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We notice that according to Eq. (22) the initial
deviation of (m) from its value in the equilibrium
distribution decays to zero with a “relaxation time”
given by 2R/ (p+p").

As our final point we consider the time variation of
the thermodynamic functions of our model. Since we
are dealing with a system which is not isolated but is
instead coupled to a heat bath at temperature 7', we
do not expect the entropy of the system itself to be a
maximum at equilibrium. Instead, the entropy of the
system plus that of the heat bath must be maximum,

or, equivalently, the Helmholtz function of the system
must be a minimum at equilibrium. Without giving the
details, we mention that it can be proved by the meth-
ods we used in another paper,® that the Helmholtz
function for this system decreases monotonically and
attains its minimum value in the equilibrium state.
Consequently in this respect, as in all others considered,
the generalized Ehrenfest urn model is indicative of the
behavior of a system which is kept at a fixed tempera-
ture.

6 M. J. Klein, Physica (to be published).
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The circumstances under which negative absolute temperatures can occur are discussed, and principles of
thermodynamics and statistical mechanics at negative temperatures are developed. If the entropy of a
thermodynamic system is not a monotonically increasing function of its internal energy, it possesses a nega-
tive temperature whenever (85/0U)x is negative. Negative temperatures are hotter than positive tem-
peratures. When account is taken of the possibility of negative temperatures, various modifications of
conventional thermodynamics statements are required. For example, heat can be extracted from a negative-
temperature reservoir with no other effect than the performance of an equivalent amount of work. One of
the standard formulations of the second law of thermodynamics must be altered to the following: It is
impossible to construct an engine that will operate in a closed cycle and provide no effect other than (1) the
extraction of heat from a positive-temperature reservoir with the performance of an equivalent amount of
work or (2) the rejection of heat into a negative-temperature reservoir with the corresponding work being
done on the engine. A thermodynamic system that is in internal thermodynamic equilibrium, that is other-
wise essentially isolated, and that has an energetic upper limit to its allowed states can possess a negative
temperature. The statistical mechanics of such a system are discussed and the results are applied to nuclear

spin systems.

I. INTRODUCTION

EVERAL years ago Pound,=® Purcell,®> and Ram-
sey?* studied experimentally various properties of
the nuclear spin systems in a pure LiF crystal for which
spin lattice relaxation times were as large as 5 minutes
at room temperature while the spin-spin relaxation time
was less than 10~° second. With the nuclear spin
systems of this crystal various experiments were carried
out, including experiments with a spin system at nega-
tive temperatures.® In the present paper, the thermo-
dynamical and statistical mechanical implications of
negative absolute temperature are discussed. Since the
theoretical analysis of the past experiments has been
only briefly described,'* there has been some misunder-
standing® of them. For this reason and because of the
thermodynamic significance of negative temperatures,* ¢
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the present paper also contains a more detailed justifi-
cation for the use of temperature as a description of
suitable nuclear spin systems.

As discussed in Sec. III below, the conditions for the
existence of a system at negative temperatures are so
restrictive that they are rarely met in practice except
with some mutually interacting nuclear spin systems.
However, the thermodynamics and statistical mechanics
of negative temperatures are more general than their
application to a single type of system. Consequently,
in the present paper, the thermodynamics and statistical
mechanics of negative temperatures will be discussed
first for a general system capable of negative tempera-
tures, and only later will specific applications be made
to spin systems.

II. THERMODYNAMICS AT NEGATIVE
TEMPERATURES

From a thermodynamic point of view, the only
requirement for the existence of a negative temperature
is that the entropy .S should not be restricted to a mono-
tonically increasing function of the internal energy U.
At any point for which the slope of the entropy as a
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function of U becomes negative, the temperature is
negative since the temperature is related to (8S/9U)x
by the well-known thermodynamic relation’

T=(8S/0U)x7, (1)

where the symbol ( )x indicates that for the partial
differentiation one should hold constant the thermo-
dynamic variables X that appear as additional differ-
entials in the thermodynamic equation relating 7dS
and dU. Likewise ( )y indicates that for the partial
differentiation one should hold constant the variables
Y that appear as additional differentials in the thermo-
dynamic equation relating 7dS and the enthalpy H.
In the latter case one may write’

T=(8S/9H)y . (2)

Ordinarily the assumption is not explicitly made in
thermodynamics that S increases monotonically with U,
and such an assumption is not necessary in the deriva-
tion of many thermodynamic theorems. Of course, even
though there is no mathematical objection to .S de-
creasing as U increases, there would be no physical
interest to the subject if no thermodynamic system
with such a property could be conceived of and if such
systems were never realized in practice. However, such
systems can be both theoretically devised and closely
realized experimentally. In the discussions of statistical
mechanics in Sec. III it will be shown that systems of
elements in thermal equilibrium such that each element
of the system has an upper limit to its maximum
possible energy can have the characteristic of negative
(8S/dU)x. This may easily be seen, for example, if
there are only two energy states available to each
element of the system. Then the lowest possible energy
is achieved with all elements in the lowest energy state,
which is clearly a highly ordered state for the thermo-
dynamic system and corresponds to S=0. Likewise the
greatest energy is achieved with all elements in the
highest state, which of course is also a highly ordered
state of the system and corresponds to S=0. At inter-
mediate energies, when some elements are in the high-
energy state and others in the low-energy state, there
is much greater disorder and a correspondingly greater
entropy. Therefore, between the lowest and the highest
energy states of the thermodynamic system, the entropy
clearly passes through a maximum and then diminishes
with increasing U. This is shown in Fig. 1 of Sec. III
where the entropy of such a system is calculated by
normal procedures of statistical mechanics.

The maximum of the entropy curve discussed in the
preceding paragraph corresponds to (8S5/dU)x=0 and
hence to infinite temperature. The region of negative
(8S/8U)x corresponds to negative temperature. Hence
it is apparent that in cooling from negative to positive
temperature such a system passes through o °K in-

7M. Zemansky, Thermodynamics (McGraw-Hill Book Com-
pany, Inc., New York, 1951), third edition.

stead of through absolute 0°K; this characteristic is
illustrated by the negative temperature cooling curves
reported by Purcell and Pound.? In other words, nega-
tive temperatures are not ‘“‘colder” than absolute zero
but instead are “hotter” than infinite temperature. In
view of this, it might well be argued that the term
negative temperature is an unfortunate and misleading
one. However, the thermodynamic definition of tem-
perature, of which Egs. (1) and (2) are consequences,
was agreed upon long ago. As long as this standard
definition is followed there is no choice but to use the
term negative temperature when a thermodynamic
system is in a condition such that the quantities
occurring in Egs. (1) and (2) are negative.

Since the assumption of a monotonic increase of S
with U is not essential to the development of thermo-
dynamics, the normal thermodynamic theorems and
discussions apply in the negative as well as the positive
temperature region, provided suitable modifications and
extensions are made. However, the definitions of certain
thermodynamical quantities must be clarified before
discussing the theorems, since two alternative defini-
tions are sometimes used which are compatible at
positive temperatures but are not so at negative. The
definitions” of “work” and ‘“heat” will be taken to be
the same at positive and negative temperatures.” In
some respects this is a trivial statement but it is perhaps
worth noting that the only means by which all of the
various alternative statements of the second law of
thermodynamics could be preserved unaltered would be
by a reversed sign for both of these quantities at nega-
tive temperatures. With the above definitions the con-
ventional formulations of the first law of thermo-
dynamics are equally applicable at positive and negative
temperatures.

The definitions of the terms “hotter”” and “colder”
are not obvious since various alternative definitions
which agree at positive temperatures disagree at
negative. One possible definition would be to define
the “hotter” of two bodies to be the one with the
greater algebraic value of 7" In this case all positive
temperatures would be hotter than negative ones,
despite the fact discussed above that negative tempera-
tures in the normal sense of the word are “hotter” than
positive temperatures, as indicated by the fact that if
a positive and negative-temperature system are in
thermal contact heat will flow from the negative tem-
perature to the positive. The definition which agrees
best with the normal meaning and which will be
adopted is that the ‘“hotter” of two bodies is the one
from which heat flows when they are brought into
thermal contact while the “colder” is the one to which
the heat flows. With this definition any negative tem-
perature is hotter than any positive temperature while
for two temperatures of the same sign the one with the
algebraically greater temperature is the hotter. The
temperature scale from cold tofhot then runs +0°K,
oo, 4+300°K, -, +0°K, .- "~ 0K, ..., —300°K,
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..., —0°K. “Intermediate” temperatures should like-
wise be defined relative to such an order. With the
above definitions, if two systems at different tempera-
tures are brought into thermal contact they will reach
some final temperature which is intermediate between
the two starting temperatures. It should be noted,
however, that +1000°K, for example, is intermediate
between +300°K and —300°K.

It might at first sight appear that the necessity for
ordering the temperature scale from cold to hot in the
fashion of the preceding paragraph might be an argu-
ment against the validity of negative temperatures.
However, the apparent artificialness of the above
ordering is merely an accidental result of the arbitrary
choice of the conventional temperature function. If the
temperature function had been chosen as —1/7, then
the coldest temperatures would correspond to — e for
this function, infinite temperatures on the conventional
scale would correspond to 0, and the negative tempera-
tures on the conventional scale would correspond to
positive values of this function. For this temperature
function the algebraic order and the order from cold
to hot would then be identical. Such a —1/T function
is often used in thermodynamic discussions for the
purpose of expanding the temperature scale in the
vicinity of absolute zero. The function In7 is sometimes
also used for the same purpose. The above discussion
shows that, for the purposes of negative temperatures,
the —1/T scale in many ways is even more convenient
than the T scale. On the other hand, the logarithmic
scale is less convenient since the logarithm of a negative
number is complex.

At negative temperatures various cyclic processes,
such as magnetic Carnot cycles, can be operated. Just
as with positive temperatures, the ratio between two
different negative temperatures can be determined
absolutely as the ratio of the heats absorbed and re-
jected by a Carnot cycle operating between the two
temperatures.

It should be noted, however, that no means has yet
been devised by which a Carnot cycle can be operated
between positive and negative temperatures. By adi-
abatic magnetization of a spin system, for example,
the temperature can be raised as high on the positive
scale as one wishes but it cannot be made to cross over
to negative values; a corresponding statement applies
if one starts initially with the system at a negative
temperature. As a result, the ratio of a positive tem-
perature to a negative one has not been determined by
operating a Carnot cycle between the two temperatures.

At positive and negative temperatures, the efficiency
of a Carnot engine is given by

n=1—(Q2/Q1)=1— (T4/Ty), 3

where Q; is the heat absorbed at temperature 7; while
Q: is the heat rejected at temperature T%. If, as in the
normal heat engine at positive temperatures, the heat
is absorbed at the hotter temperature then, as dis-

RAMSEY

cussed above, Ty/T1> 1 for negative-temperature reser-
voirs and the efficiency 5 is negative and can be very
large. At first sight this may seem surprising. It means
that instead of work being produced when a Carnot
heat engine is operated with heat received at the hot
reservoir, work must be supplied to maintain the cycle.
Inversely, it means that if such a Carnot cycle is
operated in the opposite direction work is produced
while heat is transferred from a colder reservoir to a
hotter. If the heat transported to the hot reservoir by
this reverse cycle is allowed to flow back to the colder
reservoir, there then exists an engine that will operate
in a closed cycle and produce no other effect than the
extraction of heat from a reservoir and the performance
of an equivalent amount of work. Although the existence
of such a machine is a contradiction of one of the con-
ventional formulations of the second law of thermo-
dynamics, it is not in contradiction to the appropriate
reformulation of this form of the second law that is
given below. The existence of such a machine is also
not in contradiction to the principle of increasing
entropy, since from Fig. 1 it is apparent that the
extraction of energy from a system at negative tem-
perature corresponds to an increase in the entropy of
the system rather than a decrease, as at positive
temperatures.

It should be noted that when the Carnot cycle is
operated between two negative temperatures in such a
way that work is done by the machine while heat is
absorbed from the colder reservoir and rejected at the
hotter, then the efficiency by Eq. (3) is not only positive
but it is also less than unity. Thus at both positive and
negative temperatures cyclic heat engines which pro-
duce work have efficiencies less than unity, i.e., they
absorb more heat than they produce work.

Of the alternative conventional statements of the
second law of thermodynamics, some are applicable
without modification for negative temperatures while
others must be modified. The entropy formulation
remains unaltered: (a) The entropy of a system is a
variable of its state and the entropy of an isolated
system can never decrease. Likewise the Clausius state-
ment’ is unaltered: (b) It is impossible to construct a
device operating in a closed cycle that will produce no
other effect than the transfer of heat from a cooler to
a hotter body. However, the Kelvin-Planck formula-
tion” of the second law must be modified to: (c) It is
impossible to construct an engine that will operate in
a closed cycle and produce no effect other than (1) the
extraction of heat from a positive temperature reservoir
with the performance of an equivalent amount of work
or (2) the rejection of heat into a negative-temperature
reservoir with the corresponding work being done on
the engine. The Carathéodory form of the second law
is unaltered.

The first and second laws of thermodynamics can as
easily be used at negative temperatures as at positive
ones to derive other thermodynamic relations. How-
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ever, in these, as in the above statements of the second
law, it is apparent that the difficulty of heating a hot
system at negative temperatures is analogous to the
difficulty in cooling a cold system at positive tempera-
ture. This is illustrated by the experimental fact to be
discussed later that a nuclear resonance absorption
experiment at positive temperatures becomes a nuclear
resonance emission experiment at negative tempera-
tures, and also by the potential usefulness of negative
temperature systems as amplifiers. The difference be-
tween positive temperatures and negative temperatures
can be clarified by noting the physical reasons for
which the Clausius statement (b) need not be modified
whereas the Kelvin-Planck formulation (c) must be
changed. One might attempt to violate the Clausius
statement (b) by constructing a cyclic heat engine
which would first extract heat from a colder reservoir
and convert it into work with no other change being
produced. Then this work could be converted into heat
that is transferred to a hotter reservoir, in violation of
the statement. At positive temperatures this two-stage
process is impossible because the first step cannot be
done. At negative temperatures, on the other hand,
the first step for converting heat to work is easy, as
discussed earlier, but the impossible step is the con-
version of all the work into heat to be supplied to the
hotter reservoir without producing any other change.
That such should be the case is of course reasonable
from Fig. 1, since at negative temperatures an increased
internal energy corresponds to diminished entropy just
as the reverse is true at positive temperatures.

The various statements of the third law of thermo-
dynamics apply unaltered at negative temperature pro-
vided it is understood that the absolute zero of tem-
perature means absolute zero of both positive and
negative temperature. Thus the unattainability state-
ment of the third law would be: It is impossible by any
procedure, no matter how idealized, in a finite number
of operations to reduce any system to the absolute
zero of positive temperature or to raise any system to
the absolute zero of negative temperature.

III. STATISTICAL MECHANICS AT
NEGATIVE TEMPERATURES

The essential requirements for a thermodynamical
system to be capable of negative temperature are:
(1) The elements of the thermodynamical system must
be in thermodynamical equilibrium among themselves
in order that the system can be described by a tem-
perature at all; (2) there must be an upper limit to
the possible energy of the allowed states of the system;
and (3) the system must be thermally isolated from all
systems which do not satisfy both of the above condi-
tions, i.e., the thermal equilibrium time among the
elements of the system must be short compared to the
time during which appreciable energy is lost to or
gained from other systems. The temperature concept

is applicable to the system only for time intervals far
from either of the above time limits.

The condition (2) must be satisfied if negative tem-
peratures are to be achieved with a finite energy. If W,
is the energy of the mth state for one element of the
system, then in thermal equilibrium the number of
elements in the mth state is proportional to the Boltz-
mann factor exp(—W,/kT). For negative tempera-
tures, the Boltzmann factor increases exponentially with
increasing W, and the high-energy states are therefore
occupied more than the low-energy ones, which is the
reverse of the positive temperature case. Consequently,
with no upper limit to the energy, negative temperatures
could not be achieved with a finite energy. Most
systems do not satisfy this condition, e.g., there is no
upper limit to the possible kinetic energy of a gas
molecule. It is for this reason that systems of negative
temperatures occur only rarely.

Systems of interacting nuclear spins, however, have
the characteristic that under suitable circumstances
they can satisfy all three of the above conditions, as
discussed in the next section. The discussion in the
present section, however, will not be explicitly limited
to spin systems.

In the normal discussions® of statistical mechanics,
no assumption is made as to whether the energy levels
of the elements of the system have an upper bound;
indeed, the methods of statistical mechanics are often
conventionally applied® to systems such as idealized
paramagnetic systems, whose elements do have an
upper energy limit. As a result the normal statistical
mechanics theorems and procedures, such as the uses
of partitions functions, apply equally well to systems
capable of negative temperatures.

Consider a thermodynamic system of NV elements
such that the Hamiltonian § of the system can be
expressed as

©=‘S§0+@inty (4)
where
5;'>o=kf:1 D (5)

and o is the portion of the Hamiltonian that depends
only on the kth element of the system while Dins is the
portion of the Hamiltonian that cannot be separated
into terms dependent upon only one element.

The procedures of statistical mechanics and the con-
cept of temperature are of course equally applicable
when the average energy associated with Ding is com-
parable to or larger than that associated with §o as
when Oins is small. On the other hand, the procedures
are much more complicated in the former case and
involve the complications of cooperative phenomena.

8 D. ter Haar, Elements of Statistical Mechanics (Rinehart and
Company, New York, 1954) and the other standard texts referred
to by ter Haar.
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F16. 1. The entropy is plotted as a function of the internal
energy for a system of which each element has four equally spaced
energy levels.

For this reason, the present discussion will be limited
to cases where the average energy associated with £
is very large compared to that associated with Din.
It should be emphasized, however, that this assumption
is only for the purpose of simplifying the discussion
and does not imply that the concept of negative tem-
peratures is limited by this condition or the other
simplifying restrictions of the specific statistical me-
chanical model assumed below. Density-matrix pro-
cedures are useful in discussions of more complicated
models.

It will now be assumed for simplicity that the eigen-
states of or consist of # different levels of energy W,
spaced the same distance W from each other and with
the zero of energy being selected midway between;
therefore, W,,=mW where m is an integer between
—(n—1)/2 and + (n—1)/2. It will further be assumed
that all V of the elements are identifiable and have the
same energy level separations and that ins induces
transitions in which one element has an upward transi-
tion while the other has a downward transition. The
reason for assuming equal spacing of the levels is that
the simplifying assumption of the preceding paragraph
makes it unlikely, for energetic reasons with small 7,
that one element should make a downward transition
which is energetically much different from the associ-
ated upward transition of the other element. It will
also be assumed in the discussion immediately following
that W, is the spectroscopic®!® energy of an element
of the thermodynamic system, i.e., the energy which
governs the frequency of the emitted radiation from
Bohr’s frequency relation. The effects of departures
from this last assumption will be discussed in the next
section. It will also be assumed that the number of
elements IV is Avogadro’s number.

With the foregoing assumptions, with 3=1/%T, and
with the normal procedure for summing a geometric
series, the partition function Z, and the Helmholtz

9L. J. F. Broer, Physica 12, 49 (1946).
0 C, J. Gorter, Paramagnetic Relaxation (Elsevier Publishing
Company, Amsterdam, 1947).

function 4A=F become

Zu=cxp(— AB/N)= (_z(ij/)/ exp(—mIVE)
_exp (nWB/2) —exp(—nWgB/2) _sinh (nWB/2) 6
(V82— (B2 i)

From this, the internal energy U (taken as the sum
of W) the entropy S, and the specific heat Cx may
readily be calculated with the result that
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Numerical values for these expressions have been
evaluated in the case of #=4 and the results are plotted
in Figs. 1 and 2. Figure 1 shows the entropy as a func-
tion of the internal energy. As discussed qualitatively
in Sec. I, this form of curve is intuitively reasonable
since the highest and lowest possible energies of the
thermodynamic system correspond to the ordered array
of all the elements of the system being in the same
state. From Eq. (1), the region of negative slope for
this curve corresponds to negative temperature.
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F1G. 2. The internal energy, the entropy and the specific heat
are plotted as a function of —1/7 measured in units of /W for
the same system as Fig. 1. As discussed in Sec. II this choice of
abscissa corresponds to the colder points being to the left of the
hotter ones. The dashed curve (-- - - - ) is for the internal energy U,
the full curve ( ) is for the entropy S, and the dotted curve
[CEREN ) is for the specific heat Cx.
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In Fig. 2 the internal energy, the entropy and the
specific heat are plotted as functions of —1/7. As dis-
cussed in Sec. I, this choice of scale makes the colder
temperatures always appear to the left of the hotter
ones. The internal energy can rise above zero, the
average energy of the levels, because the Boltzmann
factor exp(— W ,,/kT).increases with increasing W, at
negative temperatures. The physical reason that the
specific heat drops to zero at both +0°K and —0°K is
that all elements of the system finally get into their
lowest or highest energy state and no more heat can be
removed or absorbed, respectively; on the other hand
the specific heat at o« °K drops to zero for a different
reason : the temperature changes greatly in the vicinity
of °K for only a small change in configuration and
internal energy.

It should be noted that +0°K and —0°K correspond
to completely different physical states. For the former,
the system is in its lowest possible energy state and for
the latter it is in its highest. The system cannot become
colder than 4-0°K since it can give up no more of its
energy. It cannot become hotter than —0°K because
it can absorb no more energy.

IV. NUCLEAR SPIN SYSTEMS

It has been recognized for some time that spin systems
often form thermodynamic systems which can appropri-
ately be described by a temperature.’®-* However,
almost all the doubts® that have been expressed as to
the validity of negative temperature resolve into doubts
as to the validity of any spin temperature. For this
reason a few of the arguments in favor of the concept
of temperature for a spin system will be briefly sum-
marized here, though the reader should refer to the
published literature'®- for more extensive discussions.

Although spin temperatures have been used and
justified by a number of authors,*~!* the most extensive
justification of nuclear spin temperatures in a single
article has been given by Bloembergen.' In order that
the nuclear spin system can adequately be considered
as a thermodynamic system describable by a tempera-
ture, it must satisfy the first condition of Sec. III, i.e.,
the various nuclear spins must interact among them-
selves in such a way that thermodynamic equilibrium
is achieved. This occurs by virtue of the nuclear spin-
spin magnetic interaction. As a result of this interaction
nuclei can precess about each other’s mutual magnetic
field and undergo a transition whereby one nucleus has
its magnetic quantum number relative to an external
field increased while the other’s is decreased the same
amount. Since the energy absorbed by one nucleus is
exactly equal to that released by the other, no additional
energy need be added, as is also the case of collisions

11 H, B. G. Casimir and F. K. Du Pre, Physica 5, 507 (1938).

127, J. F. Broer, Physica 10, 801 (1943).

B N. F. Ramsey, Nuclear Moments (John Wiley and Sons, Inc.,
New York, 1953).

14 N. Bloembergen, Physica 15, 386 (1949).

between molecules in a gas. This spin-spin process is
the one often characterized by the relaxation time
designated'* T, which is approximately the period of
the Larmor precession of one nucleus in the field of its
neighbor. T, is of the order of 10~5 second. It is this
process which brings the spin system into thermo-
dynamic equilibrium with itself in a similar way to
that in which molecular collisions bring about the
thermodynamic equilibrium of a gas. Even if the initial
distribution among the different spin orientation states
were completely different from the Boltzmann distribu-
tion, the mutual spin reorientations from the spin-spin
magnetic interaction would bring about a Boltzmann
distribution. This process is quite distinct from the
process characterized by the relaxation time!* T';. The
latter depends upon the interaction between the spin
system and the crystal lattice and is ordinarily de-
pendent on the lattice vibrations, etc., whereas the
spin-spin interaction is essentially independent. In the
thermodynamics of spin systems the lattice interaction
with relaxation time 7', corresponds to leakage through
the thermos bottle walls in ordinary heat experiments.

Bloembergen has theoretically calculated the thermal
conductivity for such a spin system and has shown that
many thousands of nuclear spins are brought into
thermal equilibrium with each other in less than a
tenth of a second. Consequently, it is legitimate to
speak of a spin system as a thermodynamic system in
essential equilibrium with itself, provided the relaxation
time to the lattice is large compared with the aforemen-
tioned equilibrium time. This condition is ordinarily
achieved and T is often many minutes, which is very
much greater than 7>—10~% second and is even much
greater than the above 10! second in which many
thousands of nuclear spins are brought into thermody-
namic equilibrium with each other.

One restriction on nuclear spin-temperatures should
be noted. Although the thermal conductivities of nuclear
spin systems are large on a microscopic scale and inter-
diffusion among many thousands of nuclear spins occurs
in a small fraction of a second, the thermal diffusion is
very small on a macroscopic basis; indeed, 102 seconds
would be required! for appreciable amounts of heat to
diffuse 1 cm in a crystal if the only mechanism for
thermal diffusion were the nuclear spin system. How-
ever, this restriction does not invalidate the concept of
temperature when applied to a nuclear spin system but
merely indicates that in any experiment one must
insure that all macroscopically separate parts of the
sample are subjected to similar treatments so that they
will be at the same temperature. The need for this
precaution is the same as the need for a similar pre-
caution in the discussion of the ordinary temperatures
of large subterranean rock samples.

Bloembergen'* has produced strong experimental evi-

. dence in support of his spin diffusion calculations and

of the concept of nuclear spin temperature. He has
experimentally studied the effect of paramagnetic im-
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purities in bringing about equilibrium between the
nuclear spin system and the crystal lattice. He finds
that the experimental relaxation times 7'; to the lattice
are as much as 10* times greater than could be expected
by direct interaction between the paramagnetic im-
purity and individual nuclear spins. On the other hand,
he finds excellent agreement between theory and experi-
ment if he assumes the impurity ion first brings the
nuclear spins in its immediate vicinity to the tempera-
ture of the lattice and that thermal diffusion within
the nuclear spin system then brings the other nuclear
spins to that temperature.

It should of course be noted that when the spin
system and the lattice in a crystal are essentially iso-
lated from each other and are of different temperatures
it is improper to speak of the temperature of the
substance. However, the spin system itself can be
described by a temperature while the lattice system
can also be described by a different temperature.

In order that condition (3) of Sec. IIT should be
satisfied, it is necessary that the nuclear spin system be
effectively isolated from all other systems which do not
satisfy conditions (1) and (2) of that section. The
above discussion shows that it is possible to obtain
systems for which the relaxation time to the crystal
lattice is sufficiently large for the nuclear spin system
to be essentially isolated from it for macroscopic periods
of time. However, in principle one should also consider
the degree of isolation of the nuclear spin system from
other systems as well. The radiation field corresponding
to the black body radiation of the surrounding medium
is one such system. However, the relaxation to this
system is extremely long, as discussed in greater detail
by Bloembergen and Pound.!® This is further indicated
by the fact that the oscillatory magnetic fields required
to induce nuclear transitions in nuclear resonance
experiments are far greater than those present at the
appropriate frequency in black body radiation. For a
negative-temperature experiment it is of course essential
that the spin system be effectively isolated from the
system of black body radiation, since such a system
violates condition (2) of the preceding paragraph and
is consequently incapable of being at a negative tem-
perature. In this connection it should be noted that
the nuclear spin-spin magnetic interaction which brings
about the thermodynamic equilibrium of the spin
system depends on the static magnetic field of the
nuclei and not upon the radiation field. Another system
from which the nuclear spin system is and must be
decoupled is the system of internal motions of the
nuclei; nuclei would disintegrate at temperatures far
below those often achieved for nuclear spin systems.

Since a nuclear spin 7 can possess only 274-1 different
orientation states, it is apparent from the foregoing dis-
cussion that some nuclear spin systems can satisfy all
the requirements of Sec. III for the possible existence

15 N, Bloembergen and R. V. Pound, Phys. Rev. 95, 8 (1954).
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of a negative temperature. Of course, it should be
emphasized that most nuclear spin systems don’t
satisfy these requirements. For example, in a molecular
beam experiment, the molecules may be selected so
that most of the nuclei are in the higher energy orienta-
tion states. Nevertheless, the nuclear spins in such a
case cannot be described as at negative temperature
since there is no internal thermodynamic equilibrium.

Since a nuclear spin system is an almost perfect para-
magnetic substance, the various thermodynamic func-
tions for the system in a magnetic field may readily be
calculated at both positive and negative temperatures.
Unfortunately, any discussion of the thermodynamics
and statistical mechanics of magnetism is necessarily
confused by the disagreement® 0:16-18 that exists as to
the definition of the internal energy of the system. In
the two most frequently used procedures the roles of
internal energy and of enthalpy are reversed. The
disagreements are of course purely in matters of defini-
tions and either procedure leads to the same physical
results provided it is applied consistently. In particular,
the temperature of a system is the same regardless of
which procedure is used; the existence of negative
temperatures is equally consistent with either pro-
cedure, but the designation of the thermodynamic
variables in Figs. 1 and 2 are altered. Since this dis-
agreement on matters of definition has sometimes led
to a misunderstanding of negative spin temperatures,
both alternatives are discussed in Appendix A, where
it is shown that the temperature of a spin system is the
same with either of the alternative procedures.

As discussed in Appendix A, if the energy W, of the
magnetic moment in the field 3¢ is taken to be the
spectroscopic energy® and if U is taken to be the sum
of W,, over one mole, then

T dS=dU+M -d3c (8)
and
T=(8S/0U)",

as in Eq. (1). The statistical mechanical results of
Sec. ITI and Figs. 1 and 2 all apply to the nuclear spin
case with the addition that, for nuclei of moment u
and spin I, the W of Sec. III becomes W= |u3C/I]|.

In general, in strong magnetic fields the spins of two
different kinds of nuclei form two separate spin systems
that are thermally well isolated from each other since,
as discussed in Sec. III, a mutual reorientation of spins
between a pair of the nuclei of different kinds is not
energetically possible. However, at weaker magnetic
fields such that the differences in interaction energies
with the external field are comparable with the mutual
interaction energies, mutual reorientations become pos-
sible and the two spin systems come in thermal contact

16 C. G. B. Garrett, Magnetic Cooling (Harvard University
Press, Cambridge, 1954).

17 E. A. Guggenheim, Proc. Roy. Soc. (London) A155, 49 and 70
(1936).

18 G, H. Livens, Proc. Cambridge Phil, Soc. 44, 534 (1948),



THERMODYNAMICS AND STATISTICAL MECHANICS - 27

with each other. This means for bringing two systems in
and out of thermal contact can be used in various
thermodynamical cyclic processes.

The nuclear spin systems studied by Pound, Purcell,
and Ramsey'—? were those in a very pure crystal of LiF.
In these experiments Pound and Ramsey? studied the
spin-spin interactions which bring about thermal equi-
librium of the spin system. They also observed effects
of the mutual interactions of two different spin systems,
as discussed in the preceding paragraph. Purcell and
Pound? studied the means for bringing a nuclear spin
system to a negative temperature and observed the
cooling curve as a negative temperature spin system
cooled to positive’ room temperature. All results of
these experiments are completely consistent with the
interpretations of the present paper. It was found for
example that, when a negative temperature spin system
was subjected to resonance radiation, more radiant
energy was given off by the spin system than was
absorbed.

V. SUMMARY AND CONCLUSIONS

In any thermodynamic system for which (8.S5/9U)x
or (8S/9H)y may be negative, the temperature of the
system may be negative by Egs. (1) and (2). The
preceding discussion shows both that ideal systems can
be theoretically devised with this property and that
such ideal systems are closely realized experimentally
by nuclear spin systems.

Systems at negative temperatures have various novel
properties, of which one of the most intriguing is that
a frequently quoted formulation of the second law of
thermodynamics is easily violated at negative tem-
peratures: a heat engine operating in a closed cycle can
be constructed that will produce no other effect than
the extraction of heat from a negative-temperature
reservoir with the performance of the equivalent
amount of work. On the other hand, it is impossible to
construct a closed cycle machine on which work can
be done with no other effect than the rejection of heat
into a negative-temperature reservoir. This character-
istic is experimentally observed in nuclear magnetic
resonance experiments; for these the direction of the
observed resonance deflection is reversed at negative
temperature as a result of stimulated emission from the
negative temperature spin system exceeding absorption.

The ease with which heat energy can be converted
to work may provide an important practical application
for negative-temperature systems. At negative tem-
peratures most resistances are negative, and negative-
temperarure systems are intrinsically amplifiers just as
ordinary resistance networks at positive temperatures
are attenuators. Townes has used molecules with
greater population of high-energy states than low-
energy ones as the source of energy for a self-maintained
oscillator. However, it should be noted, as in Sec. IV,

19 Gordon, Geiger, and Townes, Phys. Rev. 95, 282 (1954); 99,
1264 (1955).

that in such a molecular beam experiment there is no
internal thermodynamic equilibrium within the spin
system; consequently such a system cannot be de-
scribed as being at negative temperature.

Nuclear spin systems at negative temperatures have
several properties that are the reverse of those at
positive temperatures. Adiabatic demagnetization heats
the spin system instead of cooling it as at positive tem-
peratures. Likewise for nuclear polarization experiments
the nuclear spin system should be heated to the hottest
possible negative temperature, whereas at positive tem-
peratures the spin system should be cooled to the lowest
possible temperature. The negative Curie temperature
is such that for all hotter temperatures the system will
be ferromagnetic (or antiferromagnetic). In addition,
if the spin system is such that it is ferromagnetic when
colder than the positive Curie temperature, it will be
antiferromagnetic when hotter than the positive Curie
temperature.

The need for modifying various standard statements
of thermodynamics and statistical mechanics when the
possibility of negative temperatures is recognized shows
clearly how it is ordinarily implicitly assumed in the sub-
ject of thermodynamics that (85/8U)x and (8S/0H)y
are positive even though neither of these is ordinarily
introduced as an explicit assumption. If the minor
complications of negative temperatures are to be validly
avoided in discussions of thermodynamics, the assump-
tion that (3S5/9U)x and (4S/8H)y are only positive
should be explicitly introduced with the warning that
this restrictive assumption is for simplification only
and that it excludes a few valid, but rarely occurring
thermodynamic systems.

In conclusion, it should be emphasized that although
the phenomena of negative temperatures form fully
valid portions of thermodynamics and statistical me-
chanics they are necessarily of much less practical
importance than phenomena of positive temperatures.
The occurrence of systems at negative temperatures
will necessarily be relatively infrequent since a very
special combination of rarely met requirements must
be satisfied before negative temperatures are even a
possibility for the system.
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APPENDIX A.

Unfortunately there has not been agreement in the
definitions® 11618 of the thermodynamic functions of
paramagnetic systems. In the two most frequently
used procedures the roles of internal energy and
enthalpy are reversed. In the present appendix it will
be shown that the disagreements are purely in matters
of definitions and that either procedure leads to the
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same temperature for the same physical system; the
existence of negative temperature is equally consistent
with either procedure.

As discussed by Broer® and others,* from the point
of view of statistical mechanics it is most convenient
to take the energy W, of the magnetic moment in the
field to be the spectroscopic energy.® This differs from
the total energy W,.' by

Wm= Wm’_zc *Wmy (9)

since the work 3¢-dM done by the batteries when the
magnetization is increased by dM is not available for
radiation as it must be returned to the batteries again
when the magnetization is reduced again by dM. If the
internal energy is taken to be U, the sum of W, over
one mole, in contrast to U’, which is the sum of W/,
the average of Eq. (9) shows U and U’ are related by

U=U'—3 M. (10)

Since the heat 7dS that must be supplied in a reversible
process is equal to the change in total internal energy
dU’ minus the work done by the batteries,

TdS=dU’'—3¢-dM. (11)

From Eq. (10), the fundamental thermodynamic rela-
tion for U is then

TdS=dU~+M .dse. (12)

From Eq. (10) it is apparent that if U is taken as the
internal energy, the quantity U’ is just the enthalpy
H=U-+3%C¢-M. With this choice of U, the usual relations
to the Helmholtz function 4, the Gibbs function G, etc.
apply. From Eq. (12) it is apparent that the tempera-
ture is given by Eq. (1).

The advantage of the above selection of W, as the
spectroscopic energy is that a system of interacting
nuclear moments which is isolated except for a fixed
external field will have all possible states of the micro-
canonical ensemble limited by

SW bt =0, (13)

where 7, indicates the number of nuclei in orientation
state m. Since Eq. (13) is one of the equations used in
the normal development of the Boltzmann factor in
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statistical mechanics and since the other relations are
also unaltered, the normal results apply and the Boltz-
mann factor is exp(—W,B8). Likewise the partition
function and its relation to F, U, S, and Cy is un-
altered. The statistical-mechanical results of Sec. III
and Figs. 1 and 2 then all apply, with the addition
that the W of that section for nuclei of moment u
and spin I becomes W= |uH/I|. Since in this case
U=—M 3, the enthalpy H=U’ vanishes identically
and is represented by the horizontal axis of Fig. 2.

If, on the other hand, U’ is taken as the internal
energy, the fundamental thermodynamic relation is
given by Eq. (11) instead of Eq. (12) and from Eq. (10)
the previous quantity U becomes the enthalpy H'.
Other thermodynamic relations and definitions follow
in the usual way. However, from a statistical mechanics
point of view the situation is more complicated. No
longer does Eq. (13) hold, so the usual derivation of the
Boltzmann factor in statistical mechanics no longer
applies. If the derivation is suitably modified, the result
is that the Boltzmann factor is exp[ — (W' — un -3¢)8],
as of course it should be from the simpler approach of
the preceding paragraph. If the sum of the Boltzmann
factors is taken as the partition function Z,/, it is
immediately apparent by carrying out the differentia-
tion that —N(9/98)(InZ’) gives H' or U, and not U’.
Likewise G’ and not A’ equals — (N/B) InZ’. From
these, the other thermodynamic relations may be found.
If U/, H', S, and Cy are plotted as functions of the
pressure, the results are exactly the same as Figs. 1
and 2 except that U is replaced by H' and H by U’.
The latter step shows that U’ vanishes, as is indeed
reasonable since W, also vanishes for a perfect para-
magnetic nucleus in a magnetic field, since the mechani-
cal work required to reorient a permanent magnet in a
field is just exactly equal to the work that is done on
the battery that maintains the current for the field.
With these curves for the thermodynamical functions,
(3S/8U")x is indeterminate ; however, the temperature
may be determined thermodynamically from Eq. (2).
For a given physical system, the temperature deter-
mined in this way from Eq. (2) is clearly the same as
from Eq. (1) with the definition of U used in the first
part of this appendix.



