ot Soms Song| Hlmims 2o (E)E,  (d)

where, because of the normalization chosen for the
vector potential,?

, H'mmbf’ 2p (E)dE
= (2/khe)| (Wms(f), X2 H*"¥mi(3))[2,  (4b)

where ¥my(f) and ¥m;(7) are the nuclear wave functions
in the final and initial states antisymmetrized sepa-
rately in neutrons and protons; m, and m; are the
projections of the total angular momenta j; and j; of
the outer particle in the two states. If the summations
over m; and m; are done first, the result must be
independent of M by the principle of spectroscopic
stability.? Thus the summations over M can be done
first by choosing a particular value of M, say M =0,
and multiplying by the number of M states, 2L4-1.
Now only those terms for which m;=m;=m will be
allowed, so the triple sum is reduced to a single one
and we have

2m 2w 2041

wL= (), S HO,, ()2 (5
; kthjﬁlgl(\I’ (f) ?22 @z 6)

We assume that an odd-4 nucleus consists of a core
with spin, orbital angular momentum, and total angular
momentum quantum numbers equal to zero, plus one
odd nucleon in the state with radial, orbital angular
momentum, and total angular momentum quantum
numbers as given by the Mayer model. It can be shown
then that only one summation over core particles is
needed, since only interactions between an outer proton
and core neutrons or an outer neutron and core protons
give nonzero contributions. The matrix element in
Eq. (5) then reduces to

Wn(f), 21,2 HOW (1))
=2 (2insigipm(1), Hnit5iim(1)®(2)), (6)

#E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1951).
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where 1 is the outer nucleon and 2 is a core nucleon
which is a neutron if 1 is a proton and vice versa.
and Y. are respectively the core particle and outer
particle wave functions. #,, I;, and #y, I; are the radial
and orbital angular momentum quantum numbers in
the initial and final states, respectively. Now in HZ°
we shall omit those terms involving e, since they give
zero 1!

To proceed further requires that specific assumptions
be made with regard to the wave functions. While the
radial parts of the wave functions are not known with
any accuracy, it is expected that calculations on either
a Fermi gas model or shell model will give fairly reliable
results. The former treats the core as if all the particles
were alike but has the advantages that it is compara-
tively easy to handle mathematically and that it
involves only one integral which need not be evaluated
since it is the same in all cases. The latter, while it is
expected to give better resultssince it takes into account
the assumed shell structure of the core, involves a great
deal of calculation and turns out to be not too reliable
for cases involving more than a very few nodes in the
outer particle wave functions, since they are very
sensitive to the parameters characterizing the range of
the nuclear force and the size of the nucleus. Of course,
for these cases the Fermi model results are unreliable
at least to the same extent. On both models the outer
nucleon wave function is assumed to be separable into
radial, angular, and spin parts, i.e.,

Yntjim(1,00) =24 ({ F m—p ’ 15§ mbnm(t)xw), (7)

where x(u) is the spin wave function, being equal
to @, or spin up, for u=4+% and B for u=-—1.
(%3 m—uully jm)is the usual Clebsch-Gordan coeffi-
cient with phase defined by Condon and Shortley.*
Under these circumstances, the spin inner product over
the outer particle can be carried out at once? and gives

Dx(uep),01x ()

= (=) WUoiospi —usloios 1 pi—pUuins, (8)
where o;=0;=1% and
w=—(2)7}(i—143); wa=(2)7¥(i+143); w=k.

Villars and Weisskopf? showed that the calculations
of the matrix elements for the static magnetic moments
could be carried out quite nicely on the Fermi model.?
On this model, the core is replaced by a Fermi gas filling
the sphere |p| <P in momentum space, where P is the
momentum of the last nucleon in the core and is deter-
mined by the density of nucleons. The wave function
for a core nucleon is written, the spin having been
eliminated, in the form

<I>(r2)= (2#)—% eXp{ikz'I‘z}, (9)

25 M. E. Rose, Multipole Fields (John Wiley and Sons, Inc.,
New York, 1955), p. 22.

26 H. A. Bethe and R. F. Bacher, Revs. Modern Phys. 8, 82
(1936), Sec. 25.
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where 7k, is the momentum of the nucleon in question.
The summation over the core particles is replaced by
an integration over ks from 0 to «, where . is the wave
number of the last even nucleon in the core. Noting
that the operator involves a space exchange, we set
r;—r,=r and expand the exponential in the usual way?*":

exp{ik-r}=4m3 13" 1 (4)%j1.(kr) ¥ £as (ko) Y £ar (o), (10)

and obtain

f exp{iks-r} dko=4ars’r jy (kar), (11)
0

where 7.(k7) denotes the spherical Bessel function and
o and r, are unit vectors along k and r, respectively.
We shall also use the notation r,, for a unit vector in
the direction r;.
The outer nucleon is assumed to occupy a level
whose kinetic energy is E=p.®/2m, and its wave
function is written

Baim(1) = Von (120 f i) g(—r)dk,  (12)

where Y, is the usual spherical harmonic, x;=p1/% is
the wave number of the outer particle, and g2(k— k1)
=2x*n¥8(k— k1), this function being used so that ¢ is
normalized to unity. Now in the matrix element, the
outer particle becomes a function of r, owing to the
space exchange operator but this can be expanded as a
function of r; and r by using the expansion??

’ (25;41) 2v+1)4r?
e
2p+1
X{L:v00|LwpOXl; v m—us |l v p m—utu) (@) et
X jo(kr) jy (k1) Vo, m—pi+u(t10) Yy (x0).  (13)

jli(k7’2) Yli, m—ui(rm) = Z

y=0 y=—v p

On integrating over r; and r spaces, the selection rules
on the angular integrations give p=I;, »=2, and
p=p;—py; and the angular integrations can be carried
out at once.” It is found that the radial part of the r;
integration gives unity because of the way the wave
function was originally chosen. The r integration gives

Ir=r f F0) 1) jalar)rdr, (14)

and we find for the value of the matrix element [Eq.

27 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), p. 1573.

2 B. Friedman and J. Russek, Quart. Appl. Math. 12, 14
(1954). Equation (13) can be derived directly and rather simply
by manipulation of Eq. (10). The method used by these authors
is necessarily more complicated since they were interested in
more general expansions.

% J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley and Sons, Inc.,, New York, 1952), p. 793.
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(6)]

B
('l/m(f)y 21,2HL0¢M(7:))=15 9

(110 i |11 2 i g (=) "#51,100] 1,1.20)

ek?

[£(21,+1) (21,~+1)]i

Xy 1 — ety m—pi| 1 152 py—pdTe,  (153)
where
B= s Xur (=) Kl 0y m—ps ps|losjym)
X 0; m— s ps| Lo jom)
X{oiospi —psloios L pi—ps).  (15b)

In writing Eq. (15), we have set (1100|1120)= (2/3)%.

Combining all the Clebsch-Gordan coefficients in-
volving the projections u; and uy in Eq. (15) we can
carry out the summations by established methods®
obtaining
2w 2oug (=)l o m—pup g Lgo 5 )

Xl oi m—p; pi|LioijiomXoio | oi o 1 pi—pug)

Xs b —mtpp m—ps|lp 1y L1 pyp—ps)

XL 10 pi—pys| L1 L1 pi—py)

2043\ *% . o
=(”W(zm 1) (ejgm —m| jijsL0),  (16)

where L=1 for the dipole. Actually the relationships
in reference 30 give the result in terms of Racah
coefficients but analytic expressions for these are readily
available®® since in all cases at least one of the six
parameters is equal to 3. Now the sum over m [see
Eq. (5)] is trivial and we get for the dipole transition

probability
32 @3 (2+1)(241)
g2 O T
Vasae w(2j41)

The biggest disadvantage of the Fermi model calcu-
lations from the point of view of this investigation is
that its usefulness is limited to the dipole case. The
integrals diverge for all higher multipoles. This can be
seen as follows. Classically, the magnetic moment is
defined as the product of current and area of the
current loop. For the interaction operator the current
is that due to the exchange of mesons between nucleons.
On the Fermi model, the core particles extend over all
of space but have the density of real nucleons inside
the nucleus. The outer particle is smeared over all of
space. The short range of the nuclear force means that
the area of the current loop is, on the Fermi model,
effectively the same as that on the shell model so the
fact that the core particles extend over all of space

[3;1:0 0|1, 1; 20) |2 22 (17)

3 See, for example, Biedenharn, Blatt, and Rose, Revs. Modern
Phys. 24, 249 (1952).
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does not alter their contribution from what it would be
on the shell model. As for the outer particle, it is
extended over a vast region but its density is corre-
spondingly diminished and so the Fermi model gives a
reasonable result.

For higher multipoles the situation is different, how-
ever. Consider the quadrupole. The classical definition
of a magnetic quadrupole moment is the product of
current, area of current loop, and displacement between
two such loops. The picture for a quadrupole interaction
moment would be of two current loops, i.e., a little
current loop part of the time in one region of space and
part of the time in another. Since any current loop has
a finite probability of being anywhere inside the nucleus,
the allowable displacements between loops is limited
by the radius of the nucleus and 7ot by the range of
nuclear forces. If the nuclear radius is allowed to
become infinite, then it is clear the quadrupole moment
will also become infinite. For higher multipoles, which
involve still higher powers of the nuclear radius, the
integral will diverge even more rapidly.

In order to obtain an approximate value for the
octupole transition probability, a shell model calculation
is carried out. The angular wave functions are taken
to be spherical harmonics and the radial functions to be
harmonic oscillator wave functions with all the quantum
numbers taken from the Mayer model. To facilitate
the calculations, a Gaussian shape is chosen for the
f(r12), the arbitrary function of the interparticle dis-
tance. (We note again that on the Fermi model it was
not necessary to specify this function, since all transi-
tions depend upon it in the same way.) It was this
model which was used! in calculating the interaction
contributions to the magnetic moments. The integral
was evaluated by expressing the integrand as a function
of 7%, 7:? and the scalar product r;-r,. However, the
magnetic moment calculations were performed without

- taking into account the nodes in the radial wave
functions. These calculations involve the diagonal
matrix elements where wave functions on either side of
the operator are the same. Since the interaction operator
involves space exchange, the initial and final wave
functions will differ in the integral in that they will
have their spatial coordinates interchanged. If we write
the matrix element in the form

f Ge(D¥s(2) frisba(a(2)dV,

then because of the short range of the interaction force,
contributions will come only from regions where the
two nucleons 1 and 2 are close together and we can
write the matrix element approximately as

f Val2[¥3]2 (ra0)aV,

where the arguments of the wave functions can be
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taken as either 1 or 2. Since the squares are positive
definite, whether or not nodes are taken into account
is not expected to alter the character of the result. As
far as the core is concerned, there is the additional
argument that most of the nucleonic wave functions
have no nodes anyway.

For the off-diagonal elements where the initial and
final states are quite different and the wave functions
do not overlap, neglect of the nodes could crucially
alter the nature of the results. This is true for the outer
nucleon wave functions, but for the core, where the
wave functions are the same initially and finally, nodes
can be ignored. In the first place, as already observed,
most of the core wave functions have no nodes in the
radial wave functions. Secondly, as in the magnetic
moment case there is a close overlap of these wave
functions for a short-range force and the effect of nodes
is expected to be unimportant. Finally, the fact that
the density of particles inside the nucleus is relatively
constant indicates that the calculations are not too
sensitive to details of the core wave functions. The
contributions from shells having #»>1 are arbitrarily
taken to be the same as for those having n=1 (no
nodes).

A somewhat more direct method of calculation than
that used previously' was employed, retaining the same
model. A part of the Gaussian exponential was expanded
as a series of spherical Bessel functions, and in this form
the integrations were carried out using the formula®

w ™} () red
f Ji(rirs) exp{—ar}ritdr,= (—) exp —}
0 4o

27 QQa)tt
For the details of combining the various angular
momenta on the shell model, see the thesis by A.R.
referred to at the beginning of this article.

The value of the strength of the interaction was
chosen to agree on the average with the detailed results
obtained below with the Fermi model. This required a
strength of 100 Mev for a Gaussian well of range
1.6XX 10 cm, and this value was used for the octupole
calculations. It is expected that both the shell and
Fermi model results will vary roughly in the same
manner with the change of parameters, so that a differ-
ent choice of the range will not greatly affect the
results. Evaluation of the integral Ir shows that the
Gaussian well strength for the Fermi model is 45 Mev.
Russek and Spruch,” using a larger range (2.0X107*
cm), required a well strength of about 300 Mev for
their operator Mj. Although that is three times the
value found in this work, the difference is not very
significant for two reasons. Firstly, as observed above
they did not consider nodes in the nuclear wave func-
tions, and although it was pointed out that this pro-
cedure seems justifiable, the results may not be unaf-

st H. Bateman, Higher Transcendental Equations (McGraw-
Hill Book Company, Inc., New York, 1953), Vol. II, p. 50.
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TaBLE I. Comparison of experimental and theoretical half-lives. The dipole calculations are based on the Fermi model, with the
single free parameter adjusted to give an average value of unity for the ratio of theoretical and experimental values. The octupole

calculations are based on the shell model.

Tral\:x E:lt /lon Energy Ty (sec) Ty (Theor.)

Nucleus dipoles kev Expt. Theor. Ty (Expt.) Reference
30Zn37%7 2ps12 1152 92 9.5X1078 3.4X10* 0.0004 33
33AS4073 1f5/2 2P3/2 66 <5 X10—® 1.9X10°8 >0.4 34
s2Ler!® 2d32 3s1/2 159 3.3X 10710 1.2X10-* 3.6 35, 36
52T€73125 2d3/2 3s1/2 35.4 4.4%1078 1.1X1077 2.5 35
saXerq13t 35’1/2 2d3/2 80 2.1X107° 47)( 109 2.2 35
s6Bar71% 2d32 3s1/2 11.7 ~3.3X1077 3.0x10°¢ ~9.1 37
55CS13133 2dss 1g7/z 81 2.7X1078 5.3X10° 0.20 35
55C530135 2d5/2 1g7/2 248 4.4%X10710 1.8X 1010 0.41 35
s7Lage!® 2ds/2 1g2 166 2.7X10-° 6.1X107% 0.24 38
50Prso!4l 1g7/2 2d5/2 145 3.9X10™* 9.2X10"1 0.24 39
s1Pmgg!?’ 1g7/2 2d5/s 91 1.1x10-8 5.0X10~* 0.44 35
53EU90153 381/2 2d3/2 691 13)( 10_9 73>< 10-9 55 40, 41

6.0Xx10-8 7.3X107* 0.12 42
731210851 2d5/2 1g72 480 3 X107t 3.4X10712 0.0001 42-44
soHg119'® 3psre 2fsi2 50 <1.6X1078 2.1X10°8 >1.3 35
8111129203 2d32 ) 35172 280 ~1 X107° 2.2X10™0 ~0.2 45

Octupoles

72H 10717 142 3p3sa 160 8.9X102 7.0X102 0.81 46
73"1‘8.1()3181 3s1/2 1g7/2 607 5.6X1073 7.0X1073 1.3 42-44
760s115'% 3psr2 1hgs2 74.2 6 X107 5.5X104 0.001 47,48

fected by this approximation. Secondly, they had three
adjustable constants to work with in matching the mag-
netic moment data and so the strength of any one oper-
ator, in particular M3 which corresponds to the dipole
operator used here, can be varied over a considerable
range and still give agreement with the data. The
smaller value of the strength is somewhat hopeful,
since phenomenological magnetic moment calculations
based on a strict two-body interaction interpretation
require strengths much larger than those deduced from
two-body scattering data.’? Even though our viewpoint,
that the effective interaction moment has a many-body
as well as a two-body origin, does not demand that the
strengths be deduced from two-body scattering data,
we nevertheless feel that the strengths should not be
too different from the strengths so deduced.

IV. RESULTS

Experimental lifetime data for forbidden magnetic
isomeric transitions exist for sixteen dipole and three
octupole transitions.®—*8 The results are summarized in

32 A, Kerman, Phys. Rev. 92, 1176 (1953). See footnote 13 of
this article.
3 Meyerhof, Mann, and West, Phys. Rev. 92, 758 (1953).
3R, W. Hayward and D. D. Hoppes, Phys. Rev. 98, 1172
1955).
( 3 R, L. Graham and R. E. Bell, Can J. Phys. 31, 377 (1953).
36 This transition has recently been observed in Coulomb
excitation experiments. See L. W. Fagg et al., Phys. Rev. 100,
1299 (1955).
87 Hill, Scharff-Goldhaber, and McKeown, Phys. Rev. 84, 382
(1951) ; M. Langevin, Compt. rend. 238, 1310 (1954).
38 C., H. Pruett and R. G. Wilkinson, Phys. Rev. 96, 1340
(1954) ; T. R. Gerholm and H. de Waard, Physica 21, 601 (1955).
2 J, Jones, Jr., and E. Jensen, Phys. Rev. 97, 1031 (1955);
Ambler, Hudson, and Temmer, Phys. Rev. 97, 1212 (1955);
H. de Waard and T. R. Gerholm, Physica 21, 599 (1955).
% R. L. Graham and J. Walker, Phys. Rev. 94, 794(A) (1954);
M. C. Lee and R. J. Katz, Phys. Rev. 93, 155 (1954).
4 G, M. Temmer and N. P. Heydenberg, Phys. Rev. 94, 1399
(1954) ; G. M. Temmer (private communication).

Table I. The theoretical lifetimes recorded therein for
dipole transitions are those calculated on the Fermi
model and for these calculations the integral I, Eq.
(14), is not evaluated but is arbitrarily equated to that
value which gives the best agreement with the experi-
mental data. As already observed, octupole calculations
can be made only on the shell model.

The results for the dipole transitions in Zn®” and Tal8!
and the octupole transition in Os™ strongly indicate
that these transitions are of a different nature from the
others. Meyerhof, Mann, and West® did the experi-
mental work on Zn%" and pointed out that the measured
lifetime is much too long for an M1 transition. They
postulated that this might be due to the / forbiddenness,
but this is not tenable without further modification in
view of the results presented here insofar as the other
transitions are / forbidden and are not reduced to the
same extent. As far as Os'*! is concerned, the level
assignments given by Goldhaber and Hill¥ in their
review article are 413, and 7/24-. More recently,
Mihelich and Goldhaber?” have given the assignments
of 3/2— and 9/2— to the levels, and it is our assump- -
tion that these are single-particle levels which leads
to the conclusion that the transition is forbidden
octupole.

Ta'® is a particularly interesting nucleus in that it

2 F, K. McGowan, Phys. Rev. 93, 163 (1954).
4 Alaga, Alder, Bohr, and Mottelson, Kgl. Danske Videnskab,
Mat.-fys. Medd. 29, No. 9 (1955).
4 Burson, Blair, Keller, and Wexler, Phys. Rev. 83, 62 (1951).
4 F. R. Metzger and W. B. Todd, Phys. Rev. 95, 627(A)
(1954); H. W. Wilson and S. C. Curran, Phil. Mag. 42, 762
(1951); H. de Waard, Phys. Rev. 99, 1045 (1955).
( ‘“’s E) der Mateosian and M. Goldhaber, Phys. Rev. 83, 843
1951).
47 J. W. Mihelich and M. Goldhaber, Phys. Rev. 98, 1185 (1955).
48 Rose, Goertzel, and Swift (privately circulated tables).
(14951\§. Goldhaber and R. D. Hill, Revs. Modern Phys. 24, 179
952).
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seems to have both a forbidden dipole and forbidden
octupole transition. The 48-kev transition is a mixed
multipole one with the ratio® M1/E2=1. The E2 part
has been studied recently by Sunyar® who finds it to
be ‘“a glaring exception to the general trend of E2
transitions.” The results of this work indicate the same
conclusion with regard to the M1 part. There is some
question as to the level assignments of the excited
states in this nucleus, McGowan’s* being very different
from those of Alaga et al.,” but all evidence agrees with
the assignment of g7/» to the ground state, and it is
difficult to account for this on the Mayer model accord-
ing to which the gr7/2 should be ‘‘buried” for this nucleus.
Mention should be made here that there is a rather
wide divergence in the lifetime and K-conversion
coefficient reported for the Eu'® transition.®?* Temmer
and Heydenberg# have made a detailed study of the
energy levels which correspond to the 69.1-kev transi-
tion here considered. For this nucleus, as well as for
Ta'® which also. has been thoroughly investigated,®
the conclusion is that there are two kinds of energy
levels, one being the Bohr-Mottelson levels, the other
presumably the one-particle levels.

Three of the dipole transitions listed are mixed
E2+M1. In two cases, Ta!® and TI?® the ratio is
known and the lifetime given in Table I is just the
M1 lifetime. For Cs®5, the available evidence indicates
that the amount of E2 is small; the total v lifetime is
the one given.

In addition to the transitions listed in Table I there
are a score of nuclei having dipole /-forbidden transitions
for which no experimental lifetime data are available.
These nuclei are: V% (0.61 Mev); Co® (0.191); Rb3s
(0.150) ; Mo (0.73) (?) ; Mo* (0.665) (?); Ru'™ (0.307);
Pd©s (0.063) (?), (0.32) (?), (0.154); Cdt (0.340);
In!'® (0.460); Sn''7 (0.162); Sn'*® (0.024); Te' (0.213);
Sb (0.153) ; Xe'* (0.038) ; Pr'# (0.290) (?), (057) (?);
Re!®5 (0.056) ; Au'® (0.038) ; Au'®® (0.061) ; Hg'*® (0.037) ;
Pt1% (0.031) (?), (0.126) (?); Hg®' (0.168), the energies
being given in Mev. A question mark indicates that
there is doubt about the level assignments or the
multipolarity of the transition. Data are taken from
the Goldhaber and Hill® review article and material
which has appeared in the literature since then. It is
significant that none of these levels has been found
by Coulomb excitation.

It has been noted that a few of the transitions listed
in Table I are mixed M1+ E2. It is possible to measure
the relative phases of the two multipoles in a mixture,
and this has been done in several cases but not for any
transitions considered here. This raises the interesting
possibility that the nature of the magnetic part of the
mixture might be determined from a knowledge of the
sign of 8. The sign of the matrix element cannot be
determined from transition data which involve squares,

% A, W. Sunyar, Phys. Rev. 98, 653 (1955).
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but it can be found from magnetic moment data and
has been done essentially for M1 (interaction).

If M1 (ordinary) and M1 (interaction) have different
signs, then a determination of the sign of § will uniquely
determine the nature of the transition. However, this
implies that the sign of £2 is known and for odd-neutron
nuclei, on the single-particle model, and only contribu-
tion to an electric transition is from core recoil and this
is too small to explain observed E2 lifetimes. Even for
odd-proton nuclei, the Weisskopf formula’ does not
give results which agree very well with experiments.
Nevertheless, it would be highly suggestive if we could
find a case for which the observed sign of & cannot be
explained assuming the ordinary magnetic moment
operator but could be explained using the interaction
moment operator.®

V. CONCLUSION

We have carried out an investigation to see to what
extent so-called forbidden magnetic dipole and octupole
isomeric transitions can be explained by the interaction
contributions to the magnetic moment operators. In
order to make the calculations manageable, simplifying
assumptions have been made regarding both the oper-
ators and wave functions. The dipole calculations were
carried out using a Fermi model of the nucleus and it
was found that all dipole transitions can be expressed
in terms of one integral which was then arbitrarily set
equal to that value which gives the best agreement
with the data. Because the Fermi model cannot give
results for higher multipoles, a shell model calculation
was carried out in order to evaluate the octupole
transition probabilities.

Even if the transitions in Zn and Os and the dipole
transition in Ta are omitted from further consideration,
it is seen in Table I that there is no exact quantitative
agreement with the data. The effect of considering the
radial nodes which are ignored on the Fermi model
would be expected to reduce somewhat the value of the
radial integral, and this is confirmed by the shell model
calculations which require a somewhat larger value for
the strength of the arbitrary function to get agreement
with the data. If the nodes were somehow taken into
account on the Fermi model, the form of the radial
integral would be changed, the value of the integral
being decreased, the more so the greater the number of
nodes. This would necessitate a renormalization. Since
the matrix elements for transitions with more nodes
would be decreased more than those with fewer nodes,
the calculated lifetimes for 3s1/2¢>2ds,, transitions would
be increased (matrix elements decreased), whereas for
2dy;9¢>1g7/2 transitions the lifetimes would be decreased.
This would make agreement with the data somewhat
poorer than that shown in Table I.

5 Reference 29, pp. 595 ff. .

52 The possibility of obtaining information about the nuclear
model from the sign of & has been considered independently by
S. Frankel and C. Greifinger (private communication).
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Qualitatively, the most striking observation to be
made in Table I is that dipole transitions in odd-proton
nuclei are about an order of magnitude slower than
those in odd-neutron nuclei, and it will be noticed that
if the value of the integral 7 had been chosen sepa-
rately for neutrons and protons, the calculated and
observed transition probabilities would agree to within
a factor of two. The inhibition of transition probabilities
in odd-proton nuclei was observed by Graham and
Bell’® and a possible theoretical explanation has been
given by Wallace® who pointed out that because of
the Coulomb force, proton transitions will affect the
nuclear wave functions over a greater distance than
will neutron transitions where only specifically nuclear
forces are involved. Thus in proton transitions the
wave functions of many nucleons are involved and the
cumulative effect may be enough to account for the
inhibited transition probabilities. Other factors which
have been neglected and which should be taken into
account seem all to give corrections to the transition
probabilities which are in the wrong direction to account
for the inhibition of odd proton transitions. The effect
of considering the radial nodes has already been con-
sidered above where it was found that the gr/2¢>ds)2
transitions, which happen to be odd-proton ones, are
not particularly slowed down. The effect on the Fermi

model of the small difference in the value of P (the

maximum momentum in the care) between neutrons
and protons has been calculated only in the case of a
square well potential and is found to give a correction
in the wrong direction. Another possibility is another
effect of the Coulomb repulsion. It has been shown®
that the radius of the proton distribution in the nucleus

8 P, R. Wallace, Phys. Rev. 98, 1205 (A) (1953).
5 M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954).
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is contracted somewhat by the Coulomb repulsion and
this means that in an odd-neutron nucleus the odd
neutron, which tends to be at the outside, has fewer
protons with which to interact. This would be expected
to decrease somewhat the transition probability of an
odd-neutron nucleus, again in the wrong direction to
improve agreement with the data.

Only odd-even nuclei have been considered here.
Transitions in even-even nuclei seem to be most readily
explained® in terms of the Bohr-Mottelson rotational
level pattern. The situation in odd-odd nuclei is usually
rather complicated owing to the fact that either of
the outer nuclei can change state in an isomeric transi-
tion. In none of the odd-odd nuclei cases which we have
looked into have we found any good evidence that a
single nucleon undergoes a forbidden transition.

In view of the fact that no thorough analysis of all
possible operators has been attempted, the results
presented here are not intended to be conclusive.
Nevertheless, the results do seem to show that the
interaction effects can explain the dipole data, provided
some mechanism can be found to account for the
difference between odd-proton and odd-neutron nuclei.
It is impossible to draw any conclusions regarding the
forbidden octupole transitions owing to the paucity of
data, although the calculations do suggest that the
interaction moments may possibly account for these
also.
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( 5 G. Scharff-Goldhaber and J. Weneser, Phys. Rev. 98, 212
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