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The terms superfluid and normal fluid may be interpreted in
various ways, and in Landau's theory the fraction of normal fluid
given by flow experiments (e.g. , second sound) is not a direct
measure of the number of atoms involved in the excitations.
Furthermore, the anomaly in the specific heat above the ) point
indicates the continued existence of unexcited material above the
X point, probably in the form of (nonspherical) droplets or clusters,
which does not actually contribute to the superfluidity. These
rather complex relationships are considered in the introduction,
and it is concluded that, in spite of the various possibilities of
choosing the two components for the two-fluid theory, any pair
can be considered as thermodynamic components. It is also con-
cluded that it is probable that the normal Quid and superfluid
are separated in ordinary space as well as momentum space.
There follows a discussion of the equation for second sound, and
a comparison of the values for x (mole fraction of normal fluid)
obtained from second sound and from the Andronikashvili experi-
ment. The values of x are also discussed in connection with the
values of the roton part of the specific heat, c,. It is shown that

these are dificult to reconcile from a thermodynamic point of
view on the basis of any of the usual theories, and it may be
necessary to reinterpret the equation for second sound in the region
where both phonon and roton excitations are of importance. At
higher temperatures the apparent anomalies, and especially the
rapid rise of c,/ nxear the X point, are readily explained with the
aid of the unexcited droplets mentioned above. Finally a critical
analysis is made of the assumption, inherent in the second-sound
equation, that entropy is carried only by normal fluid and not by
the superfluid, which is in apparent contradiction with the fact
that the entropy of mixing of superfluid and normal fluid cannot
be zero if they are separated in ordinary space. It is shown from
two points of view that there is no actual contradiction. In the
first procedure a pressure is introduced which arises from the
forces tending to separate normal and superfluid, and the accom-
panying work is considered. It is shown that this pressure must
be considered to reside in the superfluid. The second procedure
starts directly with the energy equation. It is shown that
H. London's equation for the fountain pressure follows directly.

1. INTRODUCTION

S is well known, many of the properties of liquid
~

~

helium can be explained, or at least described, in
terms of the two-Quid hypothesis, which supposes that
superQuid and normal Quid exist together below the
~ point. In actual fact, however, both theory and
experiment indicate that the situation is more com-
plicated than that. The fractions of superQuid and
normal Quid can be estimated from certain Qow experi-
ments such as the Andronikashvili experiment and
second sound. On the other hand, they can also be
inferred from the thermodynamic properties, and these
two estimates may not agree. In fact, different things
have been meant by the terms, superQuid and normal
Qllld.

Let us 6rst consider the roton excitations at low tem-
peratures. As these excitations are presumably localized
and do not change greatly in character over a range of

the atoms involved in these excitations constitute the
normal Quid. It is, however, quite possible that Qow

experiments will not measure the mass of these-atoms.
In the theory of Landau' and the theory of Feynman
the excitations are considered to behave like a Bose-
Einstein gas. These excitations are assumed to be in
equilibrium with the superQuid substrate regardless of
whether they are drifting with respect to the latter
or not. The excitations have various momenta, and
their energy depends upon their momentum with
respect to the substrate. Thus motion of the substrate
sects their distribution in momentum, and the drift
of mass relative to the substrate occurs because now
some relative momenta are favored over others. Thus
the apparent mass is only indirectly related to the
actual mass of the atoms involved. Because of the
peculiar relation between energy and momentum, the
state of lowest energy can shift in such a way that its

temPeratures, it seems quite natural to assume that 1L Landau J Phys U $ $ R 5 71 (1941).11 91 (1947)
s R. P. Feynman, Phys. Rev. 94, 262 (1954); Progress sn Lose

e Work assisted by the University Research Fund of the Uni- Temperature Physics, edited by C. J. Gorter (Interscience Pub-
versity of North Carolina and by the OKce of Naval Research. lishers, Inc. , New York, 1955), Chap. 2.

267



O. K. Rl CE

momentum changes greatly. This results in a very
large apparent mass at low temperatures, and in the
1947 theory of Landau and the theory of Feynman
we have

p„/p m/NT, (&)

where p„/p is the ratio of the effective density of rotons
to the total density, e is the number of rotons per E
atoms, and ~ stands for approximate proportionality.
There remains the question whether equilibrium would
actually be established in a second-sound experiment.
Also, we have shown'4 that the roton excitations can
be discussed by a more conventional type of statistical
mechanics. This leaves some question as to whether the
close tie-up between momentum and internal energy
of the roton is actually necessary, and gives a picture
more consistent with the idea that the rotons move
through the superQuid with a mass closely related to
the actual number of atoms involved.

Just below the X point, in any event, it is the normal
Quid which is the substrate, and we can hardly imagine
that excitations of different momentum can be distin-
guished. Since the liquid behaves much like an ordinary
Quid just above the X point, we may infer that the
normal Quid still behaves so just below. This suggests
that in this temperature region at least the apparent
fraction of normal Quid as obtained by Qow experiments
closely approximates the true fraction.

Nevertheless the possibility must be considered that,
especially at low temperatures, the Qow experiments
will give a ratio p„/p, which is different from the ratio
for what we should like to think of as the components
in a two-Quid theory, and this is certainly true in the
case of phonons. Phonons are in any case not localized
excitations, and it would be diAicult to assign particular
atoms to them.

The complications do not end here, however. Some
years ago we made an attempt' to understand the
behavior of the specific heat just above the X point on
the basis of the supposition that droplets of superfluid
appeared in the liquid above the X point. Whatever the
details of the theory one may propose, it would appear
that the sharp rise of the specific heat in this region is
a pretransition phenomenon which implies Quctuations
involving superQuid. However, the superQuid which

appears above the P point obviously does not contribute
to the superfluid properties.

The appearance of superQuidity probably requires
establishment of some kind of long-range order in the
superQuid. We have supposed' ' that, while the super-
Quid is in the form of disconnected (though by no
means necessarily spherical) globules above the X point,
below the X point there are connections extending
throughout the liquid, or at least over macroscopic
distances. However, below the ) point an appreciable
fraction may be expected still to be in the form of

' O. K. Rice, Phys. Rev. 96, 1460 (1954).
4 O. K. Rice, Phys. Rev. 98, 847 (1955).' O. K. Rice, Phys. Rev. 76, 1701 (1949); 78, 182 (1950).' O. K. Rice, Phys. Rev. 93, 1161 (1954).

droplets which will appear to be part of the normal
Quid in a Qow experiment.

In view of this complicated situation we propose to
distinguish between snperguid and tlorttlal QNid, as
measured by a flow experiment, and seperglid stIbstutIce

and mortal substance characterizing the actual parts of
the Quid. Further we shall consider the droplets to be
part of the normal substance, and shall consider in
addition excited and Neexcited components, with the
relationships:

Normal Quid substance= excited component+droplets;
unexcited component = superQuid substance+droplets.

As is customary we shall write p„and p, for the
apparent densities of normal Quid and superQuid ob-
tained, say, from second sound, and we shall write
x=p„/p (where p is the density of the liquid) for the
apparent mole fraction of normal component.

Since all parts of the liquid are in equilibrium with
each other, we can, in a two-Quid theory, choose either
the normal substance and superQuid substance or the
excited and unexcited components as the pair of thermo-
dynamic components. In our previous work. we have
chosen the latter pair, although, unfortunately, we
called them normal and superQuid.

Now p„v„, where v„ is the velocity of normal Quid,
is defined in terms of momentum in the Landau-
Feynman theory Lsee, e.g. , Feynman' (1955)j, and
hence represents a true mass Qow. Also the composition
of this material is independent of v„ if v„ is small. Thus
it also is possible to consider whatever is transported
with velocity v„(i.e., the normal fluid, in the usual
description) as one component, and whatever is trans-
ported with velocity v, (i.e., the superfluid) as the
other component. These components can be assigned
proper partial molal quantities in the usual way and
the standard procedures of thermodynamics can be
applied. It is true that a certain conceptual difhculty
may arise, since in the Landau-Feynman theory p, and

p, are defined in terms of an equilibrium process, and
a change in p„/p implies a change in temperature,
whereas the use of the partial molal quantities implies
the addition of one of the components without change
in temperature, and hence a slight departure from
equilibrium between the two components, while equi-
librium is established among the molecules of a single

component. Since, however, we will be dealing with

processes which never depart far from equilibrium, and
which do not involve large temperature changes or
sharp temperature gradients in the atomic sense, this

difhculty is more apparent than real. ~

r Equation (23) assumes that the transfer of material takes
place at constant temperature, since the partial specific quantities
are so defined. If equilibrium is maintained at any given point,
however, change in the amount of normal or superQuid changes
the temperature. Since the normal Quid presumably has an
intrinsic specific heat, this would require a further change of
normal Quid to superQuid, or vice versa, to effect the energy
balance. Equation (24) excludes this particular change, giving
only that which specifically interests us.
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Whether p„and p, are equal to densities of normal
and superQuid slbstmce, or not, p„and p, are the
appropriate quantities, and superQuid and normal Quid
are the appropriate terms, to use when discussing Qow
experiments. This applies in the case of the present
paper to Secs. 2, 4, and 5.

If we attempt to bring the phonons into the picture
it becomes still more complicated, since the phonons
cannot be considered to be localized excitations, and
since their ratio of effective energy to mass appears to
be much larger than that of the rotons. Fortunately, it
does not appear to be necessary to consider the mass
of the phonons if we confine our attention to tempera-
tures above 0.8'K, since de Klerk, Hudson, and Pellam'
estimated that the roton density is already 20 times the
phonon density at that temperature. The phonon
specific heat is appreciable, because of the phonons'
large energy-mass ratio, but this can be at least approxi-
mately estimated by extrapolation from low tempera-
tures and subtracted from the total.

The description of liquid helium just given implies a
separation of superQuid and normal Quid in ordinary
space as well as in momentum space, regardless of how
the components are chosen. This means that there will
be an entropy of mixing of the two Quids, and hence a
nonzero partial entropy 8, of the superQuid. In dealing
with second sound it is generally assumed that the
superQuid carries no entropy, and there is good evidence
to support this view. However, to say that it carries no
entropy is not the same thing as to say that it has no
entropy, despite a statement of London's' to the con-
trary, and one of the objectives of this paper will be to
set up a consistent hydrothermodynamic formalism in
which the entropy of transport of superfluid vanishes
even though 8, does not.

2. RELATION BETWEEN THE ANDRONIKASHVILI
EXPERIMENT AND SECOND SOUND

Second sound may be described as a wave motion in
which the normal Quid and superQuid move with re-
spect to each other. To compute the wave velocity nzz

it is assumed that this motion is reversible and that all
the entropy is carried by the normal Quid. It is then
found that"

»r'= (p./p-) (~'~/~. ),
where s and c„are respectively entropy and constant-
pressure heat capacity per gram. Peshkov" measured
urr and concluded that the values of p„/p which could
be deduced from it were in good agreement with those
of Andronikashvili. '2 They did not agree exactly, how-

' de Klerk, Hudson, and Pellam, Phys. Rev. 93, 28 (1954).' F. London, Superjluufs (John Wiley and Sons, Inc. , New York,
1954), Vol. 2, p. 185.

"Reference 9, pp. 77 ff.
"V. P. Peshkov, J. Phys. U.S.S.R. 8, 381 (1944); 10, 389

(1946); J. Exptl. Theoret. Phys. tj.S.S.R. 18, 950 (1948); Report
International Conference on Low Temperatures, 1946 (Physical
Society, London, 1948), Part II, p. 19."E.Andronikashvili, J.Phys. U.S.S.R. 10, 201 (1946);J. Exptl.
Theoret. Phys. U.S.S.R. 18, 424 (1948).

TAsLE I. Normal Quid density and roton specific heat.
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ever; Andronikashvili" believed Peshkov's values were
better than his own in the lower part of his tempera-
ture range, and he quoted them in connection with
other work. The latter tabulation was apparently
plotted by London" as Andronikashvili's own work.
This is confusing, and it appears desirable to compare
afresh Andronikashvili's values of p„/p with those
obtained from second sound and the new values" of
c„and s. We have used (see Table I) the second sound
measurements of Pellam and of Maurer and Herlin"
which agree very well with those of Peshkov and seem
actually to lie between those of Peshkov and of Lane,
Fairbank, Schultz, and Fairbank. ' Also included are
some results on the Andronikashvili experiment recently
obtained by Dash and Taylor, "as calculated from an
empirical formula given by them for the range 1.1' to
2.0'K, and some other data for later reference. It will

be seen that the agreement between Andronikashvili
and Pellam is very good, and Pellam's values would
agree almost as well with the results of HoIlis-Hallett"
using Andronikashvili's method. However, below 1.7'K
there appears a serious discrepancy between the results

's E. Andronikashvili, J.Exptl. Theoret. Phys. 18, 429 (1948).
'4 Reference 9, p. 67.
"Kramers, Wasscher, and Gorter, Physica 18, 329 (1952)."J.R. Pellam, Phys. Rev. 75, 1183 (1949), for 1.5' to 2.1.8'.

R. D. Maurer and M. A. Herlin, Phys. Rev. 76, 948 (1949), for
0.9' to 1.4'. Reference 8 for 0.8'.

"Lane, Fairbank, Schultz, and Fairbank, Phys. Rev. 71, 600
(1947).' J. G. Dash and R. D. Taylor, Program of the National
Science Foundation Conference on Low Temperature Physics and
Chemistry, Baton Rouge, Louisiana, December 28—30, 1955
(unpublished). We may also note that at the same conference
Pearce, Markham, and Dillinger presented data on the specific
heat between 0.4' and 1.0' which apparently show roton con-
tributions about 10% higher than those of Kramers, Wasscher,
and Gorter. The data of G. R. Hercus and J. Wilks )Phil. Mag.
45, 1163 (1954)g are also about 10% higher than those of Kramers,
Wasscher, and Gorter, giving values of x from 10% (at 1.1') to
5% (at 2.05') higher.

"A. C. Hollis-Hallett, Proc. Roy. Soc. (London) A210, 404
(1952).
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h„—T8„=h, —Ts, = h —Ts, (3)

where h„and h, are the partial speci6c enthalpies, and
h is the total enthalpy per gram. If there is no heat of
mixing of normal and superQuid we can set A, =O
(neglecting any excitations in the superfluid) and we

have the relation

of Dash and Taylor and the earlier results. The dis-
cussion of Sec. 1 suggests that possibly such a dis-
crepancy might arise if the Andronikashvili experiment
allows true internal equilibrium to be established but
that second sound does not. However, we shall not
speculate further on this point.

To assess the significance of the agreement, insofar
as it does exist (in any event near the X poin. t), we may
consider what would be the eGect of assuming that the
superQuid and the normal Quid carry their partial
entropies per unit mass, namely, 8, and 8, respectively,
instead of assuming that only the normal Quid carries
entropy. If entropy is carried only by normal Quid,
the entropy, ps per unit volume, moves with the
velocity of the normal Quid, v„, the rate of transfer of
entropy per unit time per unit cross section is psv„and
the corresponding Row of heat is Tpsv„. H, however,
both Ruids carry entropy, psv„would be replaced by
p, s,v, +p„s v„. Because superfluid and normal Ruid are
in equilibrium, we have the relation

We then have p, s,v, +p„s„v„=p„s„v„=psv„and we re-
cover Eq. (2). We shall return later to the question,
whether this is the only way to obtain Eq. (2), or
whether Eq. (2) can be reconciled with a nonzero
value of 8,.

3. THERMODYNAMICS

Under assumptions which are equivalent to supposing
that the mixture of rotons and superQuid obeys Raoult's
law, it can be shown' that at low concentrations of
rotons the number m of rotons when there are X atoms
is given by

where m is the elective number of energy levels per
roton (the intrinsic entropy of a roton being k in')
and « is the energy (strictly the enthalpy) of formation
of a roton from superQuid. We then have

d lne/dT=d 1nm/dT (kT) 'd—«/dT+«/kT'

If a roton can be considered to have a fixed number of
atoms then, since k lnm is an internal entropy term
(or if both nz and «are fixed), we can write

kTd in'/dT=d«/dT

d 1ne/dT= «/kT'.

ph=p„h„. (4) If « is constant, then

Further, if we can suppose that the over-all density is
constant and that there is no motion of the liquid as
a whole,

v~ = —pave/ps

From Eqs. (3), (4), and (5) we find

psssvs+ pnsnv~ =pv „k/T.

(5)

(6)

The result of using this expression for the Row of
entropy instead of psv„ is that k/T is everywhere
substituted for s, e.g. , in Eq. (2). Since k/T is around
15 percent smaller than s for most of the temperature
range, this would upset the good agreement between
the results of Andronikashvili and Pellam, and the
agreement between Dash and Taylor and Pellam
above 1.7'.

If we assume that there is no entropy of mixing
instead of no heat of mixing, we set s, =0; then Eq. (3)
takes the form

A~ —T8~= As. (3a)

(We cannot now set h, = 0, so there is a heat of mixing. )"
'0 See reference 5. The situation is quite different in the case of

the ideal Bose-Einstein gas, where both h, and 8, (with subscript s
referring to the condensed state) are zero. This is easily seen,
since h, —T8,=h —Ts =e+pv —Ts (where e is the energy per gram,
p the pressure, and v the volume per gram), and e+pv —Ts=0
below the 'A point (see e.g., reference 9, pp. 47 ff). This can be
traced to the fact that in this case the transition is fl,rsvp-order (see,
e.g., reference 6). Thus it is clear that h —Ts is constant during an
isothermal condensation, and regardless of the temperature the
6nal state, in which all the gas is condensed, is one in which both
enthalpy and entropy vanish.

c,T'/x = constant.

In the latter case we apply Eq. (1) and obtain

c„T x= constant.

(10)

(10a)

Actually one wouM not expect e to be entirely con-
stant. If we suppose the internal energy of rotons to
be simply the energy of normal Quid, we can make
some estimate as to how e may vary. Slightly above the
X point, the specific heat has a "normal" value for nor-
mal Quid of about 0.5 cal per gram per deg, and the total
enthalpy is about 0.7 cal per gram. The specific heat of
normal Quid substance would be expected to be less
than this at 1'K, but orders of magnitude are such
that the enthalpy of normal Quid substance, and hence
inferentially e, might be approximately proportional
to T (though we have previously estimated' that the
dependence on temperature is not this strong). Let us

inc = —«/k T+constant

and the heat capacity per E atoms due to rotons is
gi.ven by

C„=«dn/dT= («'/kT')e

Where we go from this point, depends upon whether
we believe that the mass of normal Quid, as revealed by
Row experiments, depends directly on the number of
atoms in a roton, or is a more complicated function as
in the Landau-Feynman theory. In the former case x is
proportional to e, and we have
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suppose, then, that e bT, where b is a constant;
integrating Eq. (g) we find

where u is another constant. In this case,

C„=d (cn)/d T= ba(1+ b/0) T~'~,

and, again assuming x proportional to e,

c„/x = constant. (12)

In this case there would be no point in applying
Eq. (1), since the Landau-Feynman theory definitely
requires the approximate correctness of Eq. (9).

Values of x have been obtained over a wide range of
temperatures from second-sound measurements, and we
shall use these results to test the relationships which
have just been found, recognizing that if the recent
measurements of Dash and Taylor" are confirmed, our
conclusions will need modification, especially in the
low temperature range. The values of x obtained from
second sound are plotted logarithmically against 1/T in
Fig. 1 for temperatures from 0.8' to the X point. Values
of i„may be obtained from the measured specific heat"
by subtracting the extrapolated value of the phonon
part, and values of c„and c,/x are given in Table I.

It will be observed from Fig. 1 that, between 0.8'
and 1.4' Eq. (9) appears to hold, if we assume that x is
proportional to n [but use of Eq. (1) would make little
di8erencej. Above 1.4' the law changes; still Eq. (9),
with a different set of parameters, seems better than
Eq. (11). In spite of this, Eq. (12) is more nearly fulfilled
than either Eq. (10) or Eq. (10a).

Above 1.4 this is not surprising since this is the
region where the concentration of rotons becomes
appreciable. There will be coalescence of rotons, they
will lose their identity, and the relation between x and e
appropriate to the lower temperature might break
down. It is possible that the rotons entrain or drag
some of the nearby unexcited atoms. As the density
of normal Quid increased and some of the rotons
coalesced there would be less exposed roton surface,
and so fewer unexcited atoms would be included per
atom of normal Quid. Thus c„would increase relatively
faster than x over a considerable range of temperatures,
and this would be equivalent to a tendency for Eq. (10)
to go over to Eq. (12).

If we assume that x is proportional to n, then the
foregoing explanation of the preference for Eq. (12)
over Eq. (10), despite the fulfillment of Eq. (9), must
break down below, say, about 1.4'K, since in this
region the rotons are separate and independent. On the
other hand, if Eq. (1) holds it may be interpreted as a
continually increasing drag of unexcited atoms (or
material pushed through a "whirlpool'") as the tem-
perature decreases. This occurs in this case because of
what may be regarded as a specific interaction between
the excitations and the substrate, which, however, does
Dot result in frictional forces because it operates re-

0.5 O.b 0.7 0.8 ~ 0.9 Lo f.2

FIG. 1. Relation between mole fraction of normal Quid, by
second-sound velocity, and temperature.

versibly. However, the predictions of the Landau-
Feynman theory are specific and they, also, are not
fulfilled. Possibly one should wait for further experi-
mental data before drawing definite conclusions, in
view of present uncertainties. "Tentatively, however,
we suggest the possibility of a breakdown in Eq. (2)
arising from a failure of the phonons to take part in
the motion of the normal Quid under some circum-
stances. At the higher temperatures where the density
of rotons is much greater than the effective density of
phonons, the latter are probably dragged along with
the former because of reQections, scattering, and other
interactions; thus, although an appreciable part of the
energy is phonon energy, since only a negligible fraction
of the mass is phonon mass, all the excitations behave
and move as though they were part of the roton excita-
tion. Further, at the higher temperatures, the low-
frequency phonons are not important. At temperatures
between 0.6' or 0.8' and 1.4' where the roton density
still predominates over the phonon density, but is
itself small, low-frequency, long-wavelength phonons
may move with a diferent velocity than the rotons due
to weak and infrequent interaction. They might, in
fact, produce a secondary wave or pulse of high velocity
which would go unnoticed because of its low energy
content. The values of s and c~ to be inserted in Eq. (2)
should then not include all the phonon contribution. If
we subtract all the phonon entropy and specific heat
from s and c~ in Eq. (2), the calculated value of x
changes in such a way as to considerably overcorrect
the trend in c„T'/x.

At temperatures below 0.6' or 0.8' the roton excita-
tions become completely unimportant, and then the
waves or pulses characteristic of the low-frequency
phonons predominate,
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If the above discussion is correct, it means that the
apparent straight line for logx against T ' below 1.4'
is to some extent spurious, for the values of x need to be
corrected. The corrected values might not give such a
straight line since e probably varies. Above 1.4' (or
perhaps only above 1.7', considering the results of
Dash and Taylor), the values of x are probably reliable.
In this region the interpretation of the empirical results
are complicated both by variation in e and deviation
from Raoult's law, and the straight-line segment in
Fig. 1 is not readily interpreted.

The sharp rise of c„/x above 2.1' is connected with
a rise in each of the quantities separately, and it is seen
that c, increases less rapidly'" with T than does dx/d T.
Thus, actually, a lowering of the intrinsic energy of the
normal Quid is indicated. Above 2.1' the drag of un-

excited atoms mentioned above is probably no longer
important, and the regions of normal substance may
now be large enough for the inclusion of unexcited
droplets to begin, thus lowering the energy of the normal
Quid. Close to the A. point this trend should reverse
itself, due to increasing instability of the droplets, and
their disappearance should cause a rise in the intrinsic
specific heat of the normal fluid, continuing (as ob-
served) above the X point; however, no indication of
such a rise below the ) point appears in the work of
Dash and Taylor. '"

4. SECOND SOUND AND FOUNTAIN EFFECT

As already remarked, if the superQuid and normal
Quid are separated in ordinary space, we expect there
to be an entropy of mixing, and 8, will not be zero, even
if the intrinsic entropy of superQuid vanishes. Equa-
tion (2), however, is valid if the superfluid carries no
entropy when it moves with respect to the normal Quid.

It has been widely believed' that this requires that
8,=0. It will be shown that not only is this not true,
but that the equations of motion which are used to
derive Eq. (2) automatically provide for the possibility
of a difference between the partial speci6c entropy and
the entropy of transport.

The equation of motion which gives Kq. (2), relates
the relative acceleration of the superQuid and the
normal Quid to the temperature gradient, as follows":

av, /at itv „/at = (p/p„) s—grad T. (13)

This equation leaves out the terms of the (v grad)v
type, but these are of higher order, since the velocity
appears twice, and they may be neglected in setting up
the wave equation for second sound. Other terms of
higher order are also omitted.

The relative acceleration, Bv,/Bt Bv„/Bt, may —be

~' This has been discussed by Dash and Taylor in their defini-
tive paper on the work of reference 18.I am indebted to Dr. Dash
for a preprint of this paper, and have revised my conclusions in
its light.

2~ For reviews see reference 9, pp. 83 R. ; J. G. Daunt and R. S.
Smith, Revs. Modern Phys. 26, 172 {1954),especially pp. 218 ff,

Comparing this with Eq. (13), we find

—gradP= ps gradT. (15)

Since s= —Bg/BT, where g is the free enthalpy (Gibbs
free energy) for a constant pressure, and since p is

practically constant under such conditions, integration
gives

P= pg= p(h Ts). — (16)

The constant of integration is determined by setting h

equal to zero at 0'K and assuming P is also zero at 0 K,
which is necessary in order to obtain the correct results
for the fountain eGect. It is very interesting to note
that if we had assumed the pressure P to reside any-
where other than in the superQuid we would have had
some density other than p in Eq. (15) and could not
have integrated it. This is, of course, connected with
the form of Eq. (13), and throws some light on the
meaning of that equation.

Let us now consider the rate at which the pressure P
does work. The net rate at which the density of super-
Quid is increasing at any point, due to Qow, is
—div(p, v,), and we suppose the normal fluid to be
leaving at the same rate to keep the total density con-
stant. The volume of superQuid which enters per unit
volume per unit time is —p

' div(p. v.), since the
intrinsic density of either superQuid or normal Quid is

approximately that of the liquid. In calculating the
rate, dW/dt, at which work is done by the pressure P
on the entering superQuid, we note that, since the forces
are forces tending to move superQuid with respect to
normal Quid, they act through a distance equal to
v, —v„, rather than v„per unit time. Therefore we

write

dW/dt= f(v. v„)/v, jPp—'div(—p,v,)-
Pp„'div(p. v.), —(17)-

using Eq. (5). Then, from Eq. (16),

dW/dt= —(p/p„) (h —Ts) div(p, v,). (1&)

If it is desired to restore the original temperature after
the replacement of normal Quid by superQuid, it will be
necessary not only to add enough heat to change the
superQuid back to normal Quid, but in addition heat
must be added at the rate DV/dt This qu—antity is.

considered to result from the gradient of a pressure P
which exists within the superQuid, and which tends to
move the superQuid relatively to the normal Quid. In
ordinary hydrodynamics the negative gradient of the
pressure is the force per unit volume, but in this case
—graN' is the force per unit volume of superQuid,
and the force per unit volume of the entire mass is
—(p,/p)gradP. Equating this to the reduced mass of

the two Quids in unit volumes times the relative
acceleration (retaining only first order terms), we have

—(p,/p) gradP= (p,p„/p) (Bv,/rent Bv„/—Bt). (14)
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positive, since Ts is greater than h and since the rate
of accumulation of superfluid is —div(p. v,).

When a certain amount of superQuid enters a given
volume an equal amount of normal Quid is displaced.
To find the resultant excf.ss of superAuid, the amount
entering must be augmented by that which was origi-
nally associated with the departing normal Quid. Thus
the rate of appearance of excess superAuid is

fountain effect. The only difference is that in this case
the normal Quid cannot move down the capillary, so
all the transport is done by the superQuid. No normal
Quid enters into the end of the capillary when super-
Quid Qows out. It Aows out pushed by the pressure I'
and the volume which Aows out is p

' per gram. The
work done by I' on the superQuid is h —Ts per gram,
which must be subtracted from the heat h per gram
necessary to change the superAuid back to helium u;
thus the total heat absorbed in order to restore the
system to its original temperature is Ts. Kith a tem-
perature gradient in the capillary, when equilibrium,
or more properly a steady state, is set up there will be
a difference in hydrostatic pressure which just balances
the change otherwise occurring in I'. Eq. (16) then
leads directly to London's" equation for the fountain
eRect and this has nothing to do'4 with the value of 8,.

This reconciliation of the possibility of simultaneously
having 8,&0 and a zero entropy of transport for super-
Auid is much more satisfactory than my previous essay
in this direction. " In the latter paper we considered
the possibility that there would be a pressure drop at
the end of the capillary, but it appears necessary only
to consider an effective internal pressure which regulates
the relative rates of Qow of superQuid and normal Quid,
which must exist if their relative motions are to be
explained at all. Further, we considered the possibility
that there was a layer composed largely of superAuid
near the wall in a capillary or a RoHin 61m, but the
evidence that such a layer exists" is removed by later
work" which indicates that there is no sudden change
in the equilibrium thickness of a Rollin film at the X

point. No such special mechanism is required by the
considerations of the present paper.

All the considerations of this section apply, of course,
only to that region of temperature in which Eq. (2) is
correct. If there is a region of temperature in which

Eq. (2) fails, this presumably indicates that some of
the energy excitations do not travel with the normal
fluid. If Eq. (2) does not hold in any temperature
range, it might well be expected that London's equation
for the fountain eRect would also break down, although
this is perhaps not absolutely necessary since even
excitations which do not travel with the normal Quid

in the case of second sound might be stopped by a
narrow capillary in the fountain effect. However, it is

interesting in this connection that Sots" has indicated

(1+p /p ) div(p /v ) = —(p/p-) djv(p. v.).
To change this superQuid back to helium D it would be
necessary to add heat at the rate —h(p/p„) div(p, v,),
since h is the amount of heat required to change one
gram of superAuid at O'K to helium n at the appropri-
ate temperature, besides the addition at the rate

dW/dt —to compensate the work term. The net rate
of addition of heat per unit volume required i therefore

dq/dt= —Ts(p/p„) div(p, /v, ) = Ts(p/p„) div(p„v„). (19)

This neglects the effects of gradients of h or Ts, which
are percentagewise negligible compared to the variatiori;
of v, and v„, and therefore may be neglected, if v, al.d
v are small. Since the heat input dq/dt per unit volume
is required to bring the system back to its original
condition, we see that the entropy change per unit
volume is —T 'dq/dt if no heat is added. From Eq. (19),
then, we can say that entropy is being carried by the
normal Quid at its velocity v and that the superAuid
is carrying none.

If there is a heat of mixing of superQuid with the
normal fluid, this can supply some of the heat required,
and conceivably it could be just sufhcient to com-
pensate the work term. " This would mean that the
pressure I' was really the gradient of an internal
potential energy, a situation which is easily visualized.
This is essentially the assumption made by London. '
It is, however, quite well known that osmotic pressures
are often caused by differences in entropy. This is never
as easy to visualize, but there is no reason to exclude
this possibility. If there is no heat of mixing and if no
heat is added then the work term will be compensated
in the case where excess superAuid is entering a volume,

by the conversion of some normal Quid to superAuid.
It is for this reason that we have spoken of the rate of
entry of superfluid —div(p, v,) rather than the rate of
increase of superfluid density f)p,/ctt It should be. noted
that this conversion of superAuid to normal Quid will

not affect the derivation of the usual equations for
second sound, since these depend only on Eq. (13) and
the transport of entropy solely by the normal Quid.

Much the same discussion can be applied to the

s' H. London, Proc. Roy. Soc. (London) A171, 484 (1939).
'4 Compare reference 9, p. 73 (footnote 2).
~' O. K. Rice, Phys. Rev. 89, 793 (1953). Because we did not

consider the pressure P in this paper, the derivation of Eq. (15)
there is not correct. With the present value, Eq. (16), of P which
is based only on the entropy of transport being zero, not on 8,=0,
only, the London equation can result, and the equation of Gorter
and de Groot, which substitutes x„(BS/Bx„) for S in London's
equation, can be considered only as a special case, arising if i,=0.

2' O. K. Rice and B.Kidom, Phys. Rev. 90, 987 (1953).
"A. C. Harn and L. C. Jackson, Phil. Mag. 45, 1084 (1954).
'g G. J. C. Bots, Confererlce orI, Physics of Lozo Temperatures,

Paris, September, 1055 (Supplement au Bulletin de 1'Institut
International du Froid, 177, Boulevard Malesherbe, Paris, 17').

' SuperQuid is increasing effectively at the rate —(p/p„)
mdiv(p, v,). To restore this to helium n requires a rate of absorp-
tion of heat equal to —(h —h, ) (p/p ) div(p, v,). But, if 8,=0, then
h, =h —Ts at equilibrium, so comparing Eq. (18), the part of the
expression involving ft, is just equal to dW/dt. Therefore, if—
8, =0, the heat to compensate the work term is furnished by the
heat of mixing. The expression —(h —h,) (p/p„) div(p, v,) is simply
an alternative expression for —tt(p/p„) div(p, v,) dW/Ct. —
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the possibility that London's equation does not hold
below 0.8'K. He remarked that this may be an appear-
ance only, since there may be some error in the entropy
values in this region. If this proves to be the case some
of the difFiculties noted in Table I may also be elimi-
nated, at least in part.

5. ENERGY EQUATION

The above results may be obtained from the energy
equation

l9

(spnvn + s psvs +8) = —div/gpevn vn+ spavs vs)
Bt

div(p—sTv„), (20)

which states that the rate of change per unit volume of
the sum of the internal energy (e per unit mass) ancl
the kinetic energy is equal to the rate at which kinetic
energy is carried in plus the rate at which heat passes in. .

It is assumed as before that the heat is bodily trans-
ported by the normal Quid, crossing unit surface at the
rate psTv„. This is the same as the equation given by
London" except that we have omitted terms involving
the bodily motion of the whole liquid as we assume it
to be at rest, the total pressure which we assume to
be constant, and external forces which we assume to be
absent. We have also omitted a term in (Be/Bx), , Ac-
cording to the theory of Zilsel, " (Be/Bx), ,= ,'(v -v,)',—
and the terms will be negligible if the velocities are
small. The terms giving the Qow of kinetic energy are
also small since they involve the velocity to the third
power. These terms are important in the Rayleigh disk
experiment, "but are not needed to get the velocity of
second sound. Carrying out the time differentiations,
we thus obtain

» Reference 9, p. 136."P. R. Zilsel, Phys. Rev. 79, 309 (1950). See reference 9,
pp. 126 G.

» See reference 9, pp. 137 ff.

pe= (fi„—fi,)p„ (23)

Let us consider the case where there is no heat of mixing.
If we can neglect any intrinsic energy of superQuid due
to excitations in it, we may set h, =O and ph= p A„, so
that pe becomes equal to (p/p„)hp„. Inserting this in
Eq. (22) we find

I'= (sT h)h ' div(—p„v„),
where

I"=p,+div(p, v,) = —p„—div(p„v„).

(24)

F gives the rate at which normal Quid must be changing
into superQuid to maintain the energy balance, under
the particular conditions noted, thus giving quantitative
form to the ideas outlined in the preceding section. "

There is no more difficulty in setting up equations for
the energy balance if A, =O than if 8,=0. We can
conclude that these equations oGer no reason for
believing that the entropy of mixing vanishes.

p„v„BV„/Bt+p, v, Bv,/Bt+ pBe/Bt = di—v(psTv„)
psv—„gradT (p/—p„)sT div(p„v„)

pp—„Tv„grad(s/p ) (21)

[the last expression from application of div(ub)
=a divb+b grada to div{(p/p„)p sTV„)]. Using Eqs.
(5) and (13), this reduces to

pe= —(p/p„)sT div(p v„) pp„T—v„grad(s/p„),

where the dot stands for B/Bt. Now grad(s/p„) will be
a small quantity, and since it is multiplied by the small
quantity v„ the last term may be neglected, so finally
we have

pe= —(p/p„)sT div(p„v„). (22)

The change of e is effected through transfer of normal
Quid and superQuid. If the pressure and density of the
whole liquid remain constant e=k, and since we are
considering the case where p, = —p„we have


