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It is possible, by using alternating-gradient focusing, to design circular accelerators with magnetic guide
fields which are constant in time, and which can accommodate stable orbits at all energies from injection to
output energy. Such accelerators are in some respects simpler to construct and operate, and moreover, they
show promise of greater output currents than conventional synchrotrons and synchrocyclotrons. Two im-
portant, types of magnetic field patterns are described, the radial-sector and spiral-sector patterns, the
former being easier to understand and simpler to construct, the latter resulting in a much smaller accelerator
for a given energy. A theory of orbits in fixed-field alternating-gradient accelerators has been worked out in
linear approximation, which yields approximate general relationships between machine parameters, as well
as more accurate formulas which can be used for design purposes. There are promising applications of these
principles to the design of fixed-field synchrotrons, betatrons, and high-energy cyclotrons.

INTRODUCTION

A LTERNATING —GRADIENT (AG) focusing'
provides a high degree of stability for both radial

and vertical modes of betatron oscillations in circular
particle accelerators. This stability makes possible the
construction of many kinds of circular accelerators with
magnetic guide 6elds which are constant in time, called
fixed-field alternating-gradient (hereafter FFAG) ac-
celerators. These machines contain stable equilibrium
orbits for all particles from the injection energy to the
output energy. These orbits may all be in an annular
ring, as in a synchrotron or betatron; the magnetic
6eld must then change rapidly with radius to provide
orbits for the diferent energy particles. H the guide
6eld gradient is made independent of azimuth, one of
the modes of betatron oscillation is clearly unstable.
Application of alternating-gradient focusing, however,
can keep both modes of betatron oscillation stable even
with the rapid radial change of magnetic field. Circular
particle accelerators can be classified into four groups
according to the type of guide field they use: fixed-field
constant-gradient (conventional cyclotrons, synchro-
cyclotrons, and microtrons), pulsed-field constant-
gradient (weak-focusing synchrotrons and betatrons),
pulsed-field alternating-gradient (AG synchrotrons),
and fixed-field alternating-gradient (FFAG synchro-
trons, betatrons, and cyclotrons).

Two types of FFAG design appear the most practical.
The radial-sector type' achieves AG focusing by having
the fields in the successive focusing and defocusing
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magnets vary in the same way with radius but with
alternating signs (or in certain cases alternating magni-
tudes). Since the orbit in the reverse field magnet bends
away from the center, the machine is considerably
larger than a conventional AG machine' of the same
energy having an equal-peak. magnetic field. This
serious disadvantage is largely overcome in the spiral-
sector type' in which the magnetic 6eld consists of a
radially increasing azimuthally independent field on
which is superimposed a radially increasing azimuthally
periodic field. The ridges (maxima) and troughs
(minima) of the periodic field spiral outward at a small
angle to the orbit. The radial separation between ridges
is small compared to the radial aperture. The particle,
crossing the Geld ridges at a small angle, experiences
alternating-gradient focusing. Since the 6elds need not
be reversed anywhere, the circumference of this machine
can be comparable to that of an equivalent conventional
AG machine.

FFAG synchrotrons have a number of important
advantages over conventional synchrotrons. A major
one is beam intensity. Since the magnetic 6eld is time-
independent in an FFAG synchrotron, the beam pulse
rate is determined only by the repetition rate of the
radio-frequency modulation cycle. In a conventional
synchrotron, the beam pulse rate is limited by the time
to complete the pulsed magnetic field cycle. It is
reasonable to assume that frequency-modulation repe-
tition rates can be made considerably higher than 6eld
recycli~g rates. Another reason for high beam intensity
is the large injection aperture possible in the FFAG
designs (larger for the radial sector than for the spiral
sec«r). Other advantages of the FFAG synchrotron
are engineering and maintenance simplifications. The
direct-current magnet power supply is simpler and
cheaper to construct and to maintain than a pulsed
~apply. The magnets do not have to be laminated, there
are no eddy current problems, and remanent field and
saturation difhculties are less serious than in pulsed-field

'Suggested by D. W. Kerst jKerst, Terwilliger, Jones, and
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accelerators. All 6eld trimming is time independent.
The necessity for accurate tracking of the rf accelerating
voltage with a pulsed magnetic 6eld is eliminated, with
a resulting greater freedom and ease in design of the rf
system. Injection should be possible at a lower energy
than is contemplated for a conventional synchrotron,
because of the fewer low-6eld problems and the easier
frequency-modulation program and the possibility of
large apertures at the injection radius; the complexity
of the injection system will then be decreased. Dis-
advantages of the FFAG synchrotron are the large
increase in circumference for the radial-sector type (at
least a factor of three) and the increase in complexity
of the magnetic fields, particularly for the spiral-sector
machine.

Fixed-6eld betatrons have potentially a much higher
intensity than conventional betatrons. 4 The beam can
be injected for a considerable fraction of a cycle, if extra
accelerating Qux is available, rather than the few tenths
of a microsecond presently possible. The only beam
current limitation appears to be space charge at in-
jection, and this may be decreased by such techniques
as high-voltage injection. An FFAG betatron has no
problems of tracking a pulsed guide field with the ac-
celerating fIux, and also has other engineering simpli-
fications mentioned in the synchrotron case.

Application of the FFAG. principle to a cyclotron
allows the radial dependence of the magnetic field to
be such as to keep the particle revolution rate constant,
independent of energy even in the relativistic region.
Present high-energy cyclotrons must be frequency-
modulated to compensate for the relativistic increase of
mass. A constant-frequency cyclotron should increase
the beam output by two orders of magnitude. A radial-
sector cyclotron, in which the 6eld alternates between
high and low values, was first suggested by Thomas. '
The spiral-sector design seems even more advantageous
for application to the cyclotron.

In Part I of this paper we discuss the radial- and
spiral-sector types of FFAG accelerator in detail. In
Part II the theory of particle trajectories in FFAG
machines is developed. Part III contains a description
of a 10-Bev radial-sector synchrotron, a 20-Bev spiral-
sector synchrotron, and FFAG betatrons and
cyclotrons.

I. TYPES OF FFAG DESIGN

1. Radial-Sector Type

Circular particle accelerators with radial sectors can
be built with the high-energy orbits at the outer edge
of the machine and the injection orbits at the inside

edge, or vice versa. This discussion assumes that the
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highest energy orbits are at the outside edge. (We will

refer specifically to FFAG synchrotrons, but most of
our comments will apply also to betatrons and cyclo-
trons. ) In radial-sector design the magnet structure
consists of E-identical sectors, each composed of a
focusing magnet and a defocusing magnet. The magnet
which is focusing for radial oscillations is of course
defocusing for vertical oscillations and vice versa. The
azimuthal boundaries of the magnets are on radii from
the machine center (hence the name). The magnetic
6eld direction in one magnet of a sector is opposite to
that of the other, while the radial dependence of the
field is the same in both. The field in the median plane
at any azimuth is

H (r/rp)',

where r is the distance from the machine center to the
equilibrium orbit and k is a constant for the machine.
Figure 1 shows this type of 6eld pattern. This field shape
requires that orbits for different energy particles be
similar, i.e., photographic images of each other. Ideally,
the field along a closed equilibrium orbit is constant
through each magnet, and the path is composed of arcs
of circles. This ideal orbit cannot be attained. because
of the impossibility of a sharp field boundary. However,
if we assume the ideal situation, a particularly simple
case occurs if the 6elds for a given energy orbit have the
same magnitude in the positive- and negative-field
magnets. Equilibrium orbits for this case are shown in

Fig. 2.
It is evident that particles deviating from the

equilibrium orbit experience AG focusing. The numbers
of radial and vertical betatron oscillations around the
machine, v and ~„are determined by k and the magnet
lengths. Both v and v, are constant for all energies.

It is desirable to make the negative-field magnets as
short as possible, to keep the radius of the machine
small; the minimum length of the negative-6eld magnet
is of course determined by the necessity for preserving
stability of the vertical betatron oscillations. Some
vertical focusing and radial defocusing occur because
the orbits are scalloped and do not cross the magnet
edges at right angles. In machines in which the number
of sectors is large and the effects of orbit scalloping
small, the negative-field magnet can be made no shorter
than about ~~ of the positive-6eld magnet if we wish to
preserve vertical stability. This means that, neglecting

4Terwilliger, Jones, Kerst, and Symon, Phys. Rev. 98, 1153(A}
(1955).This had been pointed out independently by G. Miyamoto,
Tokyo University, Tokyo, Japan, at a meeting of the Physical
Society of Japan in April, 1952 (private communication).' L. H. Thomas, Phys. Rev. 54, 580, 588 (1938).
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FIG. 1. Vertical section through positive or negative
radial-sector mayxets.
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FIG. 4. Radial depend-
ence of the axial magnetic
Beld in the median plane.

stability, hold v, and v, constant, but do not retain the
property of similarity of equilibrium orbits. The magnet
edges of focusing and defocusimg sectors can be made
nonradial, and the 6elds in the positive- and negative-
field magnets made different functions of radius; (the
negative-held magnet can even be designed to have zero
6eld). The magnet edges, radial or nonradial, can be
tipped in the same direction, approaching the spiral-sec-
tor design. It is conceivable, using back windings, to
transform from a spiral sector at the outside edge of
the machine, with a small circumference factor where
it is needed, to radial sector at the inside edge, with a
large vertical aperture for injection. Such a design
would have the advantages of both types with, how-
ever, a considerable increase in magnet complexity.

Another modi6cation is the spiral-sector constant-
frequency cyclotron. In this machine, the frequency of
revolution of the particles can be made independent of
energy even at relativistic energies, but the orbits in
this case do not scale, and the number of betatron
oscillations, v, and v„cannot easily be kept constant.

IL ORBIT THEORY

4. Geometry of the Equilibrium Orbits

In order to develop a theory of orbit stability ap-
plicable to FFAG accelerators generally, it is convenient
to characterize a particular accelerator by specifying its
equilibrium orbits. We will therefore assume that a set
of closed equilibrium orbits lying in the median plane
is given. If instead, the magnetic field pattern is speci-
6ed, the equilibrium orbits must be found by integrating
the equations of motion.

The geometrical properties of each orbit, and the
relations between orbits, will be periodic in the azi-
muthal angle H with period 2'/E. Each orbit is to be
specified by its equivalent radius R de6ned by

('2~ I ~8 d~

(I)A =—
2~~, 2~~, p

(4 4)

The function ii(O,R) is also restricted by the require-
ment that at the point 0~=0 the orbit R must be
perpendicular to the radius from the origin. This re-

quirement leads to a rather complicated analytical
restriction on the function Ii. It is sufficient if 0=0 is a
point of symmetry of the orbit, i.e.,

Ii(—O,R) =Ii(O,R). (4.5)

If there are no points of symmetry, it is necessary to
construct the orbit in order to locate properly the
reference point 0=0. Fortunately, an error in properly
locating the reference point will produce only a very
small error (of order 1/N') in the equations for the
betatron oscillations, provided the angle |is correctly
speci6ed.

We will need also parameters iI(O,R) and c(O,R)
relating the perpendicular distance dx between two

nearby orbits, and the increment dO' in 0" along an

orthogonal trajectory to the orbits, to the increment

radius from the center of the machine at the reference
point, and that the reference points lie along a con-
tinuous curve. The parameter 0 will be equal to the
azimuthal angle 0—00 plus a small periodic function
with period 2w/E.

Each orbit will now be speci6ed by a periodic
parameter y(0',R) defined by

Ii(O,R) =R/P(O, R), (4.3)

where p is the radius of curvature. Speci6cation of
p, (0',R), together with the requirement that the center
of the orbit lie at the origin in the median plane, com-

pletely determines the orbit E, provided the reference
point 0=0 is specified. For our purposes, it will be
sufficient to specify the angle t (R) between the radius
from the origin and the reference curve 0~=0 where it
crosses the orbit R (Fig. 5). Choice of the parameter

ii(O,R) is restricted by the requirement that it be
periodic in 0 with period 2z/iV and mean value

S=2mE. , (4.1)

where 5 is the length of the orbit. In general, E will be
slightly. larger than the mean radius (r)A~. We define an
azimuthal coordinate 0~ by the equation

CUS e=o

s= OR, (4.2)

where s is the distance measured along the orbit from
some reference point (say at azimuthal angle Hp). We
shall require that the orbit be perpendicular to the

MACHINE
CENTER REFERENCE

AXIS

Fro. 5. Equilibrium orbit notation.
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dR in the parameter R (see Fig. 5)

dx=gdR,

d0= edR/R

(4.6)

(4.7)

it is convenient to introduce the notations

1 f/2 7r

(F)"=— F(~)«,
2m. 4o

(4.13)

It can be shown' that g, c satisfy the diGerential
equations

(4.8)

(F& =F($)—(F) .,
F'= dF/d$,

Fi= (F)dg,

(4.14)

(4.15)

(4.16)

Bp
pe —

~
R dO

ciO & ciR
(4.9)

F~i= F„dg,
aJ

(4.17)

lr, =1+fg(1V0) (4.11)

where g(cVO~) has period 2s. in EO~, has mean value zero,
and is normalized so that its mean square is —,; f is the
fiutter factor. Since the right members of Eqs. (4.8)
and (4.9) have period 27r/Ã (and zero mean), they
contribute to ri and e oscillatory terms of order 1/E.
The integral in Eq. (4.9) is constant, if we assume that
p, is independent of R; it will in any case contribute
only very small oscillatory terms unless p changes
appreciably within a very small fractional increase in
radius. The quantity tang is zero in radial-sector FFAG
machines, but is of order X in spiral-sector FFAG
machines. We therefore write as a zero-order approxi-
mation to q and e the constant values

ri='1, e=' tanf', (4.12)

w hich satisfy the conditions imposed on e and q.
If F(g) is any periodic function of $ with period 2s,

where the three constants of integration are to be chosen
so that e and ri are periodic functions of 0 Li.e., so that
the right-hand members of Eqs. (4.8) and (4.9) have
zero mean values], and so that

Le/g], ,= tanf. (4.10)

If all equilibrium orbits are geometrically similar,
the parameter li depends only on 0 and not on R. In the
interest of simplicity, we will usually restrict our
attention to machines of this type. If in addition, f' is
independent of R, then by Eqs. (4.8)-(4.10), the
parameters g and e will be independent of R. In this
case, we will say that the equilibrium orbits scale; the
equilibrium orbits scale if any set of neighboring orbits
can be obtained by photographic enlargement or re-
duction from a set of orbits in the neighborhood of any
other orbit.

The solution of Eqs. (4.8) and (4.9) may be obtained
by successive approximations. Let us set

where the integration constants in the last two equations
are to be chosen so that F„has mean value zero. All the
functions defined by Eqs. (4.14)—(4.17) have period 2s-
and mean value zero.

We now substitute Eqs. (4.11) and (4.12) in (4.8)
and (4.9) and integrate again to get a first approxi-
mation

f tang
ri ='1 — gi(1VO), (4.18)

fg (o)
e=' tan| — sec'f+ —g, (QO~),

g QT
(4.19)

where the integration constants have been chosen as
required. LNote that

2

(gig)~ = ~ arri=0
27K Q

(4.20)

pc=eHp=eHR/p, (5 1)

where H is the magnitude of the magnetic held, so that

H(O R) = (pc/eR)li(O R). (5.2)

The magnetic field is thus given in terms of the co-
ordinates R and O~.

If we differentiate Eq. (5.1) with respect to x, where
x is measured perpendicular to the orbit, we have

and that if g($) is even, then gi($) is odd, and gi(0) =0.
In any case, gi(0) is ordinarily small. ]

A second approximation may be obtained by sub-
stituting ri, e from Eqs. (4.18) and (4.19) in the right
members of Eqs. (4.8) and (4.9) and integrating again.
Each successive iteration yields terms of order 1/1P and
f'/7V' times the preceding terms.

S. Betatron Oscillations

If a particle of momentum p moves in an equilibrium
orbit R, then we have by Eq. (4.3)

K. R. Symon, Midwestern Universities Research Association
report, MURA-KRS-8 (unpublished). A more elegant derivation
has been given by B. Hamermesh and E. A. Crosbie LArgonne
Accelerator Group, Progress Report No. 7, July 13, 1955 (un-
published) j.

Bp clH c rip
H—+p

8$ e Bx
(5.3)
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The field index is therefore

trppBH
st= —

/

—
/(Hj Bx

Bp B lnp
p

8$

Making use of Eqs. (4.3), (4.6), and (4.7), we find

(5 4)

p=po(RIRo) ',

II=Hp(R/Rp)stt (0).

(5.14)

(5.15)

If the equilibrium orbits scale, then p, , q, and e are
functions only of O~. Thus tt'I will be a function of O
only, and the betatron oscillations will also scale pro-
vided k is constant. Accelerators with this property will
be referred to as accelerators which scale. For accele-
rators which scale, we have

8p BIJ
htt+- +R

rttt' BO BR
(5.5) 6. Approximate So1ution for Betatron

0scillations

where k is a parameter which measures the momentum
compaction:

d lnp
k=8 —1.

dE.
(5.6)

In terms of the mean magnetic field H =pc/eR, we can
write k also as a mean field index:

In this section we develop some approximate formulas
which give a useful general picture of the properties of
FFAG accelerators. If the betatron wavelengths are
long in comparison with the sector length (say at least
four sectors), then the smooth approximation equa-
tions developed in the appendix are applicable. The
"smooth" betatron oscillation equations become in this
case

(R) dH
h=

&H) dR
(5.7)

d'X/dO'+v 'X=O, (6.1)

d'Z/dO"+ v 'Z=0 (6.2)

The linearized equations for betatron oscillations about
an equilibrium orbit arev

where, by Eqs. (5.10), (5.11), and (A.13) of the
appendix,

d $1—s
+ x=0,

$2 p2

dz Q
+—z=0,

d$2 p2

(5.8)

(5 9)

The solutions of Eqs. (6.1) and (6.2) are

X=A cosv, O'+8 sinv, O",

Z= C cosv.O'+D sinv. O'.

(6.3)

(6.4)

(6.5)

(6.6)
where x and z are the deviations from the equilibrium
orbit in the radial and vertical directions. These become,

by Eqs. (4.2) and (4.3),

+tts(1 —n)x=0,
2

(5.10)

+tt'ttz =0.
d 2

(5.11)

The character of the betatron oscillations is therefore
determined by the functions tt'(O', R) and

1( Btt Btt)
tt'st= —-( htt+» +R

BO BR)
(5.12)

By making use of Eqs. (4.8) and (4.9) we can rewrite

Eq. (5.12) in the form

(0+1)tt 1 B'rt
tt'(1 —I)= —— . (5.13)

&Be
~

¹ M. Blachman and E. D. Courant, Rev. Sci. Instr. 20, 596
(1949), Eq. (15).

To these smooth solutions must be added a ripple which
can be computed from Eq. (A.7). It is clear that v, and
v, are the numbers of radial and vertical betatron
wavelengths around the circumference of the accele-
rator. The approximate formulas (6.3) and (6.4) give
v, and v, within about 10% provided that v, and v, are
both less than X/4.

In order to avoid resonance buildup of betatron
oscillations, it is necessary to avoid integral and half-
integral values for v and v„and also to avoid integral
values for v,+v, .s This implies that v, and v, must be
the same for all orbits, or nearly so, and this is the
principal limiting condition on F FAG designs. In
accelerators which scale, v and v, are necessarily the
same for all orbits; this is the advantage in designs
which scale.

The relation between betatron wavelengths and
machine parameters depends upon which term in Eq.
(5.13) predominates in giving alternating-gradient
focusing. In a radial-sector FFAG accelerator with

f=0 and with a large number of sectors (say X)10),

p P.A. Stnrrock, Statec amd Dyrtaraic Etectroa Optics (Cambridge
University Press, Cambridge, 1955), Chap. 7.
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(k+1)'f'
v,' =k+ 1+ (gp}A~,X'

(6.7)

q is very nearly unity, and the second term in Eq. (5.13)
is small except near the edges of the magnets where it
gives rise to edge focusing sects. The edge focusing
comes from the term —(e/g)(8p/80) in Eq. (5.12).
This term has a nonzero mean value, part of which is
included in the p, term in Eq. (5.13); thus Eqs. (6.7)
and (6.8) below include most of the mean focusing
eBect due to edges in radial sector machines. We will
call the first term in Eq. (5.13) the "p term" and the
second, the "g term. " In a spiral-sector FFAG accele-
rator, the alternating-gradient focusing comes pre-
dominantly from the p term. It may be noted that the

g term includes the term (R/g) (8p/8R) which appears
when the orbits do not scale. It is not hard to see that
in a conventional AG synchrotron' this is the dominant
alternating-gradient term.

Let us 6rst consider a radial-sector FFAG accele-
rator with a large number of sectors, and let us neglect
the g term. If f/N«1, then g=1 according to the
discussion in Sec. 4. Let us write p in the form given by
Kq. (4.11). Then Eqs. (6.3) and (6.4) yield, if we
substitute from Kq. (5.13), with g= 1,

. /p1-q
2q

(2-a)~
2%

2(l-q}

I

2

FIG. 6. Rectangular Field Autter.

aperture, k, and hence S, should be as large as prac-
ticable. If we define a circumference factor C as the
ratio between mean and minimum radii of curvature of
the equilibrium orbit, then

c= l~l-*= I 1+fg(No) I-* (6»)
It is desirable to minimize C, since for a given maximum
magnetic field, this yields the smallest accelerator
design. It is clear from Eq. (6.11),that for a given form
of g, the minimum circumference factor is obtained by
making o, as small, and o, as large as possible (or vice
versa, if k is to be negative).

Let us assume a rectangular 6eld Qutter, with mean
square value —,':

f2 (k 1)2f2
k+ + (gl )

2 S (6.8)

|—q: —q~&g&q~, (I)
2g

where we have neglected a small term involving {g'}in

Fq. (6.8). The betatron oscillation advances in phase
by an angle

2(1—
q)

(6.14)

o=2mv/N, . - (6.9) q~& (&2m —
qx& (II)

where

E'
k+1= (o '—o '+b),

8~'

4m [o,'+o 2 b]l—
[2(g~')A.1'

I

'—~*'+&I

4m' f' 4kf'
, 1+—,(g')"S' 2 S'

(6.10)

(6.11)

(6.12)

The quantity b is negligible for suKciently large E.
By appropriate choice of o-, and o„k can be made

either positive or negative; i.e., in a radial-sector FFAG
synchrotron, with E large, the high-energy orbits may
be either on the outside or the inside of the donut. The
b-term, which is important when E is small, is positive
and therefore favors machines with positive k, i.e., with
a given N, I

k
I

can be larger and f smaller if k)0. For
maximum momentum compaction, i.e., minimum radial

per sector. For stability, ' o. should be less than m, and
for the smooth approximation to be valid, o- must be
less than about x/2. If we solve Eqs. (6.7) and (6.8) for
k and f in terms of o and o.„we obtain

g(&+2~) =g(&). (6.15)

This function is plotted in Fig. 6. When )=NQ~ lies
in regions labeled I, we say that 0 is in a positive half-
sector; regions labeled II we call negative half-sectors.
We need to calculate

(g&)A = & q(1 q) (6.16)

~=f[(g");~-:, (6.17)

is fixed by Eq. (6.11), then by Eq. (6.13), the circum-
ference factor is

vMC=1+, or
xq n-(1 —

q)
(6.18)

whichever is greater. The minimum value of C occurs
when q is chosen so that the two values of the right
member of Eq. (6.18) are equal. We then have

@=1+fg(NO) =C, —q~ &NO &q~,
(6.19)

= —C, q~&NO~&2~ —qm. (II)
The radius of curvature, and consequently also the
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f' tan2f = (g,2+i,2—1), (6.27)

magnetic 6eld, is constant in magnitude along the squarebracketsandsubstituteinEqs. (6.24) and (6.25),
equilibrium orbit and opposite in sign in the two half- to obtain
sectors. The ratio of half-sector lengths is

I'= II/(1 0) = (C+1)/(C —1)

and the circumference factor is

(6.20)

~ ~ ~
~

y, f' tan2f
=1+ (gP)A. +A„E (6.22)

We will neglect the second and higher order terms, and
will neglect also the oscillatory part of Ig/2I. The 2I term
can be rewritten in the following way:

1 B22I B (1 Bq) (1 B2I)I+I-
&BO2 BO(&BO] &~BO)

(6.23)

The first term on the right is large and oscillatory with
zero mean value, and the second is smaller but has a
positive mean value. We neglect the oscillatory part
of the second term, and substitute in Eqs. (6.3) and

(6.4), using (5.13) to obtain

C= (I'+1)/(I' —1)= LI+2f'I' (6 21)

If we take o..=vr/6, o =2r/2, b=0, and use the approxi-
mate formulas (6.10) and (6.11), we obtain E=+5,
I'=1.31, C=7.5, f=10.5, and k=X2/36. It will be
shown in the next section by a more accurate calculation
that the minimum value of C where Ã is large is about
5.

In a spiral-sector FFAG accelerator, f is nearly 90'
and the 2I term in Eq. (5.13) is large. It is then possible
to use a much smaller Qutter factor, so that the oscil-
latory part of the p term is small. We will again assume
that 1tg is given by Eq. (4.11) and will use the approxi-
mation (4.18) for iI. If we expand 1/2I in a power series
in the second term of formula (4.18), we may calculate

where we have also neglected f' No. te that, to this
order of approximation, formulas (6.24) and (6.27) are
independent of the form of the fiutter function g(XO);
only the circumference factor Eq. (6.13) depends on
g(iVO). We can rewrite these formulas in terms of the
phase shifts 0- per sector:

Ã2O-, 2

0+1=
4X2

(6.28)

E2
f2 tan2f. (~ 2+~ 2)

4X2
(6.29)

The reference curve 0=0, satisfies, in polar coordinates
r and 0, the equation

1 df
=co—tf

r de
(6.30)

The radial separation between ridges (points of maxi-
mum magnetic field), in units of r is therefore

g(k) = cos(, (6.32)

7=&r/r =2~/(iV tang). (6.31)

Thus for a given choice of o„o;,and A the ratio f/7, is
Axed. The maximum allowable gap between the poles
of the magnet is proportional to X; if the field Butter is
to be obtained by shaping the poles, without extra
forward windings, it can be shown (Sec. 13) that for
f/71 fixed the maximum gap is about AXr and is obtained
for f= A. Under these conditions, the field fiutter may
be very nearly sinusoidal,

g 2=4+1,

(
g.2= k+ ',f'+2--

Eg Boj A,

(6.24)

(6.25)

and then the circumference factor will be C=1+f
= 1.25.

If we take, as above, o.,=2r/6, gr, =2r/2 with f g-
we obtain %+1=X'/16, II, = 5 95$T—2[1 14, 4'—2]-,.
and tang = 1.051VL1—14.4g&&

—'j—'*.

Note that the q term does not contribute in this approxi-
mation to the radial focusing. If we take p as given by
formula (4.18), we have

7. Linear Stability for Radial Sectors

In order to get more accurate relations between the
parameters, we return to the betatron oscillation
equations (5.10) and (5.11).Making use of Eqs. (5.12),
(4.18), and (4.19), with )=0, we rewrite Eqs. (5.10)
and (5.11) for the case of a rectangular field fiutter of
the form (6.19):

2f' tan2f
=f tan2f 1+ ~g gl )A„+ ' ' . (6.26)

@72

We will neglect the second and higher order terms in

d g
+kCx=o,

2

(Pz
-wkcz=o,
2

(7 1)

(7.2)



FFAG PARTl CLE AC CELE RATORS 1845

where the upper signs apply in positive half-sectors,
and the lower, in negative half-sectors. The term
cot+/80~ in Eq. (5.12) gives rise to terms in Eqs. (5.10)
and (5.11) which represent the focusing that occurs at
the sector edges, which we will neglect for the present.
These approximations are valid only when X))f, and
we have accordingly also neglected 1 in comparison
with n. When N is small, edge effects and higher order
terms in p must be taken into account. The oscillatory
terms in q will give rise to effects resulting from the fact
that neighboring equilibrium orbits are not everywhere
equidistant. For small N, edge effects turn out to in-
crease the vertical focusing and to decrease the radial
focusing, so that considerably smaller values of the
flutter factor f may be used if k)0, without losing
vertical stability.

Let &Q~o ———qs. , iV Q~i qw, 1VO~——o= (2—q)or. Then the
solutions of Eq. (7.1) within the positive and negative
half sectors separately yield the following matrix
relations between x and x'=dx/dO at the points Oo,

Oi, and Oo..

where
(cosP+ (kC)

'
*singly

!Mp=I
E —(kC) '* sing+ cosf+ j

(kC) l sinhf )
sl )'

/cosh/
M =I

E (kC)' sinhf co

2orq 2s-(1—
q)

~t+= (kC)'* 4-= (kC)'*
N N

We thus obtain

with

t' xo l t'xo

&x.'J
'

!=M-I *,
!

Ex,') (xo') Ex,') I x, )

(7 4)

(7.5)

(7.6)

(kC) '*(cosP+ sinhf —sing~ cosh/ )q

os cosh sin si

$ cosg~ cosh/ —sing+ sinhP,
M=M M+ ——

I

((kC)&(cosg+ sinhf +sing~ cosh/ ), c P+ P + p+
(7.7)

We can now calculate'

cosa.,=-', trace(M) =cosg+ cosh/, (7 8)

and in the same way,

cosa, =cosg cosh'+. (7 9)

In terms of the local 6eld index

N=k/C, (7.10)

within the magnets (we take e as positive here), and
the ratio I' of sector lengths LEq. (6.20)$, we may
rewrite f+ and P

t'2&/ ( I' ) (2&) f
++=

I

—
! I

!I' 0-=
I

—
! I

!~' (7»)
&Xi EI —1) ' IX) &r—1&

Formulas (7.5), (7.8), (7.9), and (7.11) have been
written for k)0. However, they may also be used for
k&0, in which case it is convenient to regard C as
negative.

The smallest circumference factor is obtained by
choosing o., as large as possible and o., as small as
possible (or vice versa). If we choose 0 =3m/4, o,=w/6.
we calculate from Eqs. (7.8) and (7.9) that /+=1.32,
f =1.93. From Eqs. (7.11) and (6.21), we have

is safe to go. (For the choice a, =or/2, a,=~/6, these
more exact formulas give I'=1.29, C=7.9, which may
be compared with the approximate values 1.31, 7.5
obtained in the preceding section. )

A more general calculation, including straight
sections between magnets, and taking edge effects into
account, can be carried out in a similar way. We assume
that along an equilibrium orbit the magnetic 6elds have
equal and opposite constant values within the positive
and negative half-sectors, and that the positive and
negative half-sectors are separated by straight sections
where the field is zero; (see Fig. 7). Let the fractions of
orbit length within the positive and negative magnets
be q& and q2, respectively, and let the fraction of orbit

POSITIYF

~ MAGNET

NEGATIVE
MAGNET

STRAIGHT
SECTION

I'=f+/P =1.46, C=5.35. (7.12)

The theoretical minimum value of C is 4.45 for o =x,
o,=0. In order to keep the amplitude of betatron oscil-
lations within reasonable bounds, the former choices of
o and o-, run about as close to the stability limits as it

MACHINE
CFNTE R

FzG. 7. Equilibrium orbit notation for radial sectors
vrith straight sections.
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length in each straight section be qo, so that

2qp+ql+q2= 1. (7.13)

The indices e~ and m2 are the local Geld indices at the
centers of the positive and negative magnets:

The angles Pl and P2 shown in Fig. 7 are

pl= 22rCql/») p2 22rCq——2/».

The number of sectors is

»=2 /(~. ~.)-,

so that the circumference factor is

where
n= k/( 2CI), (7.20)

(7.15) ( cos(n.Cq2/»)
(7»)

(1V/2r) sin(2r/») )

(7 14) ( sin(~cq2/») )
Cqp sin(pr/») )

(7 16) aIld

cos (n.Cql/»)

(»/pr) sin(pr/») )
—2qpi 1—

b =2z Cqp/»,

yl Pl(NI+ 1) 42 P2('+2 1)'

(7.17)

(7.18)
We do not neglect 1 relative to e here. We do, however,

(7.19) neglect variation of lt within the magnets. The result islJ2=PIi'*, 4'4 P2N2 ~

C= 1/(ql —q2).
sin(lrCql/»)

The angles gl and &2 shown in Fig. 7 are the edge angles
between the orbit and the normal to the magnet edges.
It is convenient to deGne

coso, =L1+2b(tan&i+tan&2)+25' tan&i tan&2] costi cosh/2

+$('$1+1) &(tan/i+tan/2+8 tan'&2+28 tan&I tanp2 1b' tan'&I tanp2) —(rli+1)-'*(b+b' tanp2)] sin/I cosh/2

+((n2 —1) l(tan&i+tan/2+8 tan'&2+28 tan&I tan&2+8' tan'&2 tan&i)+ (r42 —1) '*(b+b' tan&I)] cosset I sinhp2

+22L —(rlq+1) l(222 —1)lb2 —(Ii+1)l(r42 1) —(I1+ btan&2)2+ (22I+1) &(222—1)l(1+8 tan&i)'
+(22l+1) l(222 —1) l(tan&i+tan&2+8 tang& tan&2)'] sin/i slnh'i/2,

cosa. = L1—2b(tan&i+tan&2)+22 tan&i tan&2] cosp4 cosh/2

+(n2 I(—tan&i —tan/2+8 tan'&2+2b tan&I tan&2 —b' tan'&2 tan&i) —n2&(5 —b' tan&i)] sin/4 cosh/2

+$22l '(—tan/i —tan/2+8 tan'pi+2b tan/i tan/2 —P tan'i/i tan/2)+rll'(b —b2 tan/2)] cosp4 sinhpp

+2L 222 r41*5 rl2 221 (1 b tan/1) +r42 '$1 (1 b tan/2)
+r42 lnl l( —tan&i —tan&2+8 tan&i tan&2)'] sin/4 sinhpp. (7.24)

1/w=» tang =22r/X. (8.2)

The form of Kq. (8.1) is chosen so as to guarantee that
the accelerator scales.

The linearized equations for the betatron oscillations
in the field (8.1) can be obtained from the general
analysis of the Grst two sections, but it is perhaps more
illuminating to derive them directly. If one undertakes
to write the linear terms in the differential equations
characterizing the departure of the particle from a

8. Linear Stability for Spiral Sectors

For spiral-sector accelerators, the circumference
factor is close to unity, and minimizing C is no longer a
major consideration. The ridge separation ) is, how-

ever, rather small, and if the gap between magnet poles
is to be kept as large as possible, it appears that the
field Gutter in the median plane must be at least
approximately sinusoidal. Ke will therefore assume a
field in the median plane of the form (2.1).

+=II ( /pr)"r{pI+f sinL»8 —(1/w) ln(r/rp)]), (8.1)

where we have set

reference circle of radius

rl —cP/PeH, (rp/rl)"], —

one obtains substantially the following:

(8.3)

r"+$1+k+ (f/w) coslV8](r —rl) =' frl sin»8, (8.4)

z"—Lk+ (f/w) cos»8]z='0. (8 5)

These equations suggest alternating-gradient focusing
of the type characterized by the Mathieu diGerential
equation, but the presence of the forcing term on the
right hand side of the equation for the radial motion
indicates that a forced oscillation will be expected and
will be given approximately by

-rj sinÃ0.»' (0+1)—(8.6)

Because of the presence of this forced motion, orie
realizes that not only will the nonlinear terms in the
de'erential equations be large, but that a noticeable
inQuence upon the betatron oscillation wavelength can
result.
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It is appropriate, therefore, to perform an expansion
about a more suitable reference curve by writing

0.5

4o
x=r —r2+ r~ single.

N' (k+—1)
(8.7)

In this way one obtains linearized equations, of which
the most significant terms appear below;

f2/w2 fx"+ k+1——', — +—cosNe
N' —(k+1) w

OA

0.2 1l
0

f2/w2

+v
N' (k+1—)

f'/w' f+—cosN8
N' —(k+1) w

cos2N8 @=0, (8.8) 0.5

f'/w'
+-,' cos2N8 s=O. (8.9)

N' —(k+1)

These equations have the form of an extended Mathieu
equation

d I/Ch'+(2+8 cos2r+C cos4r)N=O. (8.10)

0.2
ILITY REGION FOR

PLITUDE OSCILLATORS

FFAG ACCELERATOR

k && I

ED- LESS AGCURATE

ATES ABOVE 'is)

The neglected terms in the coefFicients A and C in Kq.
(8.10) as given by Eqs. (8.8) and (8.9) are of order
k'w' times the main terms, so that for f=4, the error
in these coeKcients is less than 2% over most of the
region of stability (Fig. 8). The neglected terms in the
coeKcients 8 are of order ss(f/N'w)' and 22(f/Nsw)'
in Eqs. (8.8) and (8.9), respectively, so that the errors
will be less than 2% and 8%, respectively, over most
of the region of stability. The coefFicient of the third
harmonic term (which has been omitted) is of order', (f/N'w)' —and 2 (f/N'w)', respectively, times the
coefFicient 8; since the third harmonic contributes to
a an amount proportional to 9 the square of the co-
efIicient, its contribution is completely negligible.

Tables of the characteristic exponent (0/2r) of the
extended Mathieu equation (8.10) have been computed
on the ILLIAC, using a variational method. ' Values of
A are tabulated for a range of values of o., 8, and C,
covering the significant portion of the Grst stability
region. Results for the Mathieu equation C=O are
included. So far as we are aware, there are at present
no published tables of characteristic exponents for the
Mathieu equation within the stability region.

In Fig. 8 we plot a stability diagram for a spiral-
sector FFAG accelerator with k)&1 computed from the
above formulas and tabulated solutions of Eq. (8.20).
If k)&1, the coeKcients A, 8, and C depend only on

'Laslett, Snyder, and Hutchinson, "Tables for the deter-
mination of stability boundaries and characteristics exponents for
a Hill's equation characterizing the Mark V FFAG synchrotron. "
Midwestern Universities Research Association Notes, April 20,
1955 (unpublished).

O. l

0
0 O. l

ItgNg
0.2

FIG. 8. Dependence of 0., and 0., within the stable region on
spiral-sector parameters for E&&i.

k/N2 and f/N w. We accordingly plot curves of constant
0, and 0, vs k/N2 and f/N'w If we tak. e 0;=2r/6 and
0 =2r/2, with f= s2, we obtain k=0.057N2, f/N'w=0. 25,
and ) =6.3S ', which may be compared with the
approximate values k=0.062N', f/N'w=0 265, and.
) =5.95% ' obtained at the end of Sec. 6.

Q. Nonlinear Effects

The preceding arialysis of betatron oscillations has
been based on an expansion of the equations of motion
in powers of the displacement from the equilibrium
orbit, keeping only the linear terms. The small-ampli-
tude betatron oscillations in x and s are then found to
satisfy linear differential equations with coeflicients
periodic in the independent variable O.

In a perfectly constructed accelerator, the only
periodicity would be that associated with the E-identical
sectors around the machine, and the period of the co-
efEcients would be 22r/N. In an actual accelerator, there
will be imperfections, so that the coeKcients will be
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N,+s,=q. (9.2)

Then if q=i or q=2, the motion is unstable even in
linear approximation. (This is the rule stated in the
preceding paragraph. ) If q=3, then in general, the
effects of quadratic terms in the differential equations
are such as to make the motion unstable even at very
smal} amplitudes. If q=4, then the e6'ects of cubic
terms may be to render the motion unstable, depending
on the form of the cubic (and linear) terms. If q)4,
then, in general, the motion is stable for sufficiently
small amplitudes of betatron oscillation. In any case,
if q&~4, and if the equations of motion are nonlinear,
then there will be in general a limiting amplitude of
betatron oscillations beyond which the oscillations are
unstable at least in the sense that they leave the donut.

Numerical studies carried out on the ILLIAC at the
University of Illinois seem to con6rm these conclusions.
It was also reported by the Brookhaven group" that
experiments with the electron-analog alternating-
gradient accelerator have con6rmed these conclusions.

If we apply the above criteria to the sector periodicity
2~/X, then we must replace r and v, in Eq. (9.1) by
o,/2m and o,/2m, the number of betatron oscillations
per sector. W'e then conclude for example that values of
o; or o, near 2m./3 are to be avoided, as well as values
such that o,+2o; or o,+2o, is nearly 2~. We call these

'0 J. Moser, Nachr. Akad. Wiss. Gottingen, Math. -physik. Kl.
IIa, No. 6, 87 (1955). We are indebted to Dr. Moser for a very
helpful discussion of his results.

"R. Hagedorn, CERN Report, CERN-PS/RH 9, November,
1955 (unpublished).

"Courant, Kassner, Raka, Smith, and Spiro, Phys. Rev. 100,
1269(A) (1955).

strictly periodic with the period 2m in 0', and approxi-
mately periodic with period 2m/X. Associated with the
period 2m/1V is the requirement that o, and o., must not
be integral or half-integral multiples of 2&,. in practice
it appears that 0 should be less than m, since otherwise
the tolerances on magnet construction and alignment
become very severe. Associated with the period 2m is
the requirement that v and v, must not be integral or
half-integral if imperfection resonances are to be
avoided, and, in addition, if imperfections can couple
the x and s motions, v +i, must not be an integer.

The study of the effects of nonlinear terms in the
equations of motion has not advanced nearly as far as
the study of the linearized equations. Approximate
analytic methods of treating nonlinear equations with
periodic coefficients have been developed by Moser, "
Sturrock, and Hagedorn. "Their results can be sum-
marized as follows: If the coefficients in the equations
have period 2' in 0', and v„v, are the numbers of
betatron oscillations in one period 2m, then resonances
can occur when

rr, v,+r4v. =any integer, for

e,e,=0,1,2.

Mz+I

v, Mz

I

1

I

I

Mz-I
Mx-I Mx

vx

INTEGRAL RESONANCES q= I

HALF-INTEGRAL RESONANCES q"- 2—THIRD-INTEGRAL RESONANCES q~ 3
--- FOURTH-INTEGRAL RESONANCES q& 4

Pro, 9. Linear and nonlinear resonances in an AG
accelerator. M and M, are integers.

resonances with the periodicity of the structure itself
"sector resonances. "We have indeed found in numerical
studies that the limiting amplitudes for betatron oscil-
lations in spiral sector machines become very small when
o approaches 2m./3.

If we apply the above criteria to the once-around
period 2~, then we find that the values of v, and v.
excluded by the above rules are as shown in Fig. 9. We
plot r horizontally and ~, vertically. The lines labeled
q=1, 2, 3, and 4 represent the values excluded by the
above rules. The lines q=1 are integral resonances. The
lines q=2 are half-integral resonances (vertical and
horizontal) and sum resonances (diagonal). The lines
(=3, 4 are third and fourth integral resonances. It is
not yet altogether clear how serious the third and fourth
integra1 resonances are, since they arise only from non-
linear imperfections in the machine. Experiments with
the electron analog at Brookhaven" seem to indicate
that these resonan'ces must be excited by deliberately
inserted nonlinear imperfections in order to be detected.
This is not true of course of the o =2m/3 resonances
discussed in the preceding paragraph, which are reso-
nances with the inherent periodicity of the structure.
It would at present seem wise to avoid all the excluded
lines on Fig. 9 if this can be done.

It should be pointed out that nonlinear terms in the
equations for the radial sector accelerator are not very
large, being not greater in order of magnitude than
nonlinear terms which arise in some conventional
alternating-gradient accelerators which have been
contemplated. However, the nonlinear terms which
arise when the sectors spiral are much larger and play
a very important role in determining the character of
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the betatron oscillations. Numerical studies indicate
that although the motion in spiral-sector synchrotrons
exhibits marked nonlinear effects, the amplitude limits
are large enough to accommodate reasonable betatron
oscillations provided a is not close to 22r/3 (say 0,
&0.61r).

p= pp e"p
t "&+1

dR (10.1)

IO. Momentum Content and. Phase Stability

The momentum p(R) is determined by integrating
Eq. (5.6):

t.o

,S

.6
Ql

4—

~ 2

'o
E-Eo

Eo

I I

~K ~ 99

y
K=I

I

12 20

Rt —Rp f 1 ) (Pt—Ppi

E, (&+1) L po
(10.2)

The angular velocity of a particle in an orbit R is

do~ pc pc'
Q)

dt R ER
(10.3)

If k is independent of R, this reduces to the simple
relation (5.14). Thus momentum and energy are deter-
mined as functions of the orbit size R. Since R is es-
sentially a mean radius of the orbit, the radial aperture
required for any given initial and final momentum can
be determined from Eq. (10.1). It is clear that for a
given momentum content, the radial aperture decreases
with increasing k. If k)&1, then the radial aperture is
much less than R, and we have approximately, for
constant k,

FIG. 10. Frequency of revolution as a function of energy.

then for E&E2, dpp/dE is positive, while for E)E,,
des/dE is negative. If particles are accelerated by radio-
frequency voltages applied to one or more accelerating
gaps, then the theory of phase stability in FFAG
accelerators is similar to that for conventional cyclo-
trons and synchrotrons. " When dcp/dE is positive,
particles may execute stable synchrotron oscillations
about a phase on the rising side of the voltage wave at
the accelerating gap. When der/dE is negative, the
stable phase is on the falling side of the voltage wave.
At E=E&, there is no phase stability. In order to
accelerate particles beyond the transition energy, it is
necessary to shift the relative phase at which the par-
ticle arrives at the accelerating gap from the rising to
the falling side of the voltage wave.

In a cyclotron, the frequency of revolution, cp/2,
must be the same for all energies, and Eq. (10.6) then
furnishes a relation between k and E:

where E is the total energy, including rest energy. By
squaring Eq. (10.3) and differentiating, we obtain

&+1=E'/Eps. (10.9)

dG0 1

(o dE (E'/Ep') —1

We now differentiate the equation

p2C2+E 2

and use Eq. (5.6) to obtain

E dpp (k —1)Ep2—E2

(o dE (E'—Eps) (0+1)

(10.5)

(10.6)

We may integrate this equation if k is constant to obtain

&g E (E2 E 2
q

&/i2(&—&)i

cpr E (E22 Eps)
(10.7)

(10.8)

where cv& is the angular frequency of revolution at any
particular energy Er. A graph of cp/pp2 is shown in Fig.
10, where co& is the angular frequency at the transition
energy, and we have taken k=99. If we define the
transition energy

E2 (4+1)&Ep, ——

In a cyclotron, k must increase with energy, and the
betatron oscillations therefore do not scale even when
the equilibrium orbits scale.

III. APPLICATIONS

11. FFAG Proton Synchrotrons

As an illustration of the application of the FFAG
principles to high-energy accelerator design, possible
parameters are given below for a radial-sector and a
spiral-sector synchrotron. Many of the considerations
governing choices of parameters are common to these
synchrotrons, and to pulsed-fmld alternating-gradient
synchrotrons, ' e.g. , resonances, alignment tolerances,
and gas scattering. It is anticipated that injection and
acceleration might be accomplished somewhat differ-
ently than in pulsed-field synchrotrons of comparable
energy.

Whereas injection from a 50-Mev proton linear ac-
celerator is planned for 25-Bev pulsed-field accelerators,
a 5-Mev Van de Graaf electrostatic generator might be

"D. Bohm and L. Foldy, Phys. Rev. 70, 249 (1946); D. M.
Dennison and T. H. Berlin, Phys. Rev. 69, 542 (1946); R. Q.
Twiss and g, H. Frank, Rev. Sci. Instr. 20, 1 (1949).
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used to inject into FFAG synchrotrons for the reasons
mentioned in the introduction. Electrostatic-generator
injection with FFAG synchrotrons would have the
advantages of higher pulse currents, greater simplicity,
lower cost, and better beam energy and. size resolution
than are at present realized with proton linear ac-
celerators. Although one-turn injection using a pulsed
inQector with a pulsed current of milliamperes is the
most obvious injection system, many-turn injection
may be used to give greater beam currents by scanning
the aperture with the injected beam up to the space
charge limit.

While the possibility of low-energy injection was
evident when FFAG accelerators were conceived, it was
also realized that it is usually uneconomical to use iron
at a low Aux density and that large momentum content
in an FFAG accelerator requires much pole face area
working at a very low Qux density. This suggested the
use of FFAG accelerators in succession with high Qux

density in the iron and with regenerative beam ex-
tractors used backward to inject particles from one
accelerator into the next at high energy. Such re-
generative peeler systems for extraction have been used
for some time on betatrons and recently on cyclotrons;
time reversal of the orbits would allow the system to
be used for injection provided the injected beam can be
caused to move away from the magnetic perturbation
at the same time the excited oscillation in the beam is
damped. This would require very careful adjustment.
The feasibility of this sytem is being given extensive
theoretical study by Teng, '4 and by others at the
Argonne National Laboratory. Teng emphasizes that

. the use of high-energy injection largely avoids the fre-
quency modulation problem and the problems of con-
trolling the shape of low magnetic fields needed for
low-energy injection. However, the radio-frequency
modulation problem has many interesting possibilities
of solution not available to pulsed-field accelerators.

The arbitrary frequency-verses-time program of
FFAG synchrotrons allows the use of a mechanical
modulation system with high-Q cavities. With the
high Q realized in unloaded cavities, the required
voltage gain per turn could be given the particles by
one cavity driven at reasonable power. Modulation
could be accomplished by moving a diaphragm to tune
the cavity capacity. With such a system, model tests
indicate a frequency change of a factor of 3:1 is prac-
tical. Using 5-Mev injection, a frequency change of
IO:1 is required to reach relativistic velocities. One
might then use one cavity operating as a self-excited
oscillator to accelerate particles from injection to about
50 Mev. The voltage on that cavity would then be
turned oK as voltage on a second cavity is turned on,
and acceleration continued with the second cavity. The
change-over could be triggered by frequency comparison
between cavities. The relative phases of the cavities

"L.C. Teng, Phys. Rev. 100, 1247 (1955).
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FIG. 11.Radio-frequency program for pulsed-field AG
and FFAG synchrotrons.

could be controlled by a loose coupling between them
(With the University of Michigan electron synchrotron
two-cavity rf system, it was observed that it was
possible to make the transition from one cavity to
another without an observable beam loss. ) A third
cavity might be added and a second transition made if
desired, since it is observed that most of the energy is
given the particles after they have reached almost
constant velocity, c (see Fig. 10), and this third cavity
could be designed to provide very high voltage over a
small frequency range. Fine frequency adjustments
would be made with reactance-tube loading of the
cavities. With this rf system, it appears reasonable to
accelerate protons to 20 Bev with a repetition rate of
several per second.

While the above system is suggested on the basis of
experimental tests already in progress, it is realized
that other rf systems might prove more practical. Some
of these are:

2. Many ferrite-loaded, low-voltage, low-Q cavities
operated as tuned, driven amplifiers. Tuning would be
accomplished by biasing the ferrites with currents. This
is the system planned for the CERN and Hrookhaven
pulsed AG synchrotrons.

2. The use of drift tubes or operation of one or more
entire magnet units as a drift tube on a high harmonic
of the particle rotational frequency. In this case tuning
over a wide frequency range appears dBFicult.

3. Several rf schemes have been proposed in which
many groups of particles of different energies are present
in the donut simultaneously. If any of these schemes
proves practicable, large increases in duty factor and
hence in beam output will become possible.

In alternating-gradient synchrotrons, phase stability
vanishes at a transition energy, E&, given by Eq. (20.8).
It is possible in the radial-sector FFAG designs to have
k large and negative. In this case there is no transition
energy, and high-energy orbits lie on the inner radius
of the machine. Negative-0 designs appear to be not
practical with spiral sectors. Figure 11 illustrates
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qualitatively the radio-frequency versgs energy program
in a pulsed-Geld AG accelerator, and in comparable
FFAG accelerators with positive and negative k.

12. A 10-Bev I'FAG Proton Synchrotron with
Radial Sectors

The following design for a high-energy proton syn-
chrotron is intended to illustrate the features of the
radial-sector FFAG synchrotron. This design type is at
present the most completely understood of the FFAG
accelerators thus far suggested, although spiral sectors
certainly offer the possibility of more economical design.
From the expressions (7.23 and (7.24), values of o, and
o, may be found for a given choice of lV, ts, P t, P&, and 8.
In Table I, typical values of the parameters are given
for a 64-sector radial-sector accelerator. For this
example we choose 10 Bev as the maximum proton
energy and 20 000 gauss as the magnetic Geld for the
equilibrium orbit of that energy. The limit on the
strength of the focusing, radially and vertically, is
set by the tolerances which must be placed on pa-
rameters of the machine such as e to avoid resonances.
Since, if 0, is kept constant, v, is roughly proportional
to the square root of e, weaker focusing relaxes these
tolerances. In cases where the simple expressions (7.8),
(7.9) hold, the tolerance on n for d, v=-', is, by differ-

entiating,

2x sinadQ
. (12.1)BN ('Pt slngt costs —Ps cosset't stnhPs)

Tmr. E I. Illustrative values of the parameters for a radial
sector accelerator.

37= 64
eI=n2= 36

C= 535
k =192.5

Pi ——15.00'
P,= 937
8= 0.05'

y~
——'y2 ——5.74'

a =122.1 .

r, = 22.0'
pg = 21.7
vz= 3 91

For the above design Ggures, the tolerance on e is about
one percent. A closer tolerance might be held on e in
the Gxed-Geld case than in the pulsed-Geld case since
all Geld adjustments are time-independent.

Misalignment of magnets in alternating-gradient
accelerators has been shown to give rise to large
deviations of equilibrium orbits. " In radial-sector
accelerators, the equilibrium orbit deviation for a given
rms sector misalignment may be shown" to be worse,

by approximately the ratio of circumference factors,
than in a conventional AG accelerator of the same
number of magnet units and comparable v, and v, . Here
the simplifying assumptions are made that misalign-
ments occur for magnet units as a whole, and that they

Tmz.z II. Physical dimensions of a radial sector accelerator.
Subscript 0 refers to maximum energy, subscript i refers to
injection.

Ep=10 Bev
rp=97.3 m

Bp= 20 000 gauss
pp ——18.2 m
Zp=3.0 cm

rp —r;=2.3 m
Eg ——12 Bev
Z;=2.5 cm
8;=~0.001 radian
p=5X10—' mm Hg

E;=5 Mev proton kinetic energy
r, =95.0 m, synchrotron radius
8;=200 gauss magnet guide field
p;=17.8 m radius of curvature
Z; = 15.0 cm vertical semiaperture
radial aperture
transition energy
vertical semiheight of injected beam
angular spread of injected beam
pressure in the vacuum chamber

are random and independent. For the accelerator in this
example, an rms misalignment of the 128 magnets of
0.02 cm would be expected to result in a maximum
deviation of the equilibrium orbit of &2.0 cm.

The eGects of space charge and gas scattering have
been treated by Blachman and Courant" and others. "
In this example, an injected beam from a typical Van
de Graaf electrostatic accelerator would Gll %10 cm of
aperture after gas scattering. Adiabatic damping of
betatron oscillations as the momentum increases by a
factor of 100 during acceleration would then reduce
these oscillations to &1.0 cm. At a reasonable rate of
acceleration (75 ltilovolts per turn), 3X10"protons per
pulse could be accepted.

The values of physical quantities consistent with the
parameters of Table I and the above considerations are
given in Table II.

Figure 12 illustrates in cross section a possible
method of constructing the magnets. Much of the large
change in field would be accomplished by back-winding
coils on the pole sufaces. Table III illustrates the
magnet parameters for the accelerator described above
in Tables I and II.

With the rf system described above, the repetition
rate is limited only by the rf voltage which can be
applied and by the rate of mechanical frequency
modulation attainable. Using this rf system with the
accelerator of this illustration, one to three pulses per
second of 3)& 10" ten-Bev protons appear attainable.

t,'=1+0, (13.1)

13. 20-Bev FFAG Proton Synchrotron
with Spiral Sectors

As an example of an accelerator made with a ring
magnet producing loci of maximum Geld which cross the
path of the particle at a small angle, we take a field of
the form (8.1). The motion for this case is treated in
Part II. Equations (6.24), (6.27), and (6.31) show that
in the smooth approximation

'~ E. D. Courant and H. S. Snyder, Internal Brookhaven
National Laboratory Report, June 1, 1953 (unpublished); G.
Liiders, CERN reports CERN-PS/GL 4, GL6, GL7, GL8, and
GL9 (unpublished); E. Crosbie, Argonne Accelerator Group,
Progress Report No. 5, February 24, 1955 (unpublished).

"N. M. Blachman and E. D. Courant, Phys. Rev. 74, 140
(1948); 7~ 315 (1949)-"J.Seiden, Compt. rend. 237, 1075 (1953);D. W. Kerst, Phys.
Rev. 60, 47 (1941);J. P. Blewett, Phys. Rev. 69, 87 (1946).
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FIG. 12. Cross section of radial-sector magnet and coils.

TABLE III. Magnet parameters characterizing a radial
sector accelerator.

Total weight of iron
Total weight of copper
Required current
Required magnet excitation power

9650 tons
670 tons
112 000 ampere turns
5.5 megawatts

where to=A/2Ir and X is the radial separation between
adjacent ridges in units of the radius.

Parameters for a 20-Bev ring magnet will be derived
using this smooth-approximation result and the con-
dition o=2s.I/1V&Ir, the stability limit for a Hill
equation. Later the alteration of these parameters
resulting from exact solution of the linearized differ-
ential equation by the use of the Illiac digital computer
will be shown.

We can choose from many types of injectors —linear
accelerators of 50 Mev, cyclotrons, or, for much lower
energy, Van de Graaf electrostatic accelerators. For the
purpose of this example, suppose we choose an extreme
case in which the ring magnet is able to hold orbits of
5-Mev injected protons at its inside rim and orbits of
20-Bev protons at its outside rim. We can choose
k=82.5, r0=5000 cm, where ro is the mean radius of
the high-energy orbit using 14 000 gauss for the average
field strength at the orbit. This gives r;= 4688 cm as the
mean radius of the 5-Mev orbit. A radial extent of the
magnet gap of approximately d=ro —r;=312 cm is
needed. The ratio of the average field at the high-
energy orbit to the average field at the low-energy orbit
is Hp/H, =203.

Since k=82.5, v =9.15 radial betatron oscillations
around the machine according to the smooth approxi-
mation. To remain within the stability limit for the
linearized difterential equation with varying coefFicients
we must have 2v(E. Choose iV=31 sectors or ridges
crossed in one passage around the machine. This gives
0 =0.6x. We can then choose 0-,=0.268m, so that
v, =4.15. This choice of v and v, avoids the forbidden
lines on Fig. 9. The working point chosen is then in
one of the two largest squares available in (v„I,) space.
The ridge characteristics can now be found by the
second smooth approximation Eq. (13.2) which gives
f/u =218 with the above values of 1V and k.

Thus if we take f= 4, then X=0.00506 in units of the

radius, so that the radial separation of the ridges at the
outside edge is 25.3 cm. This result is only approximate.

The accurate solution to the linearized equations can
be summarized in the form shown in Fig. 8 which
exhibits the "necktie" for the case of a magnetic field
of our prescribed form in the median plane. According
to this diagram, take 0 =0.615m and 17,=0.25~; then
f/wN'=0 303 and II/N'=0075. If we choose 1V=33
sectors, we have: v, =10.15, v, =4.15. Both values are
now in the middle of a difI'erent large square allowed by
the integral, half-integral, and third integral rules. (To
be in the center of the largest allowed squares, the
working point v„v, should be 0.15 units above integers
for both dimensions or 0.15 units below integers for both
dimensions. ) If we again take f= Ir, then w=1/1320, so
Xro ——23.8 cm radial ridge separation.

At this point, consideration must be given to the
possible magnitude of f which can be achieved. The
shapes of magnetic potential surfaces which will produce
a flutter f=~r with 4=150 are shown in Fig. 13. The
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Fro. 13. Spira]-sector equipotentiais for k=150 and f 0.25.
ordinates and abscissas are in the same units.

curves are loci of constant magnetic potential for
several different values of the potential. These curves
were determined by digital computation. They show
deep crevices developing in the surfaces or poles when
the ridge is about 0.13K away from the median plane.
Apparently when the gap between ridges exceeds —,

' of
the radial separation of the ridges, the crevices in the
surfaces occur. These crevices mean that a pole of
opposite polarity is needed in the crevices to produce
the required Gutter when the gap is large. If we do not
want pole faces with these reverse poles embedded in
them, then the gap between ridges must not exceed one
fourth of the radial separation of the ridges. The same
result has been obtained analytically.

Figure 14 shows the calculated shape of the equi-
potential surfaces for f=Ir, The dependenc. e of gap is
shown in Fig. 15 where G is the maximum gap at ridge
tops without forward windings. H we require that the
I 's be constant, f/w must be constant. Thus we plot
Gf/w es f in Fig. 1. We see that the flutter f which
gives the maximum possible gap at the ridges, under
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conditions o consd' '
f tant alternating-gradient ocusing,

~ ~

6=0.275 in units of the ridge separation. The curves
show that flutter factors from 0.14 to 0.36, wit out
crevices in e pothe oles require that the gap be only 10 &

less than the maximum possible gap. These ana y ica
results are simi ar o o'1 t those from digital computation as
already mentioned.

For the example we are considering, we a ro
=2~r0=23.8 cm radial separation between ridges at

th t if we choose 6=0.275)ro, then
6=6.15 cm at the injection radius and 6.6 cm at t e
high-energy radius.

r er at theTo make the magnetic field 203 times larger at t e
high-energy ra iush' h- radius than at the injection radius, this gap

3 unlesswould have to be reduced by a factor of 203 un ess
currents are distributed on the pole face. By placing
such windings between iron ridg, g p'd es the a can be kept
full size at all radii. Thus, by proper winding, G r
could always be about 0.275 times the ridge separa ion,

I.P

.8

.6

,4

.4 .5 .6.2 , 8 .9

e X for fixed tune as a func-FiG. 15.Maximum gap, G, tim s
tion of f. The criterion of no crevice in the pole face is nse . e
field variation in the orbital plane is sinusoida .

l.6

t
58 CM

IIIIIIIII IIIIIIII

35 CM

~ ~

introduction of reverse poles between ridges where it is
most easi y one, a1 d th t is at the low-6eld rim. In practice
h b accomplished by running currents in two

t' 1 a erture. It seems reasonable that the
ou led this way.

V=O

a at the injection radius could be doubled t is way.
V= I.6

A configuration of the ridges and coi s p
field sha e is shown in Fig. 16 which showsV-2.O the correct e s ape

'

V-I 2 iron contours as magne ignetic equipotentials. The location).6—
v=l.o

o curren -cf t-carrying copper between the ridges is s own.
V=.8 Th' current terminates some magne ic po. 8-
V=.6 is c

surfaces, allowing the iron to be brought dowwn to the
't de at successive ridges. Since t e

ll

I l

magnetic field decreases by the same factor between aI.6
X~w

ad„'acent ri ges, e am'a, th mount of back-wound current in
same factor between slots.~+ ""~ ~ ""+i~ the slot decreases by the samf=o . :"--"p g ~ = "

Th the slot at the high-f, eld ridge carries th la -tthe widest gap without crevices in the pole sur ace.
number of back-wound ampere turns. e g

h at the injection radius might be doublenot most how t e gap a e
'

whic is prac i
d db k d t tconstant at all by using orwar

of ower.
g p " yesira e

With thi thod of o idi th fi ld
ld b to c r u t o th id of

ecrease

is is to haveh
'

1 t dl A td t''
h b t d t 1 1'ttl s the s iral

d roduce the field increasing as r", and then
creases y a ac

a oub t 10 times larger than the gap at hig energy and
ld be desirable to 611 this large aperture withwith beam

FORWARD WINDING
BACK WINDINGat the injection time. Actually tiie gap a suc

BACKWARD
YOKE

energies s ou e
ll tions but also the 6.6 CM

the decreasing betatron osci-ations u a
l2CMr it. If wemisa ignmen is1' t distortion of the equilibrium or

dition 3I2 CM
maintain a gap as aa a as large as possible without the a i ion
of opposite poles between ridges, that is i we eep

=0.275lir then the aperture available actually in-

FzG. 16. Spiral-sector magnetic structu
back-wound current carrying cincrease in r. To reverse

decreasing t e gap e owh below about 6.2 cm would require thepoes o ea
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Fzo. 17. Method of bringing conductors back across ridges
at straight sections.

beginning radius at the start of the next sector around
the magnet. Straight sections between sectors provide
the opportunity to bring the conductors back to the
same radius. Since the field changes by about 35% from
ridge to ridge, the gap would have to change by about
35% between the crests of ridges from one end of a
sector to the other. A less drastic change in gap along
ridges results if the sectors, which are about 32 feet long,
are subdivided say 3 times to form approximately 10-
foot lengths with straight sections between. Then the
gap needs to vary only about 12% along a ridge top and
the wires between ridges can come back to the same
radius every 11 feet around the circumference. This is
shown in Fig. 17.

This brings up the problem of straight sections where
the magnet is separated and where the field is approxi-
mately zero. If such cuts in the magnet are made along
approximately radial lines, the machine and the orbits
do not scale. Consequently 0. varies periodically as the
radius of the orbit grows. This problem is one of the
most important being studied by the MURA technical
group and there are indications that the distribution
of the straight sections, such as subdivision of sectors
into several parts as just mentioned, minimizes the
variation of a to a tolerable value with a useful length
of straight section.

There is another example of a method to attain the
desired fmld shape which simplifies some of the problems
and which has been studied in the form of magnetic
models by the MURA technical group. Such a structure
is shown in Fig. 18. The average radial dependence of
field (r~) is produced by back-windings on iron poles
similar to those used in a radial-sector magnet. The
magnetic equipotential surfaces so formed are distorted
or kinked by some other means such as the presence of
iron rods having the same shape as the desired magnetic
equipotentials on the side toward the orbits. These rods
assume their magnetic potential from their positions in
the gap. Since the rods spiral from one radius to another,
they must be segmented with a few nonmagnetic
spacers such as brass washers to prevent magnetic
Aux from traveling along the rod. Such ridges and the
proper 6elds were achieved in the models made by
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FIG. 18. Floating equipotentials which produce sinusoidal
field variation.

F. L. Peterson and T. B. Rife of the MURA technical
group.

An interesting observation which they made shows
that there is the possibility of relaxing the requirements
for a small gap in a spiral sector magnet. They were able
to increase fgreatly above the design figure of 4 without
closing the gap and without using reverse poles or deep
crevices between ridges. It was done merely by deviating
slightly from a simple sinusoidal 6eld variation. A
value of f 0.38 was reached without a great harmonic
distortion of the 6eld in the median plane. Further
studies of this possibility will be needed to show how
much the alternating-gradient term in v, is increased
by the attainable field shapes. Any increase would allow
opening the gap more.

An important question must be answered before it is
known how large a gap is useful. As pointed out in Sec.
9, the motion of a particle in a magnetic 6eld which
causes nonlinear restoring forces generally has a limit
to the amplitude for stable motion or an amplitude
limit beyond which the particle starts to oscillate about
a second closed equilibrium orbit in or outside the
accelerator. If oscillation about this second orbit takes
the particle out of the aperture, the particle is lost. In
the radial direction this limit can be as large as 0.1 to
0.3 of a ridge separation and in the axial direction it is
smaller. The example given does not have an especially
large limit because 0, is near 2~/3. The increase of such
stability limits by suppression of some of the nonlinear
forces would make it worthwhile to open the gap
farther than 0.275 of the ridge separation because more
vertical space useful for betatron oscillations would
become available. For some vertical stability limits
observed with the digital computer, there would be no
value in opening the gap wider because the stability
limit is within the gap available. The sources of the
nonlinear effects are being studied with the purpose of
designing a spiral-sector system to make larger gaps
useful. In general, if the angle I is made smaller so the
oscillations do not cause a large variation in sector
length, the stability limit increases.
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injection) is given as follows (see Fig. 22):

D=—cos
2' -4o

(14.1)

In order to miss an injector structure, a certain mini-
mum rate of acceleration (rate of rise of Aux) at in-
jection is required; this will reduce the duty factor in
practice.

Since the particle equilibrium orbit is not circular
and since its radius changes with acceleration, the
relationship between AQ and the momentum increase
divers from that for conventional betatrons.

The voltage gain per revolution is, in Gaussian units,

~= (1/c) (4/«), (14.2)

where g is the flux in the betatron core. The rate of
increase in energy is therefore

dE (eQ) p d$

dt (22rc) dt
(14.3)

where ~/2~ is the frequency of revolution [Eq. (10.3)j.
EVe have, therefore,

dE (eq
E22rc&

(14.4)

and the required accelerating Qux change is determined
by

where

2' CB
42 41 (P2 Pl)y

u2

)I adp.
2 1 ul

(14.5)

(14.6)

If k is constant, we have, by Eq. (5.14),

(/+1) 1 (p /p )(2+2)/(2+1)

I(,'=Z,
](0+2) 1—(p)/p2)

~ 0+1)
f p'«p' (14.7)

I &+2)

energy storage, and therefore a much smaller condenser
bank and less ac power equipment.

Either the radial-sector or the spiral-sector type of
FFAG magnet could be used for electron betatron
acceleration up to a few hundred Mev, and the design
would be subject to the same considerations as dis-
cussed above for synchrotrons. Since the core Aux
change for a given particle momentum increase is
proportional to the particle period of revolution, the
smaller circumference of the spiral sector type is
doubly important for betatrons. In focusing magnets
designed for the betatron energy range, an N of 10 to
30 appears more suitable than the higher N values
suggested for multi-Bev synchrotrons.

The output beam of electrons from an FFAG beta-
tron would be nearly monoenergetic and spread over a
long time corresponding to the duty factor. Present
betatrons and synchrotrons achieve a lengthened output
beam pulse at the expense of energy homogeneity,
since the electrons are in a sinusoidally varying 6eld at
essentially constant radius. This and the prospect of
beam currents approaching time-average values of
milliamperes makes this an attractive accelerator for
electrons from a few Mev to several hundred Mev.

15. FFAG Cyclotrons

To make semirelativistic particles revolve in a
cyclotron at constant frequency and in orbits that are
approximately circles, it is necessary to have the
average magnetic 6eld increase with radius. In order to
avoid the resultant axial defocusing, alternating-
gradient focusing may be employed. There are a number
of possible magnetic 6eld con6gurations for such a
fixed-6eld alternating-gradient cyclotron. The first such
cyclotron was proposed by Thomas. ' The Thomas
cyclotron is essentially a radial-sector FFAG machine
having three or more sectors with a roughly sinusoidal
field Qutter. Thomas showed that such a machine has
stable orbits for energies up to a limit depending upon
the number of sectors. A considerable amount of
experimental and theoretical work on the Thomas

With FFAG guide 6elds in the 20- to 300-Mev
energy range, the duty factor could be increased by
more than a factor of 104 over that in existing betatrons
and synchrotrons. The beam current increase would
probably be less because of space-charge sects at
injection.

In pulsed-6eld betatrons, large amounts of energy are
stored in the pulsed-guide 6eld magnet gap, and
equipment capable of handling the large circulating
currents and voltages must be used. In FFAG betatrons,
only the accelerating core is pulsed, and it would be a
closed iron circuit which would require much less FIG. 22. Time dependence of betatron flux showing duty factor.
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cyclotron has been carried out at the University of
California, culminating in the successful construction
and operation of two electron models which accelerate
electrons up to half the speed of light. "We will here
discuss briefiy the general features of FFAG cyclotrons
with particular reference to spiral-sector configurations.

In Sec. 10, we have obtained a relation (10.9)
between the total energy E and the mean field index
k for a cyclotron, in which the frequency of revolution
is independent of energy. We have also the approximate
expressions developed in Sec. 7 relating k to the betatron
oscillation frequencies. For spiral sectors, the simple
approximate relation (6.24) holds:

v, = (1+k)'*. (15.1)
Vs: 2
KF: Q &' mc'

2
2 AC'

4
Bmc'

5
4mc'

According to Eq. (10.9), i, is given directly in terms of
the energy by the relation

i.='E/Ep. (15.2)

It is clear that the orbits in such a cyclotron start at
the center at E=Ep with v,=1 (as in a conventional
cyclotron), and that as E increases, successive integral
and half-integral radial resonances are encountered at
energies which are approximately integral and half-
integral multiples of Eo. If we regard the first integral
resonance as the limiting energy, then the maximum
kinetic energy is about one rest energy (actually some-
what less, according to more accurate calculations" ). If
suKciently high dee voltage is applied, and if magnetic
field errors are suSciently small, it may be possible to
drive the particle energy through resonances fast
enough to avoid buildup of oscillations. In any case,
for stability, v must be less than ~E, so that E can
never be greater than about —,'EEO. The predicted
existence (Sec. 9) of a strong third integral resonance at
a,=2m/3, (i,=E/3), may set an even lower limit on
E for a given number of sectors E.

In a radhal-sector configuration in which the number
of sectors is small (X(8), the alternating-gradient
focusing also comes primarily from the q term in Eq.
(5.13), and consequently the relations (15.1) and (15.2)
are still roughly correct and the preceding considerations
are still qualitatively correct. In particular, this is true
of a Thomas cyclotron.

In a cyclotron in which the il term in Eq. (5.13)
predominates, we see from Eqs. (6.24) and (6.25) that
the focusing depends on k and on the quantity

(1 Bil )'
F=2 —

~
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'P D. L. Judd, Phys. Rev. 100, 1804(A) (1955); Pyle, Kelly,
Richardson, and Thornton, Phys. Rev. 100, 1804(A) (1955);
Heusinkveld, Jakobson, Ruby, Smith, and Wright, Phys. Rev.
100, 1804(A) (1955).We are indebted to Dr. Judd for a discussion
of the work done at Berkeley, which is described in University of
California Radiation Laboratory Reports No. 2344 and No. 2435
(unpublished) .' D. S. Falk and T. A. Welton, Bull. Am. Phys. Soc. Ser. II,
1, 60 (1956).

FIG. 23. Working point diagram for a spiral-sector cyclotron.
F is the AG focusing parameter.

The focusing parameter Ii is determined, according to
Eqs. (6.24) and (6.25), by the relation

Ii = i,'+i,s—1. (15.4)

In Sec. 6, we have noted that with spiral sectors, the
optimum flutter factor f is about i~, for maximum
vertical aperture without extra forward pole-face
windings. With this value of f, the focusing parameter
F may be written, with the help of Eq. (6.26),

P=' —,', (tan'f+-,'). (15.5)

pp/2m =Pc/2+8 =c/2xk, (15.6)

where 2' is the wavelength of the radio-frequency
voltage required to drive the dees (we assume first-
harmonic operation). We have therefore the following

In Fig. 23, we plot circles of constant Ii ~s ~, and v, .
Vertical lines of constant k (hence constant E) are
marked in the figure. We show also lines representing
integral and half integral resonances (v„v,=integer or
half-integer) and sum resonances (i,+i,= integer) . As
the energy increases from Eo to E, the workirig point
(i„i,) will trace out a curve connecting the line k=0
with the line K= (E/Ep) ' —1. The form of this working
point curve will depend on the way Ii varies with radius.
In a practical magnet, Ii will almost necessarily be zero
at the center so that the curve will start near (i,=1,
v, =0). DiKculties may be expected in accelerating
particles beyond a point where the working point crosses
any of the resonance lines, particularly integral reso-
nances, or resonances involving the vertical motion
(since the vertical aperture is not large). It is clear from
Fig. 23 that the working point necessarily crosses a
half-integral radial resonance near E=Ep+isEp, and a
sum resonance and an integral radial resonance before
reaching E=280.

In order to get a picture of an FFAG cyclotron, we
note that the frequency of revolution of an ion in a
cyclotron is
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FIELO TRPUt H in Fig. 23 moves along the horizontal v, =1/u2, so that

tan{ ='

(It' —R') I
(15.12)

PEAKS
LD

If we neglect the scalloping of the equilibrium orbit,
we may replace E. by the radius r, and substitute in
Eq. (6.30) to obtain the equation for a spiral ridge in
polar coordinates:

8p
——4 sin —'(r/It). (15.13)

If we assume a sinusoidal field Butter, the function p is

@=1+icosLlV(8 —8p)), (15.14)
FIG. 24. Plan view of ridges in a 6-sector spiral-sector cyclotron.

and the magnetic field is given by

relation between energy and radius:

E/E p K/(V R'——)'. —

The momentum p(R) is

nsc'/e

(15 y)
H=HP=

)&{1+4icosLA'8 —4Ã sin '(r/II)$). (15.15)

p= mcR/(M —R')"*,

the mean magnetic field is

pc mc'/e
H

eR (K' —R') l

and the mean field index LEq. (10.9)$ is

(15.8)

(15.9)

(15.10)

The number of sectors E is, to this approximation, still
arbitrary. If the output energy is to be E=2Ep, (about
1-Bev kinetic energy for protons), then i,='2 at the
output radius, and S must be at least 4, for linear
stability of the betatron oscillations. In order to avoid
the third integral nonlinear resonance at 0.,=2~/3, we
should probably take %=6. In Fig. 24, we plot the
ridges and troughs given by Eq. (15.13) for a cyclotron
with six spiral sectors and an output energy 8=280.
In Fig. 25, we plot E and H es E for such a cyclotron.

The relations (15.6)—(15.10) are exact. In order to
determine the shape of the spiral ridges, we must solve
the equations for betatron oscillations. We can get a
rough idea of the ridge pattern from the approximate
relations (15.1), (15.4), and (15.5). If we combine these
formulas with (15.10), we obtain
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tan'I = +v,'—p.
X2—R2

(15.11)
APPENDIX A. THE SMOOTH APPROXIMATION

I.et the alternating-gradient equation of motion in
one dimension be written in the form

I.et us now assume for example that the working point

2 ' I ' I

d'x/d8'= f(x,8),

where the force f(x,8) is periodic in 8 with period 2~/X.
We will assume that Ã))v, that is, that the betatron
wavelength is long compared with the sector length. It
is then reasonable to seek an approximate solution of
the form

I
Eo Eo @=X+/(X,8), (A.2)

P i I i I p I i I p I ) I i I p I a

0 .I .2 4 .4 4 .6 J .8 .9 A

FIG. 25. Total energy and magnetic field as a function of radius
in a constant-frequency cyclotron. (Eo is the rest mass and 2m ' is
the oscillator wavelength. )

d'X/d8' =F(X), (A.3)

independent of the sector periodicity, and the "ripple"
$(X,8) is periodic in 8 with period 2~/E and with zero
mean, for fixed X. We will assume that the ripple $

where the "smooth" oscillation X(8) satisfies an
equation of the form
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and the derivatives dX/d8, d'X/d8' are small in a sense
to be made more precise presently.

We substitute Eq. (A.2) in (A.1) to obtain

X"+bs+2kxsX'+IXXX"+[XX"=f(X+&, 8), (A.4)

then Eq. (A.9) can be written as a linear equation

&X/d8'= L(g)"—(gi') A 7X, (A.11)

and the approximate solution (A.2) then can be written
in the Floquet form

d'X/d8'= (f(X+/, 8)Avv (A.S)

where primes deonote derivatives with respect to 8. We
now average over 0, keeping X, X', I"fixed, remember-
ing that ($)A„=O, to obtain an equation corresponding
to (A.3):

where

*=s""'L1+g2(8)), (A.12)

~'= (gl )A (g&A. (A.13)

We subtract Eq. (A.5) from (A.4): The above results can be immediately generalized to
the two-dimensional case

be= {f(X+5,8)} 2(x—sX' EXX—X" EXX—
"

(A. 6)

We use the notation introduced in the definition (4.14).
It is easy to see that the last two terms are of order
(vr/22r)2 relative to the first term, and are therefore
negligible if E)&v. The second term is only of order
vr/2r relative to the first, but its effect on the smooth
equation (A.S) can be shown to cancel out to first order.
We therefore neglect the last three terms in Eq. (A.6)
and replace {f(X+/, 8)} by {f(X,8)},i.e., we assume
that {)fx}(({f}.We can then integrate Eq. (A.6) to
obtain, as a first approximation to the ripple,

$= f2(X,8),

in the notation introduced in definitions (4.16) and
(4.17). If we substitute the ripple (A.7) in Eq. (A.S),
we obtain, to first order in $, the smooth approximation

d2~/d82= f(~,s,8),

dsz/d82 =g (x,s,8)

Ke assume a solution of the form

x=X+$,
s=z+ f.

We have the approximate equations

P= f,(x,z 8),

{=g, (X,Z8),

where X, Z satisfy

d'X/d8'= (f)Av+(f2fX)Av+(g2fZ)Avv

d Z/d8 (g)Av+(f2gX)Av+(g2gZ)Avv

(A.14)

(A.15)

(A.16)

(A.17)

d'X/«*=(f)" (f.f )"-
If the force in Eq. (A.1) is linear in x,

f(2:,8) =g(8)x,

(A.9)

(A.10)

"T.Sigurgiersson, CERN report, CERN-T/TS-l, December,
952; CERN-T/TS-3, May, 1953 (unpublished).

d'X/«'=(f)"+(f. f )" (A g)

(Essentially the same result has been obtained by
Sigurgiersson. s') To the solution of Eq. (A.8) is to be
added the ripple (A.7) to obtain an approximate
solution to Eq. (A.1). The second term on the right
in Eq. (A.S) can be integrated by parts and rewritten
in the form

where averages are over 0 with X, Z Axed.
In practice, we have found that Eq. (A.13) gives

values of v or o (=22rv/iV) which are accurate to within
about 10% of ((gi2)A, )v, provided that t (gr')A„)'&A/4.
A few nonlinear cases have been studied, and solutions
of Eqs. (A.8) and (A.17) have yielded results in fair
agreement with more accurate calculations except near
stability boundaries. Stability boundaries where the
betatron wavelength becomes infinite are fairly ac-
curately predicted by Eqs. (A.S) and (A.17) but the
(more interesting) stability boundaries due to sector
resonances when the betatron wavelength becomes a
small integral number of sectors are riot predicted at
all by the smooth equations.


