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Dispersion Relations for Finite Momentum-Transfer Pion-Nucleon Scattering
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The Geld-theoretical derivation of dispersion relations for forward pion-nucleon scattering has been
generalized to apply to the case of a 6xed 6nite momentum transfer. The generalization is facilitated by
use of the special Lorentz frame in which the sum of the momenta of the initial and 6nal nucleons is zero.
In this reference system the relations between dispersive and absorptive parts of the scattering amplitude
are independent of momentum transfer and are similar in form to the forward-angle relations. At energies
below the minimum energy necessary to allow a particular momentum transfer, the scattering amplitude
has no direct physical meaning; it is interpreted as an analytic continuation of the physical amplitude to
scattering angles corresponding to cosg & —1. The resulting equations are expressed in terms of the ampli-
tudes for individual angular momenta and are given in two forms, corresponding to the inclusion or neglect
of nucleon recoil.

1. INTRODUCTION

ECENTLY, many authors'~ have investigated the
consequences of causality for boson-fermion scat-

tering problems. The requirement of causality in a
scattering problem may be stated in the following
manner: If the scattered wave at a space-time point
x~, t~ is dependent on the amplitude of the incoming
wave at the point x2, t2, then the time t2 must be
previous to t&, as observed from any Lorentz system.
(Lorentz systems in which the direction of time is
reversed must be excluded from this de6nition, of
course. ) The Lorentz invariance of this requirement
implies that the separation between the two points
must be time-like; thus causality requires that the wave
does not propagate with a speed exceeding that of
light in a vacuum. In a 6eld theory the condition may
be imposed that Geld amplitudes corresponding to
points separated by a space-like interval must commute;
-this condition is equivalent to the requirement that no
disturbance may propagate with a velocity greater
than c.

Gell-Mann, Goldberger, and Thirring' and Gold-
berger' have shown that the requirement of causality
in a field theory may be used to derive useful dispersion
relations for photon-nucleon scattering and pion-
nucleon scattering. These equations relate the dis-
persive part D(&o) of the forward amplitude for elastic
scattering to an energy integral of the absorptive part
A (co). If use is made of the well-known relation between

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.' Gell-Mann, Goldberger, and Thirring, Phys. Rev. 95, 1612
(1954).' M. L. Goldberger, Phys. Rev. 99, 979 (1955).

'M. L. Goldberger, Phys. Rev. 97, 508 (1955); Goldberger,
Miyazawa, and Oehme, Phys. Rev. 99, 986 (1955); Anderson,
Davidon, and Kruse, Phys. Rev. 100, 339 (1955); R. Oehme,
Phys. Rev. 100, 1503 (1955) and 102, 1174 (1956). We are
indebted to Dr. Oehme for sending preliminary copies of these
manuscripts to us before publication. Y. Nambu, Phys. Rev. 98,
803 (1955); 100, 394 (1955).R. Karplus and M. Ruderman, Phys.
Rev. 98, 771 (1955).

A (co) and the total cross section, i.e., A (&o) = (k/4nr)a r,
the dispersion equations make possible the determina-
tion of the forward scattering amplitude from a
knowledge of the total cross section at all energies. The
equations essentially are equivalent to the classical
dispersion relations of Kramers and Kronig.

It is reasonable to investigate whether or not the
amplitude for 6nite-angle scattering satis6es a simple
dispersion relation. One might attempt to generalize the
forward-scattering relations by considering the energy
dependence of the amplitude for a Gxed, finite center-
of-mass scattering angle. There are two important diffi-
culties with such a procedure, however. First, such a
finite-angle relation must depend on the size of the scat-
tering region. This difhculty is especially discouraging in
such problems as gamma-nucleon or pion-nucleon scat-
tering, for which there is no definite boundary to the scat-
tering region, and the extent of the region is not too well
known. The second difficulty has to do with the fact
that, as the energy of the bombarding particle varies,
the energy of the target particle in the center-of-mass
system varies also, gimng rise to a complicated energy
dependence of the scattering amplitude.

In this paper a generalization to 6nite angles is made
by considering the energy dependence of the scattering
amplitude for a 6xed center-of-mass value of the
momentum transfer. This procedure overcomes the
above-mentioned difhculties. That a 6xed momentum-
transfer dispersion relation is independent of the size
of the scattering region may be seen most easily in the
scattering of a particle from a 6xed potential of range a.
In this case the quantity that satis6es a dispersion
relation is S exp[2iak sin(-, 0)j, where S is the scattering
matrix, kk is the momentum, and 8 is the scattering
angle. If the momentum transfer, 2kk sin(-,'-e), is held
constant as k is varied, the exponential factor is constant
and 5 satisfies a dispersion relation which is independent
of a. The second difhculty is overcome by expressing
the scattering amplitude in a special Lorentz system,
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dehned by the condition that the initial and final
momenta of the target particle are equal and opposite.
If these momenta are held constant as the energy of the
projectile varies, clearly the target particle energy
remains constant. The difference between the final and
initial target momentum, i.e., the momentum transfer,
is equal to the momentum transfer in the center-of-mass
system. 4

The method used in this derivation is based upon
the method of Goldberger, ' and the assumptions made
concerning the high-energy convergence of the scat-
tering amplitude are identical to those in reference 2.
The derivation is given for pion-nucleon scattering,
though the method is applicable to other boson-
fermion scattering problems.

The advantages of a fixed momentum-transfer dis-
persion relation over a fixed scattering-angle relation
are partially nullified by an important disadvantage;
namely, a minimum pion kinetic energy is necessary
in order to transfer a specific amount of momentum to
the nucleon. The scattering amplitude corresponding
to energies less than this minimum energy must be
determined by an analytic continuation process, if the
dispersion relations are to be useful. In order to make
this continuation, and in order to express the scattering
amplitude in terms of convenient quantities, the ampli-
tude is expanded in terms of waves of different orbital
angular momenta. The analytic continuation into the
nonphysical region is then made by the simple process
of continuing the Legendre polynomials into the region
cose( —1. It has been pointed out by Symanzik' that
this continuation procedure is not rigorous in all cases.
It is hoped, however, that the error will be unimportant
in the low-energy applications of the relations.

The results express the dispersive part of the ampli-
tude for a particular partial wave in terms of a sum
over angular momenta of energy integrals of the ab-
sorptive parts of the various partial-wave amplitudes.
The form of the dispersion re]p, tion depends on the
asymptotic behavior of the scattering amplitude at high
energies.

2. CAUSAL SCATTERING AMPLITUDE

Dispersion relations for scattering problems depend
upon the principle that no disturbance may propagate
with a velocity greater than that of light in a vacuum.
Goldberger' has made use of this causal principle in
giving a held-theoretical derivation of dispersion rela-
tions for pion-nucleon scattering in the forward direc-

4 It has come to our attention that results quite similar to ours
have been derived independently by several groups, viz. , Gell-
Mann, Goldberger, Nambu, and Oehme (private communication);
A. Salam, Nuovo cimento 3, 424 (1956).The case of finite-angle,
potential scattering has been considered by J. S. Toll and D. Y.
Wong (private communication). The authors are indebted to
Professor Y. Nambu for information on the results of the first
group.' K. Symanzik (private communication).

tion. In this paper the method of Goldberger is gener-
alized and applied to scattering at finite angles.

We shall consider a pion-nucleon scattering event'
in which a pion of four-momentum k is scattered into
a state k', the nucleon undergoing a transition from a
state of momentum p to a state p'. The Greek subscripts
n and n' are used to denote the charge states of the
initial and final pion. The element of the scattering
matrix corresponding to this event may be written in
the form

5..(k',p', k,p)

=P(—i)"/(e!)) dx, . dx„(y„,a. (k')

XPPI(x,), H(x.)fu.*(k)y,). (2.1)

The quantity ELH(x&), H(x„)j denotes the time-
ordered product of the operators H(x, ), which represent
the interaction Hamiltonian density at the space-time
points x;. The symbol g~ or P~ represents a state of the
nucleon with momentum p or p'. These state vectors
are normalized by the equation

(2.2)

The symbol a ~ (k') denotes an annihilation operator for
a pion of four-momentum k' and charge state n', while
a *(k) represents a creation operator for the state (k,n).
The operators and state vectors have the time de-
pendence of the interaction representation.

It is assumed that the Hamiltonian density repre-
senting the local interaction between the pion and
nucleon fields may be written in the form

(2.3)

where ps(x) is the pion Geld operator for the charge
state P, and Op(x) is some nucleon field operator. In
symmetrical, pseudoscalar meson theory with pseudo-
scalar coupling, Op(x) is given, in conventional notation,
by

(2 4)

The method of Low7 may be used to write the S matrix
in terms of the operators Os(x) in the Heisenberg
representation.

6 Throughout this manuscript the ordinary italic letters k and
p represent four vectors. The three-dimensiorial momenta corre-
sponding to k and p are denoted by the boldface letters, k and p,
while the symbols co and E denote the corresponding energies.
The spacelike and timelike components of the coordinate four-
vector x are denoted by x and xo. A four-vector inner product is
written in the form kx=k x—coxo. For convenience the constants
A and c are taken to be unity.

7 F. E. Low, Phys. Rev. 97, 1392 (1955).
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where m is the mass of the nucleon.
Following the method of Goldberger, we obtain a

causal scattering amplitude by replacing the time-
ordered product P[O ~ (—', s), 0 (—-', z)) by the quantity
rf(s)[O..(-,'s), 0 (——,'s)), where

r)(s) =1 for zp) 0,
=0 for zo(0.

The modified scattering amplitude is given by

(2.7)

M .(O',P', k,P) =i2vr'(EE')inz ' dse *'i"+~'*rf(z)

&&{&'LO- (-: ), o-(—-' )j0.}. (2 8)
8 C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. -fys Medd.

23, No. 1 (1945).The I matrix of Mgller is related to the matrix F
of Zq. (2.6) by the relation F ~ = r', (2s./m)I ~, wher—e m is the
mass of the nucleon. The relation of F to the differential cross
section in any Lorentz frame is given by Mgller as

do= (m'~ F ~'/8) fS(k'+P' k P)(dk/co) (dp/E), ——

where B is the Lorentz-invariant quantity

&=E(itE—u )*—(&&&u)'j'

x{0,, Pro. (-'. ), o.(—l )3 ) (25)

The symbols )p„and ip„represent exact nucleon eigen-
states of the total Hamiltonian in the Heisenberg repre-
sentation. When the nucleon current contains terms
depending on the pion field, Eq. (2.5) must be modified
to include other terms. This complexity is neglected
here, since, as shown by Goldberger, ' the extra terms
do not alter the causal property of the scattering
matrix.

A matrix U, similar to the U matrix of Mufller,
s may

be de6ned by the equation

S...=S...+i(2~)-'S(k+ p —k' —p') (k',p'
~
U...~

k,p).

We shall de6ne a scattering amplitude, which is
invariant to Lorentz transformations, in terms of
U', 8

Fxo. i. Relative orientations of the pion and nucleon momentum
vectors for a typical scattering event. The vector V denotes the
velocity of the center of mass in the q-reference system, while lV
represents the total g-system energy. The subscript c refers to
momenta in the center-of-mass system.

Q=Q(o))e, (2.10)

The two matrices 3f ~ and F differ for negative
energies, but not for positive energies. The modification
of the amplitude causes negative-energy pions, as well
as positive-energy pions, to propagate from past to
future, thus assuring the causal nature of the scattering
amplitude, M ~ .

Though we have not considered the nucleon's spin
coordinates, quantities such as 3f ~ depend on this
variable. An alternative point of view, which is adopted
here, is that 3f is a matrix in the spin space of the
nucleon. The Hermitian conjugate of this matrix is
denoted by 3f ~ t.

A physical scattering event corresponds to a positive
'value of pion energy. Thus, in order to derive a useful
dispersion relation, we must And some symmetry
property relating the negative-energy part of M ~ to
the positive-energy part. Since M is expressed in terms
of a matrix element between two nucleon states of
momenta p and p', the symmetry properties of M may
be expressed simply in the Lorentz system defined by
the condition that the momentum p+ p'= 0. This
system is called the q system, and the momentum
—p=p' is denoted by g. Conservation of momentum
and energy may be used to show that the vectors k+p
and k'+p' are equal and are perpendicular to the
vector q. Thus we define two perpendicular vectors, q
and Q,

q= —p= p', Q=k —tl= k'+q. (2.9)

The orientation of these vectors for a typical scattering
event, and the corresponding vectors in the center-of-
mass system, are shown in Fig. 1. The momentum
transferred to the nucleon during the collision is the
same in either the q system or center-of-mass system,
and is equal to 2q.

The magnitude of the vector Q depends on the pion
energy ~,
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Xg.t 0- (l ), o-(—l )3-.} (2»)
where E, is given by E,= (m'+q2)& Th. e symbol f,
denotes a nucleon state of momentum —g and energy
E,. The relation between M ~ (q,e,a&) and the corre-
sponding amplitude in the center-of-mass system is
discussed in Sec. 5.

The variable co in Eq. (2.12) may be considered as
complex, thus de6ning M ~ for complex values of the
energy. In the complex energy plane, the function Q(co)
has branch points at co=&or,. The complex or plane,
including branch cuts, is illustrated in Fig. 2. We

PIG. 2. The complex co plane for the scattering
amplitude M ~ (&i,ap)).

define the function Q(&d) in the upper half &d plane by
analytic continuation from the region corresponding to
physical scattering, i.e., the region Im co=0, Re co&co,.
This leads to the result

CO = OJ (2.13)

For real values of ~, Q(e&) is positive when co)e&„posi-
tive imaginary when —co, &co &or„and negative when

COq.

The implications of causality with respect to the
analytic properties of M ~ (q, e,&o) in the upper half
co plane are discussed in Sec. 4.

3. SYMMETRY PROPERTIES OF THE CAUSAL
AMPLITUDE

If use is made of the Hermitian property of the
operator i[0 (-,'z), 0 (——,'z]), the amplitude M ~ (q, a,&0)

defined by Eq. (2.12) may be shown to have the sym-
metry property

M t(qAa&)=M „(—q, e, —&o). (3.1)

This property permits us to write dispersion relations
in terms of quantities corresponding to positive values
of or only.

The validity of Eq. (3.1) depends on the fact that
the nucleon states f, and f, are related by a reflection
of the spatial coordinates; therefore the initial and
final nucleon must be in the same charge state. For
definiteness we assume this charge state to correspond

where z is a unit vector T. he function Q(&0) is given by

Q(~) = (~'—~')', (2.11)

where co, is dehned in terms of q and the meson mass p,

by the relation &d,'= (p'+ q') i. The scattering amplitude
may be expressed in terms of the variables of the

q system,

fM, (q,e,&0) =i2z'(E, /ns)
'

dz»(z) exp( iQ—z+ia&zo)

to a proton; thus M„refers to the elastic scattering
of pions by protons. The pair of indices n'n, which
denote the charge states of the pions, may assume nine
diferent values, since n and n' range from one to three.
Charge conservation, however, limits the number of
processes to three, z++P ++++—P, z'+P~~'+P,
and z +P -+ 7r +P, We define three independent
amplitudes which are simply related to these three
processes:

M&"=-,'(Mii+M22) =-,'(M.+»+M -»),

M z'l(M&2 M2$) = ,' (M.+p—M~p)) (3.2)

)=1 or 3,
—1, ) =2.

(3.4)

In a charge-independent theory, there are only two
independent amplitudes, corresponding to total isotopic
spins —,

' and —,'. In such a theory,

M"' =M &"= -'(2M;+Mi),
M&"= -'(M —M )

(3 5)

The quantities M ~ of Eq. (2.12) may be separated
into dispersive and absorptive parts,

M ~ =D ~ +iA ~, (3.6)

where D and A are defined by

D ~ =iz'(E, /m) dze(z) exp( —iQ z+~z,)

Xg., Lo- (lz), o.(—lz)3k, }, (3.7)

A ~ =z (E,/m) dz exp( —iQ x+ia&zo)

XH„Ã- (l ), o.(——; )74,}. (3.8)

The function e(z) of Eq. (3.7) is defined by the relation
e(z) = —1+2'(z).

Similarly, the amplitudes M(") may be written in
terms of dispersive and absorptive parts, M("&=a'"&
+iA &"&, where D&"& and A &"& may be expressed in terms
of the operators 0 and 0 if use is made of Eqs. (3.2),
(3.6), (3.7), and (3.8). Later it will be seen that this
division of the quantities M(~) corresponds to a sepa-
ration of the entire scattering amplitude into Hermitian
and anti-Hermitian parts.

If use is made of Eq. (3.2), the symmetry property,
Eq. (3.1), may be written in terms of the quantities
jg(x) and g (x)

D&"&t(q,e,&0)= e&D&"&(—q, a, —a&),

A&"&t(q,s,cv)= —
e&,A»( —q, a, —e&).

(3.9)

An important property of these amplitudes is their
symmetry with respect to interchange of the indices n
and n' of the quantities M ~ . Under the transformation
n~n', we have

(3.3)
where
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D&"&(q,a,co) = AD&"&(q, a, —co)

e&,D&"&(q, —a, —co)

A &"& (q,a,co) =—
e&,A &"& (q, a, —co)

—
e&,A &"&(q, —a, —co)

fol' (co
~
)co

for (co( &co„
(3.11)

for (o&))~,
for [co[ &co,.

'll;is symmetry condition is diGerent in the two energy
regions, (co()co, and ~co) &co„because the function

Q(co) = (co'—co,') t is real and odd in co for
~

co
~
)co„and

is imaginary and even for
~
co

~
&co,.

The symmetry properties of M("& may be more
simply expressed, if the scattering amplitude is written
as the sum of spin-independent and spin-dependent
part~,

3d'"'(q, a,co) =ORN'"'(q, a,co)1+ie qXQ~s'"'(q, a,co),

(3.12a)

D&"& (qaco) = d&v&" & (q, a co)1+ie qX Qds'"'(q, aco),

(3.12b)

A &"&(qaco)= aN&"&(q a co)1+ie qXQas~& (qaco).
(3.12c)

Here e is the nucleon spin matrix and 1 is the unit
matrix. The quantities 5R~, q, dN; 8 and c~, 8 are simple
functions, rather than two-by-two matrices. Since the
scattering amplitude used here is Lorentz invariant, the
amplitude in the q system, M'"&(q, a,co), must be
invariant to spatial rotations and reQections. Therefore
the functions BR~, g, dN, g, and a~, q are invariant to
spatial rotations and reQections. Since the vectors q
and s are orthogonal, these functions are quadratic in

p, and quadratic in a, and hence are functions of only
the energy, and the magnitude q of the vector q. In
terms of these functions, the symmetry properties,
Eq. (3.9) and Eq. (3.11), become

d&v& & (q,co) = end&v& (q, —co),

a&v&"&*(q,co) = —
e&,a&v&"& (q, —co),

dso'"(q, co) =- —e~dso'&(q, —co),

a &"&*(q,~)=e a &"'(q —~),

d&v&"&(q,co) = end&v&"&(q, —co),

a&v&"&(q,co) = —
e&,a&v&"&(q, —c ),

ds "'(q,co) = —e&ds "&(q, —co),

as&"&(q,co) = e& as&"&(q, —co)

(3.13)

(3.14)

This symmetry condition alone is not enough to deter-
mine whether or not D(") and A("), which are matrices
in nucleon spin-space, are Hermitian. Another useful
property of M'") may be obtained, however, from the
symmetry of the operator 8 (s)=LO (rpz), 0 (—rpz))

with respect to the transformation s~ —s, i.e.,

(3.10)

From Eq. (3.10) and the symmetry properties of M&"'

with respect to the exchange n~ cr', Eq. (3.3), it can
be shown that D(") and 3'~' satisfy the equations 4. ANALYTICITY AND DISPERSION RELATIONS

The causality principle may be used to show that,
for a fixed q, the scattering amplitude M ~ (q,a,co) has
certain analytic and boundedness properties in the
region ~, which denotes the upper half complex
co plane. The causal principle, that no disturbance
propagates with a speed exceeding that of light in a
vacuum, requires that the commutator LO (—,'z),
0 (——,'z)] vanish for space-like values of the space-time
variable z. Therefore, the factor r& (z) ($,$0 (-',z),
0 (—sz)jf p) in Eq. (2.12) may be finite only for
values of s satisfying the two inequalities,

zp&0 and zp& )z~. (4 1)

The amplitude M ~ in Eq. (2.12) depends on the
complex energy ~ only through the factor

exp( —iQ z+icozp),

where Q is given in terms of co by Eqs. (2.10) and
(2.11). For a value of z in, the region defined by Eq.
(4.1), the exponential factor is bounded in R+, i.e.,

exp( —iQ z+icozp) &exp(co,zp). (4.2)

Since this bound is not uniform as a function of zo,
we must use the technique of Goldberger, ' and inter-
change the order of a space-time integration, and an
energy integration, in order to derive dispersion rela-
tions. A discussion of the justi6cation of this exchange
for forward scattering is given in reference 2. Intui-
tively, one expects a greater high-energy divergence
problem for 6nite-angle scattering than for zero-angle
scattering. However, if the momentum transfer is fixed,
then as co —+ , the scattering angle approaches zero.
Thus the convergence properties of M(q, co) as co-+po

are similar to those of M'(O, co), the difference being
that the effective pion mass" is ~„rather than p, .

Instead of actually carrying out this exchange of
integration order, we arrive at the same result more
simply by treating exp( —iQ z+icozp) as if it were
uniformly bounded. We may then apply a theorem of
Titchmarsh, p to show that the amplitude M'"'(q, a,co)

of Eq. (2.12) is analytic in R+, and. that the divergence
of M(co) as the real part of co approaches infinity is no
worse above the real axis than it is for real values of
the energy. The spin-Qip and nonspin-Qip amplitudes

e E. C. Titchmarsh, Folder INcegrals (Oxford University Press,
New York, $9/7), p, 119.

From Eqs. (3.13) and (3.14) we see that the functions
d~, q(") and a~, g(~& are all real. Thus the separation of
M(") into dispersive and absorptive parts corresponds
to a separation of the scattering amplitude into Her-
mitian and anti-Hermitian parts. The reality of the
functions dN; 8("~ and a~, 8("), together with either of the
relations, Eq. (3.13) or Eq. (3.14), represent the sym-
metry properties of M(~' in the form that is used in the
derivation of the dispersion relations.
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ties of the OR(q, cp) functions, Eq. (3.14), the dispersion
relations corresponding to ex=1 (it=1 or 3) may be
written

defined in Eq. (3.12a) must also be analytic in ~,
since they may be expressed in terms of M t"&(p,e,,~) by
the equations,

OR~t" & (qcp) =-,' Tr(M&"& (tbe, (g) },
(4 3)

qPORs&"& (qcv) =
2 Tr( —i((r qX Q)cV&"& (q,e,(o)}/QP.

The form of the dispersion relations depends upon
the high-energy convergence of the amplitudes BR&, z("'.
If the Lesbegue integral J' "~OR/pop~'dhp exists, "where
5K is any of the six amplitudes 5K&, ~("&, and o, is any
positive number, a dispersion relation may be obtained
by considering the contour integral"

i
I

OR(q, (v')
der'=0,

7r "op ((o'—po) ((o'p —pppp)

(4.4)

where the contour C+ is shown in Fig. 3. The energy orp

is arbitrary and may be chosen for convenience.
If the scattering amplitude converges rapidly enough

that the integral J'"~OR~'d&o exists, where n again is
any positive constant, a stronger dispersion relation
may be obtained by considering, ":.the contour integral,

(4.5)

Because of the boundedness property of OR in R+, the
contribution to the integrals of Eqs. (4.4) and (4.5)
from the semicircle in C+ will vanish"-'pas~the radius
approaches infinity. The two types of dispersion equa-
tions, those derived from the integral of Eq. (4.4) and
those derived from Eq. (4.5), will be referred to as
type A equations, and type 8 equations, respectively.

After suitable approximations have been made, the
type 8 equations may be directly compared to Low's
equation7 for pion-nucleon scattering. Since it is ques-
tionable whether or not the high-energy convergence of
OR(q, &o) is suKciently rapid to justify this procedure,
we discuss the type 2 dispersion relations, which follow
from Eq. (4.4). If use is made of the symmetry proper-

'0 This condition is sufhcient, but not necessary, for the validity
of the procedure used here. For a brief discussion of convergence
conditions, see Reinhard Oehme, Phys. Rev. l00, 1503 (1955}."It is assumed that Qg is finite at all points in the region
except at one point where ~ has a simple pole, corresponding to
the real nucleon state, which plays the role of a bound state of
the pion-nucleon system. The contribution, pf the real nucleon
state is discussed at the end of this section,

—GJ~ Q (0(, (d

FIG. 3. The contour integral of Eq. (4.4) in the complex ca plane.
The symbol R denotes the radius of the semicircle.

dN""(q ~)—d~""(q ~o)

2(M cop ) f M dM c~l ' l(q, pp )

w & p ((o"—(op') ((o"—pp')

q'ds""(q )——q'ds""(q~)
COp

2(o(cp' —ppo2)
" d(o'q'ast"&(q, pp')

"o (~"—rpo') (pp"—po')

where the symbol P denotes that the principal part of
the integral is to be taken. Similar equations may be
derived for the case eq

———1, which is discussed later.
The integral in these equations involves the absorp-

tive part a(q, pp) as a function of energy for all energies
in the range 0&co& po. However, a(q,~) may vanish
for certain regions of + in this range. In order to see
this we expand the matrix element (f„[0 (-,'s),
0 (——,'s)7$,} in A ~, Eq. (3.8), in a complete set of
intermediate states, f, which we take to be eigen-
functions of the entire Hamiltonian,

A. .=x'(E,/m) ds exp( —iQ z+icpsp)

Xp[(lt„O. (-',S)p.}(lt., 0.(——,'s)lL, }
—H., o-( os)P.—}H-,O- (os)4 .}7 -(48)

If use is made of the relation 0 (s)=e '~*0 (0)e'~'
where P is the total momentum-energy operator, the
space-time integral in Eq. (4.8) may be carried out,
and A may be written

~ « -= (2~)'~'(Ep/~)z[(lip o- (o)0-, o}

X(lt. ,O.(0)4,}&( +E,—E., )
—{60-(o)lt-, -o}(4-.-Q,O- (o8-.}

X8(co E,+E„,o)7, —(4.9)

where g „,~q denotes the state P„with total momentum

&Q, and E„,o is the total energy of such a state.
Because of the energy delta functions in Eq. (4.9),

the spectrum of 3 depends simply on the spectrum
of the states f„.If the momentum-energy four vector,
corresponding to the state lt„,& is denoted by (P,E„r),
the Lorentz invariant proper mss of the state f„is given
by M „=[(E„,z)'—P']l. We assume the following
energy spectrum for the proper mass M„of the states
lt„: (i) a point spectrum at the energy M„=ttt, corre-
sponding to the real neutron or proton state; (ii) a
continuous spectrum in the region m+p &M„&~, cor-
responding to states coiisisting of a nucleon, plus one
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or more other "particles, " where the term "particle"
denotes either a pion or a nucleon pair. "

It has been assumed that no bound state of the
nucleon-pion system exists. States involving no nu-

cleons have been neglected, since they do not contribute
to Eq. (4.9).

The energy spectrum of A (s&) may be determined
from the spectrum of the states P„.Because of the two
terms of Eq. (4.9), a state of proper mass M„will con-
tribute to the spectrum of A at two energies, one
being the negative of the other. Though the integrals
in Eqs. (4.6) and (4.7) involve only positive energies,
it is useful to compute the spectrum of A ~ (ro) in the
entire energy region —~ (a&& ro. When the index'
refers to the real nucleon state, the quantity E„9in

Eq. (4.9) is equal to (eP+Q')1. If use is made of the
relation Q'= re' —p'-—tl', it can be seen that the spectrum
of A ~ (ro) corresponding to the real nucleon inter-
mediate state is given by

GO= &Q)g&
(4.10)

ro =E —(m' —-'p')E —'= (q'+-'p')E —'

The positive sign corresponds to the second term of
Eq. (4.9). Note that res must be a positive quantity,
since q'&0.

The continuous spectrum of P„contributes two con-
tinuous spectra to A ~ (ro). The end points, ro, and
—+„of these spectra correspond to an intermediate
state f„of proper mass m+p. The determination of ro,

is analogous to that of co&, and yields the result

ro.=m (m+ p)E,—'—E,= (my —q') E,—'. (4.11)

Therefore, the two continuous spectra of A (ro) are
given by

and co &co(+ oo.

The complete spectrum of A (ro) is shown in Fig. 4.
The contribution of the real nucleon state to A (ro)

or A o'&(ro) at the energy ro= re& is denoted by

b(ro —ros) Q, .,(q,(os) or 8(co—res) n&"&(q (os).

The quantity 8&"'(q,ro&) may be expressed in spin-
independent and spin-dependent parts, i.e.,

/ /' / / / / / /' / / / / / / 3 Fl-, -~b O

CASE l: q &Mp

r///////// //////
(U~

~ / / / // / /// //// //// ////////////'/// //////'////////'/'/'/ / / / /

"COb (da 0 -40& 4Ub

GASF 1I: q p Mp

continuous spectra of A (a&), may be positive or negative.
Ke shall consider the two cases separately.

Case I.—If q'&mp, then co )0, and the absorption
integrals in Eqs. (4.6) and (4.7) may be limited to the
range ro, &a&& ~. If A ~ (a&) is expressed in the form
of Eq. (4.9), only the first term of this expression con-
tributes to the absorption integrals.

Case II.—If q') mp, then ro, &0. In this case both
terms of A (rd) contribute to the absorption integrals
in the energy range 0&~&—~, while only the 6rst
term contributes in the range —cu &co& ~. However,
since the two terms of A (n&) are transformed into
each other under the transformation ~~ —co, the
absorption integrals may be extended to the energy
range co, &co & ~, provided that the contribution of the
second term in A ~ (ro), Eq. (4.9), is neglected.

From the above discussion it can be seen that the
lower limit of the absorption integrals may be taken to
be co in either of the two cases ~ &0 or co. &0, provided
that A(cs) is properly interpreted in the anomalous
region co &co&—~, while exists in the case co &0. If
the arbitrary energy coo is taken to be co„and the real
nucleon contribution is written in terms of the functions
I'~, z &"& (q), the dispersion relations, Eqs. (4.6) and
(4.7), may be written in the form

d &' '& (q ro) d~" "(q ro )—
2(GP M ) f' ro dro AN~ ' (g (o )

p l

~12 ~ 2 ~~2 ~2

21'~it » (q)„,(ros „s)
(I)

COg GO~ Mg QP

FIG. 4. The energy spectrum of the absorptive part of the
scattering amplitude in the q system, shown in the two cases
q2&mp and q~Pmp.

where the magnitude of Q& is given by the relation
Q&

——(rds —q' —p, ')'*. The quantities I'&, z&"&(q) may be
estimated from a specific meson theory.

The energy ~, which indicates the end points of the

"If a state @„corresponds asymptotically to several particles
having four momenta pI, g~ ~, the mass corresponding to this
state is M„=L(Z; E;)'—(Z p;)'g&. In the center-of-mass system
we have 2 p; =0 and M„ is equal to the sum of the energies of the
particles. Therefore, the lowest mass next to the nucleon mass m
is clearly m+p, if states with no nucleons are neglected. For' a
discussion of this mass spectrum see, e.g. , Y. Nambu, Phys. Rev.
100, 394 (1955).

2q'I' O s~ (q)co((os —ro.')
(II)

COg . CO~ Mb CO

The dispersion relations for the case ez= —1 may be
derived in a similar fashion. The form of the equations
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is different in the two cases, e&=&i, since the sym-
rnetries in energy of DR'"' (q,o&) are different [Eq. (3.14)7.
The equations corresponding to the. case e&= —1(X=2)
are

d~(') (q o&) d—
&v
—"& (q,(0)

2o&(o&'—o&,') (
" d(0'(&"v(s) (q,o&')

I'
~12 ~ 2 ~12 ~2

2F&v(') (q)o&(o&' —o& ')
(III)

6)g
—07+ GOg GO

q'ds"'(qR) q'ds"—'(q ~.)
2(u' —u.') (" ~'4 'q'(Ja(') (q,~')

p
~12 ~ 2 ~I2 ~2

q'Z's" (q)o»(o&' —e& ')
(IV)

COy
—

CO& Mg —M

The dispersion relations for forward scattering may
be obtained from Eqs. (I), (II), (III), and (IV) by
letting q2 approach zero. An important distinction
between the finite momentum-transfer equations and
the zero-q limit is the existence of the energy region
~, «(or„which shrinks to zero in the limit as q

—+0.
Since the momentum Q is imaginary in this energy
region, the scattering amplitude cannot be directly
related to physical processes. The interpretation of this
nonphysical region is discussed in Sec. 5.

In order for the dispersion equations to be useful,
some estimate must be made of the functions I'&v, s(")(q),
which represent the contribution to the equations of
the real nucleon state. We shall assume symmetrical,
pseudoscalar meson theory with pseudoscalar coupling,
in which theory the operators 0 (x) are given by Eq.
(2.4). If the operators 0+, 0 and Os are defined by
the equations 0~ ', (Ot (——0)—adios(0)},Os ——Os(0), then
Eq. (3.2) and Eq. (4.9) may be used to express the
bound-state contributions a&"' in the form

6('& (q,o&s) = e(s) (q,o&s)

= —(2~)'~'(E./m) 8",OA-os )
X(~t-Q' O-f-v), (4 13)

8 (') (q,o&s) = —(2 )'s(sE,/ )r&s

X(P,,Os& qs ) (P qs, os& s).

The state f oP corresponds to a real neutron of mo-
mentum —Qs, while f oP corresponds to a real proton.

If terms of order (p/m)' are neglected, matrix ele-
ments of the operators 0+, 0 and Os between real
nucleon states may be evaluated, "yielding the result,

P N I' I'

=s(2w) '(f/v2~~)[~. (a—b)) (4 14)

"See reference 7, p. 1396.

where f is the renormalized coupling constant charac-
teristic of the pseudovector interaction. " Therefore,
in this no-recoil approximation the quantities 8,(")(q,o&s)

are given by

8"'(q,») = (t'"'(q, ») = 0'"'(q,»)
= (f'/~')f(q' —0')—2 [ (qXQ))} (4.»)

From this equation and the definition of F&, 8&~~, Eq.
(4.12), the values of I'&v, s(~) to lowest order of (p/m)'
in pseudoscalar meson theory with pseudoscalar
coupling are

I" "'=I' "'=I'~"'= (f'/& ')(q' —Qs')
=f'[1+(2q'/p, ')) (4.16a)

(4.16b)pa(&) —I'8(s) =I' s(s&= —2fs/ps

co= EcS'kg '—Eg, (5.1a)

2q'= P.s(1—cosg.), (5.1b)

where W and S', represent the total energy in the
q system and center-of-mass system, and k„8„and E,
represent the center-of-mass values of the magnitude
of the particle momentum, scattering angle, and
nucleon energy. In general the subscript c will be used
to denote a variable of the center-of-mass Lorentz
system. The vector product qXQ is related to the
scattering angle by the equation

qXQ= qgn. = (W,/2E, ) (k,Xk,')
= (W./2E, )k,s(sine, )n, (5.2)

where n represents a unit vector and k. and k, ' are the
initial and 6nal values of the pion momentum in the
center-of-mass system.

The center-of-mass scattering amplitude M, (")(k, k, ')
may be separated into spin-independent and spin-
dependent parts in a manner similar to the separation
of the q-system amplitude [Eq. (3.12a)),

M, (")(k„k,') =5K,&v("& (k„k,')I
+i(r kaXk, 'ORcs("&(k„k,'). (5.3)

Because of the invariance of M, (")(k„k,') under three-
dimensional rotations and reQections, the functions
5R,&'"' and 5R,&&") depend only on cos0, and the energy
&u,. The center-of-mass quantities OR,)v(") (H„o&,) and

'4 The quantity' defined here is equal to that defined by G. F.
Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). As shown by
these authors, P is of the order j =0.08.

S. PARTIAL WAVE ANALYSIS OF DISPERSION
EQUATIONS

In order to express the dispersion relations in terms
of experimentally measured quantities, we shall
transform Eqs. (I), (II), (III), and (IV) in.to variables
of the center-of-mass system. The q-system energy and
momentum variables are related to center-of-mass
quantities by the equations

E,B"=E,S'„
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E'—E'
—2q'

'
On, s~» (~.,~.),z, (m+z.)

ms~»(q, )= — ~.N&»(tt. . .)
W. m+&.

(5.4)

+2) ~+ ~»

m+8. )

These equations are derived in Appendix A. The com-
plexity of the equations results from the complicated
manner in which the Dirac spinors transform under
Lorentz transformations. "

If the nucleon mass is considered to be large, and only
terms of zero order and first order is an expansion in
powers of nz ' are kept, then the relations between
q-system quantities and center-of-mass quantities
become very simple, i.e.,

(u=co.+m '(kP —q'),

2q'= k '(1—cose,),
qX Q =—', (1+(u,/m) (k.Xk.').

(5.5)

The Lorentz transformation does not mix the spin-
independent and spin-dependent amplitudes in the
limit of large m. The transformation equations reduce
to the form

mt~'"'(q, o)) =JK.s &» (e„(o.),
lies "'(q,&o) = 2(1—co,/m)5R. s'"'(e.p&.). (5.6)

It is interesting to notice how the center-of-mass
values of the energy and scattering angle vary, as the
momentum transfer is held fixed and the q-system
energy varies between the limits of integration in the
dispersion equations. From Eqs. (5.1) it is seen that as
cv approaches infinity, the center-of-mass momentum
becomes infinite and cos0, approaches the limit 1. In
this limit the scattering is in the forward direction. At
the point co=co, the q system and the center-of-mass
system are the same, and the quantities k. and coso,
are equal to q and —1. In the nonphysical region
co, &~&~„cosset, is less than —1. The functions Q(~)
and sine, of Eq. (5.2) are imaginary in this region. As

'~ The fact that the spin-independent and spin-dependent
amplitudes are mixed by the Lorentz transformation was pointed
out to the authors by Dr. S. McCormick and by Professor M. L.
Goldberger, independently.

OR,s'»(e„s&,) may be related to the corresponding
q-system amplitudes, if use is made of the fact that the
entire scattering amplitude is Lorentz-invariant, i.e.,
the amplitude relating any specific initial and final
states in the q system is equal to the amplitude relating
the same states transformed into the center-of-mass
system. The resulting transformation equations are

P.,'+mE.
5K&&'&(q,(o) = ~azr'»(&c, ~c)

Z, (m+P, )

co approaches co„ the center-of-mass momentum ap-
proaches zero, and cos9. approaches —~. Thus the
nonphysical energy region co &cv &co, corresponds to
center-of-mass scattering angles in the range —~ &cosa,

In order to evaluate the contribution to the equations
of the nonphysical region, we must remember that the
scattering amplitude in this region is defined by ana-
lytic continuation from the physical region co&co,. A
convenient method for interpreting the center-of-mass
scattering amplitude in both the physical and non-
physical regions is the method of expanding the am-
plitude in terms corresponding to diGerent values of
orbital angular momenta. In such a formalism, the
analytic continuation may be made by analytically
continuing the Legendre polynomials into the region
cose, &—1. This continuation method is quite simple;
however, as is brought out later, it is not rigorous in
all cases.

The magnitude of the relative orbital angular mo-
mentum, as well as the total angular momentum, is
conserved in a pion-nucleon collision. For each value
of the orbital angular momentum / (except 1=0), there
are two scattering states, corresponding to the two
values of the total angular momentum, j=l&~. The
amplitudes for these two terms are denoted by f~~t» (k.);
they are related to the scattering phase shifts (which
are complex if inelastic processes are possible at the
momentum k,) by the equation

fgy'~'(k. )=k. ' exp[ibgy"'(k. )1 sins[/'"'(k, ). (5.7)

The amplitudes f&~&» may be related to the spin-
dependent and spin-independent amplitudes if use is
made of the projection operators 8&+, defined by

Bi„(t+1+——s 2)/(2l+1),
8~ (f s2)/(2—l——+1),

(5.8)

where 2 is the orbital angular momentum operator.
The operator B~+ or B~, when operating on a pion-
nucleon state vector of orbital angular momentum l
projects out the term corresponding to j=l+-', or
j=i—-';. If use is made of Eqs. (5.8), the scattering
amplitude may be expanded in partial waves, i.e.,
DR, &» (k.,l ,')

= (W./m)Q ({f~~"&[(i+1)P((cosa,)
+k, 'io" (k,Xk,')P~(cose, )1+f~ '"'DP~(costt, )

k, 'ie (—k,. X—k, ')P~(cose, ))}. (5.9)

The functions P &(cose.) are the Legendre polynomials,
and P ~(cos0.) are their derivatives, i.e., P ~(s) =
(d/ds)Pq(s). The expansions of BR~ and 5Ks are given
from a comparison of Eq. (5.3) and Eq. (5.9):
m, ~&»(~„~.)= (W./m) P, r (i+1)f~~»

+1f~&"jP g (cose,), (5.10a)

Slt.s'"' (0.. .)= (W,/m) k.—'
Xgi/f~~' —fg &»)Pq(cos8, ). (5.10b)
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The equations, Eqs. (5.4) and (5.10), may be used
to expand the scattering amplitude in partial waves.
The center-of-mass quantities BR.&("), 5E,&("), and
fi+(i& may be separated into real and imaginary parts,
BR,N(» =d,N'"'+ia, N'"&, ÃZ, s(» = d,s'"&+ia,s'"&, and
fl~(»=di~("&+iai~("&. Since the coefficients of Eqs.
(5.4) and (5.10) are real, these equations remain
correct if the complex amplitudes are all replaced by
their real parts, or by their imaginary parts.

The partial-wave expansion of the scattering ampli-
tude provides a straightforward method of analytic
continuation into the nonphysical region, since the
functions Pl(cose) and Pi(cos8) are well defined for
values of the argument in the range —~ (coso( —1.
The dispersion relations, Eqs. (I)—(IV), involve the
threshold energy co, both in the dispersive terms and
the absorptive terms; hence the behavior of the
Legendre expansions must be examined in the limit
co—wl, . For values of co close to co, k, is small, and the
leading terms of the Legendre polynomials and their

For small k„ the phase shifts bi+("&(k,) are real, and
the leading terms of the real and imaginary parts
of fi+(k,) are given by

dl~(»(k, )=k,. ' cos!&i+("& sin!&i+&"&=6!+("&k,",
a &"&(k)=k 'sin'(&i ("&=LA! '"'k "]'k (5.12)

where the symbols 6&+("~ represent constants with the
dimensions of length to the power (2l+1). From Eqs.
(5.4), (5.10), (5.11), and (5.12) it can be seen that as

cg approaches co„ the leading", terms of aN(»(q, co) and
as&"'(q, u&) correspond to l= 0 and are proportional to k,.
The quantities dN(q, ~ ) and ds(q, &o,), on the other hand,
are given by infinite series of finite terms, i.e.,

derivatives are given by

Pl(1 2q'—/k, ') = (—1)'(2l)!(l!) '(q'/k. ')'
P, (1—2q2/k, ') = (—1)' '(2l—1)! (5.11)

&&3(l—1)!]'(q'/k')' '

(m+Ii)(m'+E ') (2l)!$(l+1)6(~&"&+16!("&]
dN&"&(q, (o,)= Z(—1)'

2E~m' (l!)'

(m+& )q' (2l)!
P(—1) tg ( & —g ( &]q (5 13 )

2E,nP l l!(l—1)!

ds("& (q,~.)=—1 (2l)!$(i+1)A~(»+ll&, &»]
Z(—1)'

2m' ~ (l!)'

(p( 1) pL(+(» —5! &"&]q2(! i& (5 13b)
q'

q (2l)!

2m') l l!(l—1)!

fis'"'(k )=f~'"'(k.)—f~("'(k.)
~lN'"'= (1+1)&~~'+l&l ~',

(X) g (X) g () )

(5.14b)

(5.14c)

(5.14d)

The real and imaginary parts of the amplitudes fl+(»,
f(N "', and fis'"& are denoted by lower-case d's and a' s
with the proper subscripts and superscripts.

If use is made of Eqs. (5.1) and (5.4) the dispersion
relations may be written in terms of center-of-mass
quantities. Equations (5.10) may then be used to
expand the scattering amplitude in terms of partial
waves. Application of this procedure to Eq. (I) yields
a rather lengthy equation; to simplify this equation
we express some quantities in terms of the q-system
energies ~ and co', which are related to the center-of-
mass variables by the equations u= E.W&» ' E„and—
(O'=E, 'W, 'E,—'—E,. In terms of partial waves, Eq. (I)

In order to simplify the writing of the equations, we
de6ne partial nonspin-Aip and spin-Rip amplitudes by
the equations

flN'"'(k. )= (l+1)fi '"'(k.)+lfl &"'(k,), (5.14a)

may be written

g d, N(i 3& (k,)P((cost&,)
t,

2q'(E ' E')—
g dls('3& (k,)P!(costt,)

k, (E,'+mE, )

Eq(m+E, )m
(1,3&(q ~ )

(E,'+mE, )W,

2E,,(m+E,)
GP co~

(E, +mE, )

[
W."

XP due '

I E,E,'W, ((a"—oP) (co"—a) ')

E,'+mE, '
X Q alN" '&(k, ')Pi(cos!&,')

E,(m+E.')
2q'(E, '—E,")

Z als("& (k,')Pl(cost&, ')
k,"E,(m+E, ') l

21'N ' '
(q)M(, (GP —Ql,2) Eg(m+E,)m

((a(,
'—a).') (a)P —(v') (E,'+mE.)W,
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where the scattering angles 8, and 8,' are determined
by the momentum transfer and the respective center-
of-mass momenta, k, and k,', by Eq. (5.1b). The
functions d~&"'(q,~,) are given in terms of partial wave
amplitudes by Eq. (5.13a).

Equations similar to Eq. (5.15) result from appli-
cation of the above procedure to the dispersion relations,
Eqs. (II)—(IV).

The procedure outlined above is not rigorous for all
values of q. Symanzik' has pointed out that if the
momentum transfer is large enough so that q'&up, the
Legendre polynomial method of analytic continuation
is not justified. In this case the q-system threshold
energy co, is negative, and the energy region co, &co &—co,

is anomalous because the causal amplitude and the
Feynman amplitude are not identical in this region.
The scattering amplitude has a branch point at the
positive energy —or . At real energies below this branch
point, the causal amplitude is determined by analytic
continuation above the real axis, while the Feynman
amplitude is determined by continuation below the
real axis. This energy region is discussed in Sec. 4,
where it is shown that, for ~&—co, only part of the
absorptive amplitude should be considered in analyzing
Eqs. (I)—(IV). If the center-of-mass energy a&, is held
fixed, this branch point becomes a branch point in the
q'-plane at the value q'= ~s(my+co, E,+k,'). Thus, the
Legendre polynomial expansion of the absorptive am-
plitudes appearing in the co, integrals is not justified
for q') s (my+~, 'E,'+k,").If a&,'=y, , the branch point
occurs at q'=mp, , which implies that the expansions of
Eqs. (5.13) are not justified, and may not converge,
when q2) tpsp, .

A further difhculty arises because of the pole in the
scattering amplitude at the q-system energy co&. If
the center-of-mass energy is held fixed, this corresponds
to a pole in the q'-plane at the point

q'=-', (E,oo.+k.s—-,'ys).

It is not clear whether or not the expansions of BR,~
and BR,8 are justi6ed for q' larger than this value. If
q = s'(mp —~~p')&e, where e is a small positive number,
the pole at the q-system energy ~, of the factor
(co'—&o ') ', and the pole at ~o of the scattering am-
plitude are close together. In this case the residue of
the pole at aro contains the large factor (coos—&a,') ', as
seen from Eqs. (I)—(IV). It appears that the quantities
d~(q, M,) and ds(q, &o,), which represent the residues of
the poles at co, may also be large, and the expansions of
Eqs. (5.13) may not converge when q') —', (mp, ——,'p'). It
should be noted that if alternate dispersion relations
were derived from the contour integral of Eq. (4.5), the
troublesome factors (coos—cv,') and d~, s(q, co~) would not
appear.

The nonrigorous nature of the present procedure for
too large values of q' may be seen most clearly from the
following considerations. The partial-wave analysis is
made by expanding the various quantities of the dis-

persion relations in powers of q'=-', k,s(1—cos8,). In
Sec. 7 it is shown that, in such an expansion, some of
the quantities which refer to the anomalous energy
region or & ~&e,

~

have radii of convergence of q =my or
C'= k(~~—s~')

If the energy is low enough the above arguments do
not apply, since we have q'&k, ' for scattering at any
angle. In this case the quantities d&N(k, ) of an equation
of the type of Eq. (5.15) may be separated by multi-

plying the equation by the Legendre polynomials and
integrating over all angles. For energies such that
k,'&mp, one may still derive diGerent dispersion rela-
tions by taking various derivatives of the quantities
with respect to q' or cos8„and evaluating in the forward
direction. "The various dispersive amplitudes occurring
in these equations may be separated only if it is a valid
approximation to consider only a finite number of
angular momenta. It is hoped that future research will
clarify these points concerning the validity of various
dispersion relations.

6. HEAVY-NUCLEON EQUATIONS

Since the analysis of equations of the type of Kq.
(5.15) is long and complicated, we 6rst discuss the
simpler case in which the nucleon mass is considered to
be large compared with the other energies involved. If
the quantities of Eq. (5.15) are expanded in powers of
m ', and terms of order higher than the first neglected,
the nonspin-Qip and spin-Rip amplitudes are no longer
mixed, and the coeQicients in the equation are sim-
plified. An equivalent method of obtaining this "heavy-
nucleon limit" is to use Eqs. (5.5) and (5.6) in",trans-
forming the dispersion relations to the center-of-mass
system. If, for convenience, both energy and momentum
variables are used, the "heavy nucleon" limit of Eq.
(5.15) may be written in the form

Q d)~" +(k,)P)(cos8,)
lM

2k' t cog kdg ((dan Mg) (cogQ)g +p )

k,'s((g,"—(g,s) ~,'((g,+(g,')

q'(~' ~.) (~ ~') (2~'—+~.+~—)-
+ Rom""(k ')~,'((g,'+~,) ((g,+p) ((g,'+p) i=o

21'~ &' s~ (q) (q'+-', ps) k,s
)&Ei(cos8.')+ . (6.1)

fÃIJ 07@

The dispersion equations would be more useful if the
various partial-wave amplitudes were separated as much
as possible. If Eq. (6.1) is valid for all values of q' in
the range 0&q&k„a particular d&N"'(k, ) may be

' A procedure similar to this has been used by R. Oehme, Phys.
Rev. 100, 1503 (1955); Phys. Rev. 102, 1174 (1956).
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The quantities n&, &', 3 &, &', and g&' are given by the
integrals

(2l'+1)! t' (1—sy '
~&, i'(k.)=(—1)', , „' «P~(z)I

2(l'!)' & ~ & 2 )
(6.3a)

A(, ) '(k„k.') =
2l'+1

dzP((z)Pg (s')
2 —1

g M ~c &c 2~c +44+
X &

( . )(~ )(
6.3b

mo, '(co,'+(o.) (co.+p) (a.'+y)

separated from the dpN&"&(k, .) corresponding to other
angular momenta by multiplying the equation by
~zPg(cos8, ) and integrating with respect to cos8, between
the limits —1 and 1.

In carrying out this procedure it is helpful to think
of cos8„.=1—2(q'/k, 2) and k, as the independent vari-
ables and to express q and cosg, ' in terms of k,', k„and
coso, . If cosg, and cos8,' are denoted by s and s', s' is
given as a function of s, k„and k.' by the equation,

z'= 1—(k,/k. ')'+ (k /k, ')'z. (6.2)

The equation for the amplitude d~No "(k,), which
results from the above procedure, is

dlN ' (kc) f &c IJ ) ~ ~vN—
I

1— ~P n(, ('(k,) k,"'
2l+1 0 m ) ~=o 2P+1

2k,2
t
" (u.'d(u, '

(a&.
' —(u,) ((o~,'+p2)

k, '(~ 2—(v,2) nues, '((v, +&a.')

a( No '&(k, ') f'k.2

XP A, , '(k.,k.'), + ~ '(k.) (I')
~ -0 2P+1 eau 2

It may be seen by inspection that the functions
de6ned by Eqs. (6.3) satisfy certain "selection rules, "
i.e., e~, ~' vanishes if /'&/, 22,, ~' vanishes if l'&/ —1,
and q~' vanishes if /&2. If terms of order nz

—' are
neglected, A~ ~ and n~, ~ vanish if /'&/. It is shown in
Sec. 7 that, if higher orders in m ' than the 6rst are
included, the functions that correspond to n ~, ~', 2 ~, ~ ',
and p&' do not satisfy such rigorous selection rules. In
Appendix 8 the integrals in Eqs. (6.3) are evaluated for
the smallest values of

~

l' —l~ and l.
An equation similar to Eq. (I') may be derived for

the spin-flip amplitudes, f~z"".The derivation involves
using Eqs. (5.5) and (5.6) to transform Eq. (II) to the
center-of-mass system, and expanding in partial waves
by means of Eqs. (5.10b), (5.14b), and (5.14d). The
quantities d~q&' " corresponding to different values of /

may be separated by making use of the following ortho-
gonality relation for the functions P~(z)=dPq(z)/dz:

1

—,'(2l+1) " d (1—')LdP ()/d jkdP ()/d j
=l(1+1)5g, & .

The resulting dispersion relation for f~s "'(k,), correct
to erst order in m ', is

roc f kc)3 (k ) ~
1+

~
P,II(k )g, (,3)k 2 '

p 4 mo„) &'=~

2' pk
P

k,"(o),"—(o,.2)

(&c &c ) (p +&a +2~wc )
)& 1+ Q A i, i"(k„k,')

WSMg(G7„+My )

~1 2/2-2

g, r(k,) =-,' dzPg(z) 1+
—1 p

(6.3c)
4f'k, ' (o,2+p'

X .""(k.') — 1+ ~ "(k.), (»')
P Cgc — cm4

where q' is equal to —,'k,2(1—z) and the quantity z' of
Eq. (6.3b) is given by Eq. (6.2).

where l and /' are both greater than zero. The functions
ag, p'r (k,), A g, g r'(k„k, '), and g Pr (k,) are given by

(2l' —1)!(2l+1) I' (1—z'q dP~ ~1—zq '—' g'(~, —p)
~. ~ "(k )= (-1)"" 1+

L(P—1)g'l(1+1)J, i 2 ) dz 0 2 ) mar, p,

(6.4a)

2l+1 dP &(z) dP& (z') q'(co, co.') Q'+ @ (co.+—~.')+ (3(a.'+2or.)cu.j
A i ("(k„k,') = i dz(1+z)(1 —z') 1+,(6.4b)

2l(l+1) ds mes, (&v,+a),') (sr, +y) (cv,'+p)

2l+1 t' !'1—z'i dP&(z) q'(2(o, '+(o,@+p')
ni" (k.)= dz~ I 1+

2l(l+1) & g 0 2 ) dz
(6.4c)

From Eqs. (6.4) it may be seen that n&, p" and A &, &

rr satisfy the same angular momentum selection rules as
are satisfied by A &, &'. The quantity p&", on the other hand, behaves differently from p&', for p&" vanishes when
1)2, and, if terms of order 1/m are neglected, qP vanishes when l& 1.

The partial scattering amplitudes fgN"' and fez&2', which represent the difference between the corresponding
partial amplitudes for z. +p scattering and s. +p scattering, satisfy equations. similar to Eqs. (I') and (II').
The equations for f&N~'&, and f&z&'& may be derived from Eqs. (III) and (IV) by following the same procedure as
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used for the cases X= 1, 3. The resulting equations are

d EN"'(k.) ~. I (~. I )—- ~i x"'
——1+ Q n(, p'"(k.) kP'

2/+1 p m&o, v-0 2P+1

Mc2COckc
I'

k,"(&0,
"—co,')

(~ ~.'+~') (~.—~.')
1+

fmoc((ac+ore )

and

CO a) ~"&(k.') 2f'kg ( y,
'

)&QAg, p"'(k k ') + —
i

1+-- — iqi'"(k ), (III')
2/'+1 p'&d ' 4 mes 'i

QO 2k,' ~" (o,'do), '
dgs&'&(k, )—Q n(p'v, (k,)A(s&'&kg'= P

tsar)c ((ac+Me )

2f'k 4

Xg A, , »(k k, ')~t, &»(k ') — ~,»(k ). (IV')
~g &c

The functions n~, ~
"r'v, A q, ~

'~"v, g P" rv are similar to the corresponding functions of the case cq ——1 (X= 1 or 3).
They are de6ned by the integrals:

(2/'+ 1)! !' t 1—s) ' q'(~. I)—«, ,rzi(k ) ( 1)~ dsP&(s)
~

2(P!)2 & x 0 2 ) m&o,p
(6.5a)

A g, ('"(k„k,') =
2/'+1 q'(a), —co,') Q'+ @ (co,+(v, ') + (3a),'+2&0.)co,]-

dsPi(s)Pi (s') 1+
—1 ma&, (&d,+co,') ((a,+p) (a&,'+p)

(6.5b)

and

2q'q
- q'(2(o.2+(u,p+p')-

q&"'(k,)=-', ChPi(s)l 1+ i 1+
p 18p&dg (COg+p)

(2/' —1)!(2/+1) t' (1—s'q dP& (1—sy ' '
' (k,) =(—1)'"'

L(/' —1)!]'/(/+1) & & E 2 ) ds E 2

(6.5c)

(6.6a)

2/+1 dP)(s) dPg (s') q'(M, —&d,') (co,
' —p) (2M.'+co.+p)

A ), ( v(k„k, ') =. ~l ds(1+5) (1—s') 1+,(6.6b)
2/(/+1) ~ ds ds' cue, '(~,'+~,) (&d.+p) (a.'+II)

(2/+1) !' p1 —s'y dP~(s) ( 2q'y
n&

2/(/+1) ~ g ( 2 ) ds & p')
(6.6c)

The values of the angular integrals of Eqs. (6.3)
through (6.6) corresponding to small values of ~/

—/'~

and l are given in Appendix B.
Equations (I') through (IV') represent the "heavy-

nucleon limit" to the dispersion relations for pion-
nucleon scattering, analyzed in terms of orbital angular
momentum and spin dependence. If Eqs. (5.14) are
used, these dispersion relations may be expressed in
terms of the amplitudes f&~&»=d&~'"'+ia~~'"', which
correspond to orbital angular .momentum l and total
angular momentum l% —,'. The absorptive part of these
equations cannot be expressed in terms of the total
cross section, as can be done for the forward scattering
dispersion relations. However, the imaginary parts
ag~&"'(k.) of the amplitudes f~~&"& (k,) may be expressed

in terms of partial cross sections by the equations

(/+1)a~&»(k, )= (k./4 )~~&»(k,),
/a &"'(k.)= (k./4') $/&"'(k,).

(6.7)

The symbols o-&+&"& represent partial cross sections for
waves of orbital angular momentum l and total angular
momentum l&—,'; they are total cross sections in the
sense that they include both elastic and inelastic
processes. The partial cross sections 0.~~&" and 0 j~&')

are dehned in terms of the corresponding quantities
for m++p scattering and ~ +p scattering by the
equations

«+"'= 23«+(~++P)+«+(~ +P)]
«+"'=2(«+(~++p) —«+(~ +P)].
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If terms of order m —' are neglected, the dispersion
relations express the real parts d&~(") (k,) of the partial-
wave amplitudes in terms of the partial-wave cross
sections corresponding to angular momenta equal to or
greater than /, since, in this approximation, the functions
A 1, 1 of Eqs. (I')—(IV') vanish if l'(l. If terms of order
m—' are included, on the other hand, the partial cross
sections 0-~~&"' may contribute to the equations for
d~+("' if l' & l—1. The generalization of this rule when
terms of higher order are included is discussed in Sec. 7.
Only the energy and momentum variables of Eqs.
(I')—(IV') have been expanded in powers of m ', since
the m dependence of the absorptive amplitudes depends
on the nature of the meson theory used. In most simple
meson theories, though, the partial cross sections
0-&+(~) generally are smaller than o-& +("' by a factor of
order (k.3/m')' '. This relationship applies to pseudo-
scalar meson theory with pseudoscalar coupling, pro-
vided both / and l' are greater than zero. Hence, if a
simple meson theory is used to expand the partial
cross sections in powers of m ', and only the lowest
order term is retained, approximate dispersion relations
may be written which, in many cases involve only one
angular momentum. However, if the experimentally
measured partial cross sections &T(~(") and 0 1.~(") (where
l') l), are of the same order of magnitude in a particular
energy region, both partial cross sections should be
included in the dispersion relations for d~+( ', of course.

It should be noted that if the sums over angular
momenta are cut oG at some finite number, all quan-
tities appearing in Eqs. (I')—(IV') are finite even at
energies such that k.'&nsp, . The energy range in which
these "heavy nucleon" equations are approximately
accurate is not known at present.

If the scattering amplitude is sufFiciently convergent
at high energies, dispersion relations of type 8 may be
derived from the contour integral of Eq. (4.5). The
partial-wave analysis of these relations leads to equa-
tions that are simpler than Eqs. (I')-(IV') in that they
do not involve the threshold constants hg~'"' and

())

The partial-wave dispersion relations are most useful
at low energies, where few angular momenta are
important. Since only S and P waves seem to be im-

portant for low-energy pion-nucleon scattering, we

study the form of the dispersion relations in the ap-

proximation that angular momenta of two or more
units are neglected. Charge independence is assumed,
so that the amplitudes f3+(1), fi &"), and f1+'"& may be
expressed in terms of scattering amplitudes for total
isotopic spins —,

' and 33 by equations similar to Eq. (3.5).
At low energies elastic scattering is the dominant reac-
tion process, so we neglect inelastic processes. In this
approximation the scattering phase shifts are real 'and,

if the spin and isotopic spin values of these phase shifts
is denoted in the conventional manner, the relevant
absorptive amplitudes are given by the equations

kcu()&(((') = kcg())1 (3) = k u "3) = -,'(2 sin'h3+sin'(1 )

k,gi~(1 3&=k,L2g(p&")+ui ('3)j
= 3 (4 sin3&&33+2 sin'831

+2 sin'&&13+ sin3&&11),

(1,3) k Lg (1,3) g (1,3))
= —', (2 sin'()33 —2 sin'b31+

+sin'&)13 —sin'&&11), (6.8)

kcg())((&"=k,g(&+")= —,
' (sin'&&3 —sin'(&1)

&

k,uiN &"=kcL2giy"'+gi "'g
= —', (2 sin'l)33+sin'&&31

—2 sin'813 —sin'&&11),

k,gis&'& = k, [gi+ "&—ui (')]
= —', (sin'&) 33

—sin'(&31 —sin'(i (3+sin%11) ~

Formulas for the corresponding dispersive amplitudes
may be obtained from the above equations by replacing
the functions sin'(1; by -,'sin(2I&;), i.e.,

k d()N(1 3) =kcd()+" '& = 31(2 sin2()3+sin2()1), (6.9)

and so forth.
If the above equations are used to express the scat-

tering amplitudes in terms of phase shifts, and the
values of the functions A ~, g, o. ~, ~ r, and q&

corresponding to angular momenta of 0 and 1 are taken
from Appendix 3, six equations for the six 5 and P
phase shifts may be obtained from Eqs. (I')—(IV').
Since this procedure is straightforward, we do not list
the six equations here, but list instead the corresponding

type 8 equations which follow from the contour in-
tegral of Eq. (4.5). These equations are given below,
expressed in terms of the quantities of Eqs. (6.8) and

(6 9) -'

2k, (." dk, ' ((d,
'—&c,) (4cc,"+(c,3+6')~,'+&13)

~, (k,"—k, ) 2m'&, '((d, '+(v,)

6m(0, '(~, '+&c,)3

2k, t
"dk,' (12&cc"+6)t33+18cv~c')(&cc"—&cc3) k,'(3k,"—4k. ')

+ P 1+ + k, 'gi)1 &'& (k,')
~g 68koc ((vc +&cc)—

f'&13k, k 3 4k.'
1+2 +; (6.10)

mo) '
p,
' 3p, 4
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k,d$$$"&(k,)=2k,'
P,

k."(k,"—k.$) 25$M (M„+$|&)
3 09 2 'k, '

k '&$ &'&(k ')+
$r$N ~ p &t&g (Mg +G)g)

(6.11)
SIP

(&0g (dg) (3COg +2&0' +6Mg&og +JI$ )
1+ k, 'a$$$ &'& (k,')

kd "'(k)=
2~,k,$ ~" k,$(co,'—(o,) 2f'k, ' (

~ p &0,'k,"(k,"—k $) 2m', (&0.'+(a,) $$'(a, 4 2$$$(o,)
(6.12)

2GDckc
kgo~&$& (k.) = P

&
&&

(o.'(k„."—k.$)

((dg Ng) (3Mp+2MpMg &&$ )1+ k, '&$0'&'& (k ')
2$$$(o, ((o,+&0,')

2(o,k, t
" dk, ' 6(a).$+(o~ ') ((u "—(u $)+k,$(3k $—2k,')

P 1+ k, '&$$$$&'& (k.')
~ 0 o),'k," 6$$$&og(cog+(dg )

2f$,k, i ' ( 5k,' 4k, '~-
] 1+ + I; (6.»)

$$' $$$&0.$ & 2 p,
' 3 p,4 ~

2',k,'
k,d &$&'&(k,) = P

,'k."(k,"—k,$)

(cu,
' —&0,) (3',$+2(o.(u,

' —$$')
1+ k, '&$$$$&'& (k ')

2$$$or, ((o,+co,')

k,' t" dk, ' 2 'k, ' $$$—2s& $

+ P p '&$0x&$&(k ')j+ 1+
~&0 &Oc (Mc +&.c) $$ ~c - 2$$$~e

(6.14)

2k, ' dk, '
k dg$&$&(k,) = P

$r ~ o k,"(k,."—k $) 2$$$&t&c (roc+(uc )

(M „.
'—co.) (2(o,"+s),$+4o),(u, '+$$') f'k, '

1+ k, '&$&s "&(k,')+
5$p

(6.15)

If Eqs. (6.8) and (6.9) are used to express the dispersive
and absorptive amplitudes in terms of the phase shifts,
the above equations represent six simultaneous non-
linear integral equations for the six phase shifts, b~, 83,
'5] $ 5]3 63~, and 533~ Although there is not a unique
solution to these equations, '7 they may be useful in
analyzing the low-energy pion-nucleon scattering data.

Equations (6.10) through (6.15) become particularly
simple if terms of order m ' are neglected. In such a
limit Eqs. (6.11), (6.12), (6.14), and (6.15) involve
only P-wave amplitudes; these equations have pre-
viously been derived by Low~ and Oehme, ' '9 and are
known as Low's equations for P-wave scattering. To
zero order in $$$ ', Eqs. (6.10) and (6.13) involve both
S and P waves. Equations which involve only S waves
may be derived, however, if use is made of the following
facts. If the scattering amplitude converges rapidly
enough at high energies so that Eqs. (6.10) and (6.13)
are valid, dispersion relations of type A are also valid;
in particular the forward angle equations of Gold-
berger, ' which are of type A, are valid. It may be shown
that in the low-energy approximation used here, (neglect
of inelastic processes and orbital angular momenta

'~These equations are of the same type as those derived by
Low in reference 7. The multiplicity of the solutions to Low's
equations has been discussed by Castillejo, Dalitz, and Dyson,
Phys. Rev. 101, 453 (j.956).

'8 Reinhard Oehme, Phys. Rev. 100, 1503 (1955).
' Reinhard Oehme, Phys. Rev, 102, 1174 {1956).

greater than one) these forward-angle equations may be
combined linearly with Eqs. (6.11) and (6.14) to give
equations which, to zero order in m ', involve only S
waves and are identical with S-wave equations derived
by Oehme. "

The fact that the S and P amplitudes satisfy separate
dispersion relations to zero order in m ' does not mean
that these amplitudes are independent to this order.
Equations (6.10) and (6.13) express relations between
the S and P amplitudes that must be satisfj. ed if the
assumptions made in this section are correct. The
solutions of the S- and P-wave dispersion relations are
not unique'$; Eqs. (6.10) and (6.13) may be considered
as additional conditions on these solutions.

Important examples of low-energy dispersion rela-
tions, which illustrate the interdependence of orbital
angular momenta zero and one, may be obtained if
Eqs. (6.10) and (6.13) are divided by k„and k, is set
equal to zero. The resulting equations express the scat-
tering lengths for isotopic spins —', and 2 in terms of
energy integrals of S- and P-wave phase shifts. Refer-
ence to the experimental data shows that the P-wave
contributions to these equations are quite important.

The fact that the low-energy dispersion equations,
Eqs. (6.10)—(6.15), are integral equations for the phase
shifts results from the neglect of inelastic processes. The
situation would be quite diferent if the methods of the
present paper were applied to the problem of the scat-
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tering from nucleons of gamma rays of energies in the
range 50 Mev to 300 Mev. Because of the dominance of
the meson-production cross section, which results when
gamma rays of sufhcient energy are used to bombard
nucleons, it is an excellent approximation to neglect the
elastic-scattering contribution to the cross sections
which appear in the absorption integrals of the dis-
persion relations. Gell-Mann, Goldberger, and Thirring'
have used the forward-direction dispersion relation to
determine approximately the energy behavior of the
coherent amplitude for forward photon-proton scat-
tering from the experimental data on the energy de-
pendence of the total cross section for photopion pro-
duction from protons. The method of this paper could
be used to determine the general nature of the angular
dependence of the elastic-scattering amplitude, at
various energies, from experimental data on the angular
dependence of the photoproduction cross sections.

'7. DISPERSION EQUATIONS AT ENERGIES
COMPARABLE TO THE NUCLEON MASS

If terms of order higher than the first in an expansion
in powers of m ' are included, the nonspin-Rip and
spin-Rip amplitudes are mixed by the transformation to
the center-of-mass system, and the equations for the
partial-wave amplitudes are quite complicated. Perhaps
the most useful procedure, in this case, is to combine
linearly Eqs. (I) and (II) or Eqs. (III) and (IV) in
such a way that the center-of-mass dispersive ampli-

tudes, d,&i ~"&(k,) and d, s&"&(k,), do not appear in the
same dispersion equation after the transformation to
center-of-mass quantities has been made. This pro-
cedure results in extremely lengthy equations; therefore
we follow the alternate procedure of analyzing the first
dispersion relation, Eq. (I), in terms of partial-wave
amplitudes. The eGect of the inclusion of higher order
terms in m ' is then studied.

Equation (5.15) represents the expansion of Eq. (I)
into partial waves, correct to all orders of m '. The
functions dg~(' " corresponding to diR'erent values of 1

may be separated by the same method as used in Sec. 6,
multiplication by the set of Legendre polynomials and
integration over the scattering angle. The angular
integrals are complicated because the functions q', co,

and co' all depend on the center-of-mass scattering angle
e„as well as on k, or k,'. Because of the dependence on
0, of the q'-system energies co and ~', it is useful to
define two functions v and v', which are independent of
cos0„by the equations

v= m '(k.2+E,(o,),
v'= m '(k,"+E.'u). ').

Since q'=0 corresponds to cos0, =1, it may be seen
from these equations and Eq. (5.1a) that when cosg, = 1,
the q-system energies ~ and co' are equal to v and v'. If
Eq. (5.15) is multiplied by -,'Pi(cost&, ) and integrated
over cose, between the limits 1 and —1, the result may
be written

di»&o "(k,) k ' (nz+u) 6i ~o '& k '
+ Z vi, viva""(k.)—~ IZ ~i, i (k.) + !Bi,p(k.)~—ps"" k."

2l+1 n&(m+E, ) i' ( W, ) i' 2P+1 tp&2

(v' lJ.')P) ' —d(v, '—
er

P ug~&"&(k ')
P A, , (k„k.')

mW, E,' (v"—&i') (r "—v') i' 2l'+1

2f'(p'/2') (v' —p') n&:+ Bi, v (k.,k.')a is-" I& (k.') +»i(k.) (I")
tm(nz+E, ') $(p'/2m)' —&i'$t (&ti2/2m)' —v2$ W,

dP& (s) !t'1—s') ni(m+E, )
&i. i (k )= s ~ «Pi(k)

dk ( 2 ) Eq'+n&E
(7.1a)

The coeKcients yi, i, ng, p, Pi, p, A i i., Bg, p, and»i are defined in terms of complicated angular integrals. The
writing of these integrals is simpli6ed by defining s= cos8„s =cos8, , and by expressing some quantities in terms
of the functions q'= —', k,2(1—k), &u=E,W.E, '—E„and cu'= E,'W, 'E, '—E,. The coeflicients of Eq. (I") are given
by

(n&2+ E 2)E (ni+E,)
~i, i (k.)=(—1)', i! «Pi(s)(

2 (l'!)' ~ i ( 2 ) 2nlE, (E,'+n&E,)
(7.1b)

(2p —1)! r i p1 —ky &+i n&(n&+E )
P&, p(k, )= (—1)' i «Pi(k)

i2L(l' —1)&1' ~ i 0 2 ) E '+tnE
(7.1c)

2l'+1 E,(m+E, )n& ( ' ~.')(u'(v" v') (v" p') (E,'ym—E,') ——
A &, i.(k„k,') = i P&(k)Pi(k')«, (7.1d)J, (E '+n&E )E (v' —&i') v'(a" —oP) ((u"—ar ')E (m+E ')
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dpi (s') (1—s") E (m+8,)m' (idm —(o.')(u'(i" —~')(v"—iii')

ds' E 2 I (Z +mZ )E (p —p') p'((o' —(o')((u' —(o )
(7.1e)

I'~o»&(gi, -(~2—(g 2){(p2/2')2 —Jii2} {(pm/2y$)2 —p2}jv (~+.jv )-
gi(k,) =-',

~
dsZi(s)

f2(~9/2yg) (v2 p2) (~~2 ~ '2) (~b2 ~2) (g 2+~+ )
(7.1f)

If the function 0', (k„k,',q') is expanded in powers of q',
it is found that the coefficient of (q')" is of order e or
higher in the quantity (1/m). Therefore, if Ai, i is
expanded in powers of (1/m), i.e.,

Ai, p ——P;Ai, p'(1/m)',

then we have

A i, i '(k„k,') =0 if /'&l i—
The functions nii, Pi, i, , yi, i, Bi, i, and qi may be
expanded in similar series, i.e., ni, i

——P; ai, i 'm ', etc.
It may be seen that the coeKcients of these series satisfy
the following angular momentum selection rules:

0) ).'——0 if P&l—i, (7.2)

Pi, p', yi, p', and Bi, p'=0 if 2 &3—i—1, (7.3)

q'= 0 if /) 2+i.
Equations similar to Eq. (I") may be derived from
Eqs. (II)—(IV). The coeKcients in (1/nz) expansions
of the functions occurring in these equations that are
analogous to the functions A &, & and n&, & satisfy the
rule2' Eq. (7.2). On the other hand the coefficients
analogous to pi, p', yi, p', and Bi, p', which represent the
mixing of* the spin-independent and spin-dependent
amplitudes, satisfy the rule 2' Eq. (7.3). Thus, if the
partial-wave dispersion equations are expanded in
powers of nz ' and terms of order higher than e are
neglected, the dispersive amplitude di, ii i"& (k,) depends
on ai iiiiii Lor oi ~&"&j and xiii&"& only if /'&l —n.

' Some of these functions, such as the coe%cients y~, ~ ', o.~, g
'

and P &, &
' in the expansion of Eqs. (7.ia)—(7.1c), satisfy more strict

selection rules, but Eqs. (7.2) and (7.3) are the general rules.

If the quantities of Eq. (I") are expanded in powers
of (1/m) and only the zero-order and first-order terms
retained, the spin-dependent terms vanish and the
equation reduces to Eq. (I'). To this order the functions
0, &, &, A &, &, and q& are equal to the functions 0.«', P «.~,

and qii defined in Eqs. (6.3).
In order to investigate the nature of the angular

momentum selection rules that apply when terms of
higher order in (1/m) are retained, we assume that the
energy is low enough so that the integrands of Eqs.
(7.1) may be expanded in powers of q'=-', k,'(1—s). To
illustrate this expansion we choose Ai i (k„k,') as a
representative example, and write this coeKcient in the
form

1

A i, p(k„k, ') =-', (2l'+1) Pi(s)Pi (s')dsO', (k„k,',q').
—1

Furthermore, diz(k. ) depends on ai s and 6i s only
if N)2 and l )l—v+1. Similar relations hold if the
roles of the spin-dependent and spin-independent
amplitudes are exchanged.

The above conclusions are based on the assumption
that the momentum transfer is small enough that the
quantities occurring in the angular integrals may be
expanded in powers of nz '. If k, &m, so that q&nz, it
may be shown that most of the quantities occurring in
the angular integrals may be expanded in convergent
series in powers of (q'/cd, m) and (q'/m'). Some functions
occur in the angular integrals which have smaller radii
of convergence, however. Two examples of such func-
tions are (a&"—co ') ' and (coi,

'—cv ') '. The first has a
radius of convergence of q'= 2 (mlj+k, "+E,'co.'), which,
in the limit as co,

' —+ p, , becomes q'=mp, . The factor
(~i,'—id, ') has a radius of convergence of q' = -,'(mp —siiii').

At energies such that k,')-', (mii —i2p'), the integrand of
Eq. (7.1f) is infinite at the point s=1—. k, '(mp —~p,').
Therefore, at these energies, one cannot use the analysis
of this section. One may use the alternative procedure
of taking successive derivatives with respect to q' of
equations of the type of Eq. (5.15) and evaluating in
the forward direction, or one may use the heavy-nucleon
equations of Sec. 6, consider only a finite number of
angular momenta, and hope that the resulting equations
are accurate even at energies such that k,')-', (mp —-,'p').

8. CONCLUSIONS

The principle of causality is used in a derivation of
dispersion relations for pion-nucleon scattering in the
case of finite momentum transfer between the particles.
If the relations are analyzed into partial waves, the
resulting equations express the real parts of the scat-
tering amplitudes corresponding to diferent values of
the orbital and total angular momenta in terms of
energy integrals of either the various partial cross
sections or the imaginary parts of the various ampli-
tudes. In general, the real part of a particular amplitude
is dependent on the partial-wave cross sections corre-
sponding to both spin-dependent and spin-independent
scattering, and also to all values of the orbital angular
momentum.

If the various functions of the particle momenta and
energies are expanded in powers of (1/m), where m is
the nucleon mass, the dispersion relations are simplifmd.
The spin-dependent and spin-independent amplitudes
do ot occur in the same equation if terms of higher
order than (1/m) are neglected. If terms of order higher
than (1/m)" are neglected, the real part of one of the
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amplitudes corresponding to angular momentum / can
depend on partial cross sections of angular momentum
l' only if 1'&l—e.

The derivation of the dispersion relations depends on
certain assumptions concerning the rate of convergence
of the scattering amplitude at high energies, and the
rate of convergence of an expansion of the amplitude in
terms of partial waves. Comparison of the results
derived here with experimental data will provide a
partial test of these assumptions. The fact that the
forward-scattering dispersion relation is consistent with
the low-energy experimental data" may be evidence
that the assumptions made here are justified.

The method used here may be generalized to other
boson-fermion scattering problems. It is likely that
useful results could be obtained from an application to
the scattering of gamma rays from nucleons.

where the projection operator A+ is defined by the
equation

A+(p) = (m —yp)/2m. (A4)

Ii =u (p', n') u(p, n),

I,=u(p', n') (pQ/m)u(p, n),
(AS)

where y represents the four Dirac gamma matrices and
the four-vector Q is defined in terms of the four-
mornenta of the initial and final pions by the equation

Q=-,'(0+k'). (A6)

The scattering amplitude may be expressed as a
linear combination of two Lorentz-invariant scalar
quantities. For this purpose we define the invariant
quantities,

If use is made of Eqs. (A3), the quantities Ii and Io
may be written in terms of the spinors u(0,n) and
u(0, n') and the variables of the q system, i.e.,

APPENDIX A. LORENTZ TRANSFORMATION
OF THE SCATTERING AMPLITUDE

If the scattering amplitude M expressed in terms
of four-by-four Dirac matrices, the Lorentz invariance
of the amplitude implies that the quantity u(p', a')
)&Mu(y, n) is invariant, where u(p, n) and u(p', n') are
four-component Dirac spinors which represent the
nucleon in initial and final states of positive energy,
momenta p and p' and spin directions n and n'. The
scattering amplitudes of this paper have been written
in terms of the two-by-two matrices o and 1, which
operate between the two-component spinor functions
y(rr). A nucleon is defined as having spin up (or down)
with respect to an axis in the direction of a unit vector
n, if, in its own rest system, it is an eigenfunction of
the four-by-four Dirac operator e n with eigenvalue
one (or minus one). Therefore, the scattering amplitudes
of this paper may be expressed in terms of four-by-four
spin matrices in the following manner:

I,=u(0,a') (E,/m) u(O, n),
(A7)

irr (q)&Q)
Io ——u(0,o.') ——+ u(0,n).

m 5'

The corresponding quantities, expressed in terms of
center-of-mass variables, are

q' io (k, Xk,')
Ii ——u(0,o.') 1+ + (0u,n),

m(m+8, ) 2m (m+8, )

Mc+c+~c q ( etc
I,=u(o,n')—

m' ms 0 m+Ec)
(AS)

irr (k, )&k,') (+ l
1+ I u(O, rr).

2ms ( m+Ecx(n')My(n) =u(0,n')$9Rivl+irr (q&&Q)5tsfu(0, n),
(A1)

x (n') M,x (o.)=u (O,n') LOZ, ivl

+i rr (k,xk, ')alt', slu(0, n).
Since only positive-energy states are involved, the

(A2) scattering amplitude may be written as a linear com-
bination of the quantities I& and I@,

A. (p)
u(p, rr) = u(0,n),

Lr, (1+8/m)]l

A+(p')
u(p', n') =u(0,n')

Ls (1+&'/m) 3'

(A3)

The matrices in Eqs. (A1) and (A2) maybe considered as
two-by-two matrices since the small components of the
spinors u(0, n) and u(O, rr') vanish. These spinors u(0, rr')
and u(O, n'), which represent nucleons at rest, are re-
lated to u(p, rr) and u(y', n') by

u(p', n') Mu(p, n) = gI i+qIq, (A9)

E, IEW. Ey 1
alt&= —5—l

——
lq mrs= —q. (A10)

m E E,m m ] '
m'

where $ and g are spin-independent scalar quantities.
The quantity N3EN is Lorentz-invariant; hence it refers
to the scattering amplitudes in both the q system and
the center-of-mass system. If use is made of Eqs. (A1)
and (A7), the q-system amplitudes 3R& and 5K& may be
expressed in terms of $ and i1, i.e.,

"Anderson, Davidon, and Kruse, Phys. Rev. 100, 339 (1955). In a similar fashion& Eqs. (A2) and (AS) may be com-



D I S I E H. S I 0 N R E LA T I ON 8

bined to give corresponding equations for OR.~ and OR, q,

g2

ORcN —1+
214(m+P.,)

~cEc+kc g ( chic—
] 1+

~2 E E+~)

2l'+1 q2

A I, I' '—— — dzPl(z)Pp(z')—
nz

= —1(k2/212)A. ' 'D/2 (2l+1)),
= -I (k2/212) A'-IE(l+1)h.—ll,

'—(k-2/214)A' 1$(l+2) 2&2

(ly—1) (2ly3)A

l'=l —1 7

l'=l

1 t'
ORcg &+ -I 1+

2214(211+E,) 2m2 k 224+P-, )

(A11)
+ (2l+3)l2/(21+ 1)j, P = l+1

~1 2/2 2

dzPl(z) 1+2J
p

The relation between the center-of-mass amplitudes
and the q-system amplitudes may be obtained by solving
Eqs. (A11) for the constants $ and 21, and substituting
these values in Eqs. (A10). The resulting equations are
identical with Eqs. (5.4).

= (~/~)'+ 2(k/~)'

2~2k2/~4

= (2/15) (k'/~'),

=0

l=0')
l=j,
l=2.

)

l &2.

(84)

APPENDIX B. VALUES OF VARIOUS COEFFICIENTS

In this appendix the values of the functions defined
in Eqs. (6.3)—(6.6) .are given for low values of

~

l l'~—
and l. Since all quantities refer to the center-of-mass
system, the subscript c of k, and +, is omitted. The ratio
(k,/k, ')' is denoted by A. The integrals calculated here
are denoted by such symbols as A&, &

' and 2&, &' ~'
where the second superscript denotes the order of the
integral in the parameter (1/222):

(21'+1)!
, I ~,I 0 ( 1)l'

2(P!)2

(1—z~ '
dzP 1(z) I

=1
= —(2l+1),
= (2l+1) (l+2),

(2l' —1)!(2l+ 1)
, II,l —( 1)P+1

E(l' —1) 7l(l+1)

l'=l

l'= l+1;
l' =l+2.

f1 z') dPl |—'1—z) ' ' q'

x&! «I
2 ) dz ( 2 i 412

(2l' —1)!(2l+1)
, II,O ( 1)l'+1

E(l' —1)!7l(l+1)

(1—z') dPl |'1—z) ' '
dz

2 dz(2)
(85)

= —(2l+3),

= (2l+5) (l+2),

2l'+1
A I, 1"—— dzPl(z)Pp(z')

l'= l+1;

l'= l+2.

(81) (86)= —-'(k2/212) t (l—1)/(2l —1)j, l'=l 1;—
= -', (k2/212) l,

t' k' i (2l+1)(l+1)(l+2)
, l'=l+1.

E 212) 2l+3

(2l+1)
,II,O dz(1+z) (1—z')

2l(l+1) ~ 1

dP, (z) dPp(z')
X

ds ds'

= (2l+3)A'(1 —A),

= (2l+ 5)A'(1-A)

P =l+1; (82)

XL(l+1)—(l+2)~j, l'=ly2.

)

= (2l+ 1)A.'(1 A), —
l'= l )

l'= l+1;
= (2l+1)A'(1 —A)

X)(l+1)—(l+2)Aj, l'=l+2

(8&)
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(2l+1)
,II,1

2l(l+1) & g

ds(1+s) (1—s') ( 2
dsP)(s)

~
1y

E p,'&

dPg(s) dP). (s') q'
X

t& Jz 5$

+2 Jg2

1P2/p2

l=0; (B11)

(k') (L—1 )
&m)

=0
7

I' f 2A q
dsPg(s)

~
1+

p') m
=-'(k'/m)h. ' '(AL —l+1),

(k'i A'(2L+1) (l+1)(l+2)

foal

—1

&m& 2L+3

—AL(2L+1)+L(L—1), l'=l+1.

1
2)

=0)

(2l+1) I' L'1 —s'y dP&(s)
~ II,O dsf

2l(l+1) & ( 2 2 ds

(B9)

=-'(&'/~) t:1+(4&')/(3p') 3

= ——',(k'/m) (1+28/p'),
= (1/15) (k'/m) (k'/p'),

=0

(2l+1) t' f 1—s')
~ IV,O ds(

2l(l+1) ~ i ( 2 )

dPg(s) ( 2q')
i

1+
ds E p'

1~2/p2

1/2/p2

L=O.
(B12)/=1.

t&2.

(B13)l=1.
1=2

2L+1 t' (1—s') dP((s) q'
~ II,1 dzi

2l(l+1) g ( 2 ) ds m

= —(1/12) k'/m,

=0)

1=2.
7

$&2.

=0) 3&2.

The angular momentum indices l and 1' in the in-

(B10) tegrals referring to the spin-fiip equations may assume
all positive integral values, but not zero. The angular
integrals that appear in the expression for n~, ~ ",
o. ~, ~'v, Ag, ~. I, and Ag, ~

v are identical with those in
the expressions for o.', n', A, and A".


