COULOMB EXCITATION OF ELEMENTS

It is worthwhile to comment that the agreement of
measurements of B(E2) between different laboratories
and from conversion electron or gamma-ray obser-
vations is still no better than a factor of 2. It is noted
that results for Ta differ from those of Stelson and
McGowan! by about 209, while the results on Re and
Ir are in fair agreement with those of Huus! but vary
as much as 509, from those of Bernstein and Lewis?®
and Fagg e al.® The Hg results are consistently lower
than those of the Saclay group.* Some of the dis-
crepancy can be traced to choice of conversion co-
efficients, but there appears to be a need for more
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accurate measurements, especially when one attempts
to determine mixing ratios from the intensity ratio of
crossover to cascade radiations.
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The effect of multiple scattering on bremsstrahlung and pair production is considered. The probability
of these processes decreases considerably at energies >10% ev.

The calculations are carried out with the aid of the density matrix. The formulas thus obtained yield the
probability of pair production and bremsstrahlung for arbitrary electron and photon energies.

I. INTRODUCTION

T high energies, when the directions of the

particles participating in pair production and
bremsstrahlung almost coincide, large longitudinal dis-
tances begin to play an important role. Thus, if a
photon of wavelength X is emitted during brems-
strahlung, a certain length I~%/(1—v/¢) is found to be
essential, v being the electron velocity. Landau and
Pomeranchuk!? have shown that multiple scattering
over this length leads to a significant decrease of the
probability of the aforementioned processes. An esti-
mate of the cross sections for bremsstrahlung and pair
production in the limiting case of ultra-high energies
(E>>10% ev) is given in reference 2.

The intensity of emission of soft photons by electrons
of arbitrary energy has been computed previously.? In
that paper the classical formula for intensity of emission
by an electron moving along a given trajectory was
averaged over all possible trajectories. This procedure
was carried out by means of the distribution function
which was averaged over the positions of the atoms of
the scattering medium and which satisfies the usual
kinetic equation.

!L. Landau and I. Pomeranchuk, Doklady Akad. Nauk
S.S.S.R. 92, No. 3, 535 (1953).

2L. Landau and I. Pomeranchuk, Doklady Akad. Nauk

S.S.S.R. 92, No. 4, 735 (1953).
3 A. Migdal, Doklady Akad. Nauk S.S.S.R. 96, No. 1, 49 (1954).

The aim of the present paper is the deduction of
formulas for the probability of bremsstrahlung (formula
61) and pair production (formula 63) per unit path in
a condensed medium for arbitrary photon and electron
energies. This is done by connecting the transition
probability with the density matrix and then using the
equation for the density matrix averaged over the
scattering atom coordinates deduced previously.*® At
low energies formulas (61) and (63) transform into the
Bethe-Heitler formula®; in the limiting case of ultra-high
energies the formulas confirm the estimation obtained
in reference 2. At photon energies much lower than
that of the electron, formula (61) changes into the
expression obtained in reference 3. Finally, for very
soft photons, when the deviation of the dielectric
constant from unity is important, formula (56) of the
present paper yields in the limiting case the same
results as those of Ter-Mikaelyan.”

Formulas (61) and (63) can be used to construct a
theory of shower production in condensed materials at
energies exceeding 104 ev.

( ; ?S.) Migdal, Doklady Akad. Nauk S.S.S.R. 105, No. 1, 77
1 .

®A. Migdal and N. Polievktov-Nikoladze, Doklady Akad.
Nauk S.S.S.R. 105, No. 2, 233 (1955).

® B. Rossi and K. Greisen, Revs. Modern Phys. 13, 240 (1941).

M. L. Ter-Mikaelyan, Doklady Akad. Nauk S.S.S.R. 94,
No. 6, 1033 (1954).
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II. RELATION BETWEEN TRANSITION PROBABILITY
AND AVERAGED DENSITY MATRIX
The probabilities for bremsstrahlung and pair pro-
duction must be averaged over all possible distributions
of the atoms of the scattering material. We first express
the radiation transition rate through the density matrix
and then make use of the equation for the averaged
density matrix obtained in references 4 and .
Restricting our treatment to the first approximation
with respect to the electron-radiation field interaction
and denoting the electron proper functions in the
scattering medium by ¥, and the initial electron wave
function by ¥, we get

16,0 = z ('//sl eiHt [ giktg—iHt I ‘ps,)cs,o
o
. - (%sleiH'Aei“e_mtlsbo),
where A is the radiative transition operator
A=a- e,e®Te(2r/k)}

¢, is the polarization vector, k the photon wave vector,
H the electron Hamiltonian which includes the po-
tential of all the scatterers

H=H0+Zm V(r"“rm) ’ Hlps:Edb&

The system of units in which m=#%=¢=1 has been
chosen. The electron and photon y functions have been
normalized per unit volume.

The radiative transition rate is then given by

d ¢
Qs———;‘l ¢s|2=2 Reés*c, =2 Ref (o] eH1A e~ H |Y,)
¢ 0

X (s] eHtA e HE | o)ei -0ty (1)

We now determine the rate of transition to all final
states of the electron. For bremsstrahlung, which we
first consider, one must sum over all values of s corre-
sponding to positive electron energies. Introducing an
energy sign operator (projection operator) K=[H
+|E(p)|1/2| E(p)|, where p is the electron momentum
operator, and applying the relation

2o ¥ (@ (o) =8 (x—2),

we obtain

t
0= % 0i=2Re [ (ol om0 4]y
Es>0
’ Xeikt=tugy,  (2)

At high energies the operator K in (2) is essentially
the same as the free-electron operator Ko= (Ho
+|E,°|)/2| E,°|. Replacing K by Ko, we see that the
coordinates of the scattering centers enter (2) only
through factors of the form e+#¢,
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We shall now show that it is possible to average
independently over the scatterer coordinates entering
through the factors e*i#% and e+t  Indeed, the
nuclear coordinates in the first expression correspond
to collisions which take place in a time interval 0—¢;,
whereas in the second expression the coordinates corre-
spond to scatterers which undergo collisions at a later
period #,—1.

Suppose that a large number of collisions takes place
during a time ¢; in this case, after one averages over
the first collisions, the factors of the type eti#% will
practically cease to be dependent on the collisions
taking place at times close to #;, and this is just why
independent averaging was found to be possible.

We now write the integrand of (2) as the matrix
element of the product of the operators in the represen-
tation of the free-electron wave functions

‘pp)\___up)\empq_

Assuming o= ¢p,** (where po is the initial electron
momentum) and designating the average by the sign
( ), we obtain from (2)

t
(©)=2 Re f drel, @3)
0
where
T={(o| eHMATK 7 A ¢~ Hre—Htr | i)
= X {((poho| e p1) (pih1| ATK oe™H7Ae=H 7| pok)
P1A1p2i2
X (p2ha2| € H 1| poho)),

and 7=7¢—1t;. As the factors ¢¥‘#'t and ¢**#" are sta-
tistically independent, we find

? \ ((p2hal e | poho) (poho| €| piky1))
X{(ph| ATK e A7 | pody)).

I:

It should be noted that at high energies, where small
relative changes of the electron momentum are im-
portant, scattering does not change the spinor state, i.e.,

(PN |eX | p'N') =85, » (N | X ¢ p'N),
with an error of the order |p’—p|/p; and in this case
I=3 ((pahol €4 poho) (Doko| €#41| p1ko))
pm X (Dho| ATK e #7 A= H7| pAo).  (4)

The first factor in (4), considered as a function of the
variables pi, ps, and #,, satisfies the same equation as
the averaged density matrix

((pho|p| P2X0))={((Drho| e~ Ht1pgei | po)o)).

It follows from this equation*5 that the difference
p:—P: remains constant during scattering (this is a
result of the uniformity of the scattering medium). As
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the first factor in (4) ‘equals

6p1,000p2,00 for #,=0,

it may be written as follows:

((phol €| poho) (Poho| eHH| Pio))
=f0)\o)\0(p1,t1)5p2,m- (5)

The second factor in (4) may be written as the sum
of the operator products in the momentum represen-
tation. Using (5) and the expression for the operator 4,
we obtain

<(p1)\0| A TKOeiH‘rA g iHT I p1>\())>

2we?
=—( X (piho] @ & |p1i—kAy)
k DM

EM>0

X (p1—k | 7| p—3k \y)
X (p—3k \i| -] p+3kAo)

X (p+3kXo| e~ 7| pAg)).  (6)
Here .
(S| @2, Goo) = (ugr™, @ £,15"),

where #g;, »#1-2 are spinor functions.
Let

((p+3k )\o]e_iH"I prao) (p1—k A4 eiHTI p—3kA))
= fi*M(p,7).

The equation coefficients and initial conditions (10)
and (12) for fi*oM(p,7) and foro*o(p,,i1) are independent
on the spin orientation and therefore, on summing over
Mo and A\, for a fixed energy sign, one may drop the
spinor indices in these functions.

Inserting (5) and (6) in (4), summing over the
photon polarization, and averaging over the initial
state spins, we get

Li=3 2 I
oo
e’ dp, dp
= f £(plyp)f0(p1,tl)fk(p,7')(27r)3 Y (7
where
£pup)= X (pho]e-g|pi—k))
E’\°).\°£;\:>o

X (p—3k\i| e & p+3kAg). (8)
It may be noted that the quantity

(p+3k Xolp| p—3k 1) |
= (p+3k Nol e 7| pido) (P1—k M| 67| p— 3k o)
=(p+3ik )\01 e—iH'rpoein] p—1ik)\)

1813

satisfies the equation dp/d7=—i[H,p]. Moreover,

Spp= X ($w1]p| 1)

gipt

= Z;, (pho| e 7| pN1) (PA1] €= H7| pido)
pM

i.e., p is an element of the density matrix in the mo-
mentum representation. We shall call the quantity
fx(p,7) the averaged density matrix.

The problem of averaging the transition rate reduces
to determination of the averaged density matrix and
to evaluation of the sum (8) and the integral (7).

III. EQUATION FOR AVERAGED DENSITY MATRIX

As was shown in* the averaged density matrix
satisfies the equation

3/ (p,7)

. F1(Eppy— Ep3i™) i (p,7)
T

/

dp
=””rf(27r)3| Vs |0 (Eps3i™— Epr3i)

+3é (Ep’—%k)‘l"Ep—%k)‘l)}
XLferM(p',r)— firM(p,7)],  (9)

together with the initial condition which follows from
the definition of fy(p,7):
JM(p,7) [7=0=0p,p1 -k /2. (10)
This equation differs from the classical kinetic
equation in that the difference E; 3™ — E, 1™ enters
the left-hand side instead of (0. E/dp) -k and the collision
term is the half-sum of the usual collision terms for the
momentum p-+3ik and energy E,i3™ and for the
momentum p—3k and energy E, 3. For kKLp, (9)
changes into the classical kinetic equation for the kth
Fourier component of the distribution function. The
function fo(p1,t1) satisfies the equation

d for*o(py,t1) dy’
S f

| Vo —p1|%8(Epiro— E )

dty (27)3
XLforr(p',t) = foro(pyta) ], (11)
and initial condition
Jor(p1,t1) | 11=0=5851,0. (12)
From (11) and (12), we find
[ oot (13)
(2m)?

It follows from (11) and (12) that fo** differs from
zero only for p1=po, and therefore a function v,(0,1)
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can be introduced, in accord with the formula

d
fo)‘o)\o(pl’tl) ! =6<P1“‘P0)’1)0(6,t1)dpld0)
(2m)?

'1)0(0,51) I H=0= 6<0))

(14)

where 0= (p1— po)/po is a vector in the direction of the
difference between po and p;. From (13), we obtain

f 20(0,£1)d0=1.

It is easy to see that fi(p,r) differs from zero only
for values of p which are close to g=po—32k. For r=0,
it follows from (10) that

(14)

k2

pok
p2=p02+z—pok+pok<1~cos<p1,k>>=g2(1+;°-2mﬁ),
4

where 7, is a small angle between p; and k.
We now introduce vectors corresponding to the
angles between p and k and between p’ and k:

n=p./g; n'=0p./8 g=po—3%k. (15)

Here p, and p,’ designate the projections of p and p’
on the plane perpendicular to k. The & functions in the
right-hand part of (9) may be rewritten as follows

gk(n—n%
4(g=£3k)

Thus during collisions the modulus of p remains
approximately constant, with an accuracy 6p/p~n
One may use the approximate constancy of p to
determine the function v(»,7) from the formula

5(Ep'iék—Epi%k)§5(P'“‘i’ )N '=p).

dp
fx(p, )-—=5(? gv(n,7)dpdn.

(16)
(2m)?
From condition (10), we obtain
(p1—3k). pu
v(0,7) |rm0=8(n—n0); Mo=——=—oy, (17)
4 4

where 1o is the vector of the angle between p;,—3ik
and k. Vector 5, is related to vector 8 introduced in the
foregoing by the relation

P1 Po D Po Pu
=———=——nt+n——=—~-7F9= —no-H)

Po Do Po Po Do bo

The vector of the angle between n=k/k and the
initial direction of the electron has been denoted by 9.
From definition (15), we obtain

(18)

p= (pn)n+-p,~gn+gn;

p+ikpintgn; p—3ik=(po— 19

k)n+gn.

MIGDAL

The difference Eppi*— E,p_3™ in (9) takes the form
Epiy0—Ep M

=[1+4(pon+gn)*i—[14+-[(po—Ek)n+gn P}

1 g2
=k[1— 112]. (20)
2po(po—Fk)  2po(po—k)
Using (16) and integrating (9) over p, we get
dv(n,7)
= i dtr)otn,)
ng*
~— [ IVl I*otn' ) —v(m,3dn, 1)
(2m)?
where
Zk p.L,
a=k(1 ) —_—; p'=—. (21)
2po(po—k) PO(Po—k) g
For V(f) we adopt the expression
v dnZe? 1 )
= ,  K~— 22
Vi a
where ¢ is the Thomas-Fermi radius a~137/Z%.
Inserting this in (21), we get
v
—+i(a—3bn)
ar
4”2264]' o Lo, 1) —o(m,7)], (23)
= Lv(n',7)—ov(n,7)], (23
g J L' —n)+6:T
01=K/g.

Expanding v(ﬁ',r) into a power series of n'—n, we
obtain from (23) the Fokker-Planck differential
equation:

dv
—+i(a—3bnM)v=qAp,
ar

2wnZlet 0, B
g= In( -—) =—
2 0,/ g

The quantity 6, may be determined from the condi-
tion of applicability of the Fokker-Planck expansion.
The first term of the series expansion is

02049
-——021A,,v=1]n( ) -

01

(24)

The next term is of the order

2946 9% 1
———~’—A 0.

o 0% 9t 9?
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The quantities

o0
f vekTdr= f
0 0

will be needed in further calculations. The equation
for ¥’ can be obtained from Eq. (24) by replacing e by
ad=a—k.

The significant values of 5* are determined by the

relation
(@' —3bn*)o' ~bytv'~qA ' 5 n~(g/b)}.
This estimation will be confirmed below.
Thus, the condition for expansion of v into a series
has the form

0:*(b/q)~n(65/6,); 6x~(g/b)IL}; L=In(65/6:). (26)

At sufficiently high energies, §; may be of the same
order of magnitude as the angle of diffraction by the
nucleus which is equal to 1/gR, and in this case the
upper limit of integration with respect to |g’'—n| is
determined by the quantity 1/gR. Putting R=20.57,23,
we obtain, for 6,>1/gR,

L=In(1372/0.523)=2 In(190/Z%). 27)

IV. SUMMATION OVER ELECTRON SPIN AND PHOTON
POLARIZATION

It is not possible to carry out the summation over Ao
and \; in expression (8) in the usual manner since the
momentum Subscripts in the spinor functions are
different.

The summation in (8) can be reduced to the determi-
nation of the trace of two-row matrices. The spinor
functions are taken in the form

{ 1 l

0
1
2

=‘(1)} o= 1+[g2/(1E e

where o1, 02, and o3 are the Pauli matrices. The “3”
axis is oriented along n.
Substitution in (8) gives

0

’dr and o =e%*my

(25)

”"“:{[cg/(;:+1)1vu}N°’

oo (pi—k) opuwo;
e(ovp)=3 Sp[[ ; ]
i=1,2 Epi—x+1 Epi+H1
gio(p+3k) e(p—3k)oy
x[ G ’ ]] (29)
Ep+§k+1 Ep—%k’i‘l
We introduce the notation
L p+ik
Ept1’ Eppt1
(30)
p—k p—3k
Ep—x+1’ Eppt1
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From (29) we then get
£(p,p) =% X Sp(e:Bo+Ag0,) (¢:0C+Doo)
i=1,2

=BD+AC— (Bn)(Cn)— (An)(Dn). (31)

Each of the terms in (31) is close to unity. However,
as further calculations show, the complete expression
is of order #2. We now express (31) as a sum of small
terms, in each of which only the first term of the
expansion in powers of 1/pq is retained.

Each of the vectors A, B, C, and D can be expressed
as the sum of two terms, one of these being parallel and
the other perpendicular to n: A=A;+A,; A|n; A;1n
and similarly for B, C, and D.

From (31), we then obtain

L=(D;—C;)(Bi—A1)+B:Ds+A,C,.
The magnitude of each term in (32) is of order

(32)
~1/ps* or 9%

Using (17), (19), and (30), we find with the required
accuracy

1 1
A1=C1=1’——; B1=l)1=1‘— 5
Do Po—k
(33)
§Mo Mo &n im
A2=-“‘; Bz— 5 C2=—"; D2= .
Po Po-k Do po—k
Insertion in (32) gives
£= K1+ Kamo,
(34)

B et (k]
P (po—k)E pe(po—k)

V. PROBABILITY OF BREMSSTRAHLUNG

Let W ,(po,k)dk designate the probability of emission
per unit length of a photon having an energy lying
between %k and k-dk. The initial electron ¢ function is
normalized per unit volume or, for ¢=1, per unit flux;
thus from formulas (3) and (7), we obtain

Z (Q) ud
0 (2 )
E’)‘0>0
k2
o f dretr f 1de. (35)

Inserting into (7) the expressions for vy, v, and £
defined by formulas (14), (16), and (34), we obtain

we?
f ndo="- f 20(0,12)0(m,7) [K1-+ K s Jd6dndd.
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Expressing 0 through o and & by formula (18), we get

f de="" f ‘Uo(""lo+1? tl)v(n,r)

X (K1+K 2ﬂﬂ0)—dﬂodﬂd’8

Using the normalization condition (14’) for v, we obtain

W,= Ref dre”"f(KrI-Kz'ﬂTlo)
(ZW)2P0 0

Xv(n,7)dndne. (36)

We denote the significant value of 7 in this integral by
70. From (24) and (25), we obtain the estimates

774NQ/b: TONl/bnle/(bQ)%)

If the time of motion of the electron in the medium;
¢, is much greater than 7o, the upper limit of the integra1
in (35) with respect to 7 can be replaced by infinity
and W, ceases to depend on &.

Only the case £>7¢ or I>>; will be considered below;
1 is the thickness of the scattering material and ly=c¢7.

For a condensed medium (#=3X102 cm™3), one
obtains from (37):

37

’72"’47 0-

po 1

lh~——X10"% cm. (38)
VEZ

For Z=10, E;=10" ev (po=101/5X 105=2X10), and
k=1%po, one obtains /;~0.2 cm.

For #£3>79, the angular distribution of the photons
can easily be found. The width of the angular distri-
bution defined by the function 20(0,/;) is of the order
(6*)n~qt1. However, n*~mng*~qr; therefore the function
v9(gno/po+9, 41) can be replaced by 2,(8,) and the
photon angular distribution is given by the expression

W (Po,k,8)d0 = v (8 )W , (po,k)d8. (39)
A
1.0
L—"] 7/
0.9
. L1
’ ¢Gs) /
o7 Aets)
0.6 /
Qa5
04 / /
0.3 /
02 /
[oX]
{ | -
00 Ol 02 03 04 05 06 07 08 09 1O W 12~ s

FiG. 1. Values of the_fﬁnctions ¢(s) and G(s) of Eq. (47).
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Thus, the photon angular distribution is the same as
that for multiple scattered electrons with an energy po.
Let

fv(n,r no)dno="hi(n,7); fv(n,f;no)nodnoER(n,f)-

Since the coefficients in Eq. (24) do not contain s,
the equations for %; and R will coincide with (24) and
the initial conditions %:(9,7)|,—0=1; R(n,7)|.m0=7
follow directly from (17).

The coefficients in Eq. (24) contain only #?, and
the solution can therefore be written in the form
hl(ﬂyT)::h(Z:T); R(‘mT)=ﬂg(Z,T); where Z=%772; b and
g satisfy the equations

*h 19k
~—|—¢(a b2)h=2zq —-——l——-—)

022 2z 0z
(40)
d% 29g
———+1,(a bz)g= 2zq(——+——-
922 2z 9z
We introduce the functions
¢1(z)=f e*7h(z,7)d7,
’ (41)

¢2(z)=zf e*7g(z,7)d7.
0
Then, according to (36),

kg’
27I' Poz

Wr’—‘ RC[K1f ¢1dZ+2K2f qudz}. (42)
0 0

The equations for ¢; and ¢, can be obtained by
integrating (40) over 7 and using the initial conditions -
for % and g:

21"+ o1 +i(a+-B2) o1=— 1/2q,
20y +i(a+B2) o= —12/2g,

(43)
(44)

TaBLE I. Values of the functions ¢(s) and G(s) of Eq. (47).

s #(s) G(s)
0 0 0
0.05 0.258 0.094
0.1 0.446 0.206
0.2 0.686 0.475
0.3 0.805 0.695
0.4 0.880 0.800
0.5 0.931 0.875
0.6 0.954 0.917
0.7 0.965 0.945
0.8 0.975 . 0.963
0.9 0.985 0.975
1.0 0.990 0.985
1.5 0.998 0.994
2.0 0.999 0.998
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where

k—a k kg?
o= = >0; B=——1-—>0.

29 4po(po—k)q 2po(po—k)q

The solution of Eqs. (43) and (44) and the compu-
tation of the integrals in (42) are carried out in the
Appendix. The following results are obtained:

(45)

0

1 ®© 1
Ref e1dz=—G(s); Ref padz=—¢(s),
0 12qa2 0 6aﬁq

(46)
T 1 p sinsz
G(s) =48s2(—-——f e‘”—————dt) ,
4 2Jy  sinh(y/2)
*© x
¢(s)=12s" f cothEe‘“ sinsxdx— 6ms?,
0
(47)

1 k )%
s —
8g \ po(po—k)gq

The function ¢(s) was introduced in reference 3. The
values of ¢(s) and G(s) are presented in Table I, and
are plotted in Fig. 1.

The asymptotic behavior of ¢ and G is given by the
formulas

0.012
¢s—>0—')6s ’ ¢s—>cc_)1 - H
s4
(48)
0.022
G125, Gomr1— .
s4

For sX1, one obtains

Ref mdz
a 1

which confirms the estimate of the significant values of
77, 1o given above.

Substitution of (24), (34), (45), and (46) into (42)
yields

kg? G
= { 1 T 2K 2 }
2rpl  12¢o? 60Bq
2¢? (49)
B{kG(s)+2[po*+ (po—k)*Je(5)} ;
T Pozk

B=27n3z%"n1n(0:/6,).
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The estimate (26) for 6, can be expressed in a more
convenient form:

b~ (q/)HLA= (1/26) LA~ L /gst.

Put s2>1; then

(50)

&2

2k3{k2+2[1’02+ (po—k)*1}.

TPo

W,=

This expression differs from the familiar formula (see,
for example reference 6) only by a factor of the order
of unity under the logarithm sign. The uncertainty of
the factor under the logarithm sign is a result of
application of the Fokker-Planck method. Solution of
the integral equation (23), a difficult task, should yield
more precise formulas.

Since the functions ¢ and G are close to unity for
s=1, a convenient formula can be obtained by defining
the numerical factor under the logarithm sign in the
following manner:

L=1In(85/6:) =1In(190/Z3s). (51)
In this case, W, is defined for s<1, and for s=1 it

coincides with the usual expression.
For s«1, Egs. (48) and (49) yield

8¢?
W,= Bs[ pi+ (po—k)*]
Thok
e
=— 02 o—k)? 52
—oors po_k))u) B (52)

In this case, the emission proba.bility is proportional
to the square root of the density.
For k<K po, one obtains from (49) (see reference 3)

8¢?

W,=—DBg¢(s).
3k )

Ly

(53)

At very small photon energies the deviation of the
dielectric constant from unity must be taken into
account. The dielectric constant e enters the initial
formulas through normalization of operator 4 and also
enters the integral over 7 in (3), where e**7 should be
replaced by e7; w=Fk/y/c.

By considering the frequencies w>w,= (4rnZe?)d,
one obtains

we?
&£l ——; w=—% ( +——)
o?

Taking account of € in the normalization factor of 4 is
equivalent to multiplication of W, by a factor which is
close to unity and which can therefore be dropped.

(54)
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Thus, the effect of the dielectric constant on the
calculations is equivalent to substitution of the quantity
a defined in (45) by o':

w—a w—k wa?
o = =a+—-—~%’a(1+ﬁ02—-—*).
2q 2q o?

(55)

Using (49) and (47) one obtains for small % instead
of (53) a more general formula

8¢? 1 wa?
W,=—B'¢(sy)~, v=1+pi—,
¥ w?

Uz

(56)

where B’ differs from B in that under the logarithm
sign s is replaced by sy. At sy>1, ¥>>1 one finds

4 k
W,=—Ze'L—,

kv (57)

which is in agreement with the result obtained in
reference 7 for this limiting case. Thus, radiation in a
medium is not attended by any infrared catastrophe
difficulties.

In order to introduce the shower unit of length, it
will be convenient to define a function £(s) which takes
into account the variation of L with energy:

£(s)=14(Ins/Insy), 125285
=27 s<31
s1¥=2%/190.

Here, s; is the value of s for which L=2 In(190/2}%).
Formulas (51) and (58) yield

B=2mne*Z%£(s) In(190/2%) =

()

= to(MC/fL) =2.59X 1010t0,

3w X137£(s) /10,
4ne4Z2
to' 137

(59)

where o is the shower unit expressed in centimeters.
From expression (47) for s, one finds

1( 2klo 3
s=1
’ po(po—k)137E(s)

kiy 3
=1.37X 103(———) .
po(po—Fk)

The probability of emission per shower unit length is

W to = i {FG(s)+20p+ (po—E)Jo(s)}.  (61)
3?02’2

MIGDAL

In lead (%=20.5 cm), for k=1p,, we obtain for s=1
the values po=2X10%, E,=5X10" ev; for s=0.2
which corresponds to a 309, deviation of (67) from the
Bethe-Heitler formula, we obtain Ey=1.25X10% ev;
the value s=s; corresponds to an energy E,;=22X 108 ev.

VI. PROBABILITY FOR PAIR PRODUCTION

Let W,(k,po) denote the probability per unit length
of production of a pair, the electron of which possesses
an energy lying between po and po-+dpo (W, is summed
over all possible positron states).

The probability for the inverse process W, may be
found by summing over negative-energy states in (8)
and by changing the sign of EM in (9). The final
formulas are obtained from those given above by
replacing po—k with k— po. For example, the quantity
g=3(pot+po—k) changes into F=21(po— pot+k)=31k.
Thus, the probability W,, which differs from W, only
in statistical weight, can be obtained from (49) by
replacing po—k by k— po.

Do 262
Wy =k_W —;——B(s) {G(s)

1—%)2}»(3)}. (62)

Here 3 differs from s only in that py—£% has been
replaced by k— po. The probability of pair production
per shower unit of length is

2
+2[—Pi+
k2

W oty —E—;;—)IG(S)H[ﬁ—'— 1—%)2]¢(§)}. (63)

At 3=1 this expression transforms into the familiar
formula for pair production.® For 3«1, we get

4£(3) (po* Po\?
W olo' = [——+(1—— 15
k k2 )3

(64)

Formulas (61) and (63) are solutions of the brems-
strahlung and pair production problem for high energies
in condensed media.
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APPENDIX

Equations (43) and (44) can be solved by the
Laplace method. Assuming

W)= f er(@)eds,

one obtains from (43)

A—ia 1
Wt ——y=—, (1A)
A48 2gA(N*H-1B)
Hence
1 1 AMHA\H
u\)=——— —)
2q (Alz'—)@)* )\1—>\
131
o v G B
EA—) N\ £
where
a
N=Ble T = githt,
2%

The arbitrary constant &, is determined from the condi-
tion of finiteness of the function ¢;(z) at z— . For
this it is necessary that the function #(\) does not
possess any singularities in the right semiplane, i.e.,
E1=)\1.

" Expression (42) contains

Re f e (2)dz=Rersou(N).
0

AtA=0, %(\) has a logarithmic singularity and therefore
limy,o#(\) depends on how X\ approaches zero. It
follows from the expression

Reu(\)= f exp(—A%) (Reg: cosN'z— Ime; sin\'z)dz;
0

A=N044)\,

that it is sufficient for A to approach zero along the
real axis in order that the equality

f Repidz=Reu(0)
0

be satisfied.

1819

Separating from integral (2A) the divergence at
£=0, we obtain

11 Mg 1
Re u#(A)= Re ———[f [
A0, argh =0 2—0, arga =0 2¢ A1 { A\2—g)t
A
() st
M+¢ >\1 AA
as
2G)-5
A—0, argx =0 7\1
Re u(d)
A—0, argA =0

T 1

SBq 298

[ i) -

Inserting x=tanh(¢/2) and separating the imaginary
part, we find

T 1 p® sinst
G(s)=48s2(——— f est——dt ); (3A)
4 2J, sinh (¢/2)

« 1 k )%
2(26)t 8g\po(po—Pk)g/

In order to solve Eq. (44), it will be convenient to

introduce f= ¢2— (3/2¢B),
zf""+i(a+B2) f=a/2¢B. (4A)
Inserting v(A\) = Se~**fdz, we obtain
0 a/2
 A—ia f( )— (a/ q@\) (5)

>\2+‘Lﬂ A48

¢2(0)=0 and therefore f(0)=—1/2¢gB. The solution of

Eq. (5A) is
)\1"‘7\)
M—2A

th( —’“) C:Ls)

Rev(0) is calculated in exactly the same manner as
Rex(0).

A——.._._.
v(N) 208 NN
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Performing once again the substitution £/A;=x« and
separating the divergent part from the integral, we
obtain

1 L l—x\*
Re 2(A\)=—— Re {)xlf (————) dx
A—0, argA =0 2qﬁ2A -0, argh =0 0 1+x

- AGE) Q)

Inserting x=tanh({/2) and separating the real part,
we get

1 Ta ©  sinst
Re v()\)=——[ ——ta f e —idi
A—0, argh =0 2qB2 4 0 smht

1/8\* 0° cosst+sinst
) [ty
2\2/ J, sinh (¢/2)

0 ) 1
Repadz= f Refdz=—-a(s), (6A)
j; ’ 0 6a8g

Thus,

MIGDAL
where
®  cosst+sinst ®  sinst
¢>=3sf e‘“—————-——dt+24s2f et dt— 6ms?
0 cosh?(¢/2) 0 sinht

0

=125 f coth(¢/2)es¢ sinstdt— 6ms?. (7A)
0

The functions ¢ (s) and G(s) can be expressed through
the logarithmic derivatives of the I" function.?

& (s) =128 — Im[ ¥ (s—1s)+ ¥ (s+1—is5) ]— 3}

=65—6ms?+2453 Y, ——,
k=1 (k+s5)24-s?

(84)
G(s) =485 3w+ Im¥ (s+3—1s)]
) 1
=127s2— 485 Y

i=0 (ksH3)s"

These formulas are useful for the tabulations of ¢(s)
and G(s).

8 Relations (8A) were obtained by S. A. Heifetz.
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Time Variation of Primary Heavy Nuclei in Cosmic Radiation*
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The time variation of heavy nuclei in the primary cosmic radiation was investigated by using the method
of a moving-plate mechanism which was flown to an altitude of 100 000 feet by a Skyhook balloon. The
results obtained clearly indicate a time variation of primary heavy nuclei Z210. The variation is charac-
terized by its maximum at around 9:00 A.M., having an amplitude of 34+4-79%, at the maximum. Comparisons
are made with other experimental data on the same subject and also with the neutron intensity variation
on the same day at Climax, Colorado. Possible consequences of this rather large fluctuation of the primary

heavy nuclei are discussed.

I. INTRODUCTION

THE primary cosmic radiation has long been
studied as to the intensity, the energy spectrum,
the chemical or isotopical composition.! The investiga-
tion of the intensity variation with time, among others,
is of importance in order to understand the problem of
where and how the primary cosmic radiation is ac-
celerated or modulated. Some information on.this sub-
ject has been obtained from the observations at sea
level or at mountain altitudes using counters, ioniza-

* Supported in part by a joint program of the Office of Naval
Research and the U. S. Atomic Energy Commission.

1 Summaries on these subjects are given, for example, in J. G.
Wilson, Progress in Cosmic-Ray Physics (North-Holland Publish-
ing Company, Amsterdam, 1952); W. Heisenberg, Kosmische
Strahlung (Springer-Verlag, Berlin, 1953).

tion-chambers, and neutron detectors. For example,
from these observations we know approximately the
type of intensity variations that exist in the cosmic
radiation, the energy dependence of the intensity
variation of a certain type, etc.

These investigations, however, are based on the ob-
servations of secondary effects which were generated in
the atmosphere by the interactions of the primary
radiation; thus implying, among others: (1) that it is,
in general, impossible to detect the intensity fluctua-
tions of very low-energy primary particles which do not
give rise to observable effects in detectors deep in the
atmosphere, and (2) that at the present time the
variations of heavy nuclei which constitute only a
small fraction of the primary cosmic radiation cannot



