
CQULOM B EXC I TAT ION OF ELE M ENTS

It is worthwhile to comment that the agreement of
measurements of B(E2) between different laboratories
and from conversion electron or gamma-ray obser-
vations is still no better than a factor of 2. It is noted
that results for Ta diGer from those of Stelson and
McGowan' by about 20%, while the results on Re and
Ir are in fair agreement with those of Huus' but vary
as much as 50% from those of Bernstein and Lewis"
and Fagg e$ al."The Hg results are consistently lower
than those of the Saclay group. '4 Some of the dis-
crepancy can be traced to choice of conversion co-
efBcients, but there appears to be a need for more

accurate measurements, especially when one attempts
to determine mixing ratios from the intensity ratio of
crossover to cascade radiations. ]
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The effect of multiple scattering on bremsstrahlung and pair production is considered. The probability
of these processes decreases considerably at energies &10"ev.

The calculations are carried out with the aid of the density matrix. The formulas thus obtained yield the
probability of pair production and bremsstrahlung for arbitrary electron and photon energies.

I. INTRODUCTION

A T high energies, when the directions of the
particles participating in pair production and

bremsstrahlung almost coincide, large longitudinal dis-
tances begin to play an important role. Thus, if a
photon of wavelength X is emitted during brems-
strahlung, a certain length / X/(1 —v/c) is found to be
essential, v being the electron velocity. Landau and
Pomeranchuk' ' have shown that multiple scattering
over this length leads to a signi6cant decrease of the
probability of the aforementioned processes. An esti-
mate of the cross sections for bremsstrahlung and pair
production in the limiting case of ultra-high energies
(E))10"ev) is given in reference 2.

The intensity of emission of soft photons by electrons
of arbitrary energy has been computed previously. ' In
that paper the classical formula for intensity of emission
by an electron moving along a given trajectory was
averaged over all possible trajectories. This procedure
was carried out by means of the distribution function
which was averaged over the positions of the atoms of
the scattering medium and which satis6es the usual
kinetic equation.

' L. Landau and I. Pomeranchuk, Doklady Akad. Nauk
S.S.S.R. 92, No. 3, 535 (1~53).

2 L. Landau and I. Pomeranchuk, Doklady Akad. Nauk
S.S.S.R. 92, No. 4, 735 (1953).' A. Migdal, Doklady Akad. Nauk S.S.S.R. 96, No. 1, 49 (1954).

The aim of the present paper is the deduction of
formulas for the probability of bremsstrahlung (formula
61) and pair production (formula 63) per unit path in
a condensed medium for arbitrary photon and electron
energies. This is done by connecting the transition
probability with the density matrix and then using the
equation for the density matrix averaged over the
scattering atom coordinates deduced previous'ly. 4' At
low energies formulas (61) and (63) transform into the
Bethe-Heitler formula'; in the limiting case of ultra-high
energies the formulas con6rm the estimation obtained
in reference 2. At photon energies much lower than
that of the electron, formula (61) changes into the
expression obtained in reference 3. Finally, for very
soft photons, when the deviation of the dielectric
constant from unity is important, formula (56) of the
present paper yields in the limiting case the same
results as those of Ter-Mikaelyan. '

Formulas (61) and (63) can be used to construct a
theory of shower production in condensed materials at
energies exceeding 10"ev.

4A. Migdal, Doklady Akad. Nauk S.S.S.R. 105, No. 1, 77
(1955).

~ A. Migdal and N, Polievktov-Nikoladze, Doklady Akad,
Nauk S.S.S.R. 105, No. 2, 233 (1955).' B.Rossi and K. Greisen, Revs. Modern Phys. 13, 240 (1941),

~M. L. Ter-Mikaelyan, Doklady Akad. Nauk S.S.S.R. 94,
No. 6, 1033 (1954).



A. B. M I 6DAI.

II. RELATION BETWEEN TRANSITION PROBABILITY
AND AVERAGED DENSITY MATRIX

The probabilities for bremsstrahlung and pair pro-
duction must be averaged over all possible distributions
of the atoms of the scattering material. We Grst express
the radiation transition rate through the density matrix
and then make use of the equation for the averaged
density matrix obtained in references 4 and 5.

Restricting our treatment to the Grst approximation
with respect to the electron-radiation Geld interaction
and denoting the electron proper functions in the
scattering medium by f, and the initial electron wave
function by Po, we get

(1) Q (P I
eiHtA eikte iHE Ig—,)c,o

= (y I
e'Ir'A e'&'e 'Ir'

I P )

where A is the radiative transition operator

A=a e,e '"'e(2or/k)'.

a„ is the polarization vector, it the photon wave vector,
B the electron Hamiltonian which includes the po-
tential of all the scatterers

P=Ho+Q„V(r —r ); HiP, =E,f,.

We shall now show that it is possible to average
independently over the scatterer coordinates entering
through the factors e+'~" and e+'~(' "& Indeed, the
nuclear coordinates in the Grst expression correspond
to collisions which take place in a time interval 0—t~,
whereas in the second expression the coordinates corre-
spond to scatterers which undergo collisions at a later
period t~—t.

Suppose that a large number of collisions takes place
during a time t~, in this case, after one averages over
the Grst collisions, the factors of the type e+'~" will
practically cease to be dependent on the collisions
taking place at times close to tj, and this is just why
independent averaging was found to be possible.

We now write the integrand of (2) as the matrix
element of the product of the operators in the represen-
tation of the free-electron wave functions

where

(Q) =2 Re dre'"I
~0

+ x —g xeiP. r
u u

»suming go=op, "' (where po is the initial electron
momentum) and designating the average by the sign

( ), we obtain from (2)

X (poXo I

e-'""
I poXo)),

The system of units in which m=h=c=l has been 1=&(AIe' "AtK«' "Ae ' 'e ' "I4'o))
chosen. The electron and photon f functions have been
normalized per unit volume. Pl) lP2X2

The radiative transition rate is then given by

pC

Q, =—Ic, I'=2 Rec,*c,=2 Re ' (poIe'~"Ate '~"If,)
dt 0

and v-=t —ti. As the factors e+i~" and e+'I' are sta-
tistically independent, we find

2 2 e 0 0 0 0 e 1 1

We now determine the rate of transition to all final

states of the electron. For bremsstrahlung, which we

first consider, one must sum over all values of s corre-

sponding to positive electron energies. Introducing an

energy sign operator (projection operator) K= [H
+ I E(y) I j/2 I E(p) I, where p is the electron momentum

operator, and applying the relation

g, P,*(x)P,(x') =b(x x'), —

X((PiXiIAtKoe' 'Ae ' 'IPoho)).

It should be noted that at high energies, where small
relative changes of the electron momentum are im-
portant, scattering does not change the spinor state, i.e.,

(pX I

e+'~'
I
p'X') =By, g (pX

I

e+'~'
I
p'X),

with an error of the order
I
p' —p I/p; and in this case

I= 2 &(yo~o I
e '""

I pro) (pro I e'""
I y~&o)&

we obtain
pl p2

X (pghoI A tKoe' Ae—'
I poXo). (4)

~t
Q= g Q, =2Re (pole"~"AtKe'~~' ''"Ae '~'IA)

At high energies the operator K in (2) is essentially

the same as the free-electron operator Ko= (&o

+ IE 'I)/2 IE' I Replacing K by Ko, we see that the

coordinates of the scattering centers enter (2) only

through factors of the form e+i~'.

The erst factor in (4), considered as a function of the
variables y&, yo, and t&, satisfies the same equation as
the averaged density matrix

&(y~~oI&Iyo~o))=&(phoIe ' "poe' "Ipho)).

It follows from this equation4' that the difference
po —y~ remains constant during scattering (this is a
result of the uniformity of the scattering medium). As
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the first factor in (4) equals

~us, uo~u2, uo

it may be written as follows:

satisfies the equation Bp/Br = i—[B,p] M. oreover,

spp= 2 (g t It I gu )
glgll

= 2 (pinhole'"'I pxi)(p) ile '~'Ippo)

((po'Aole ' "I ppho)(pphole' "Iyiko))
= fo"»'(yi, ti)~»» (5)

The second factor in (4) may be written as the sum
of the operator products in the momentum represen-
tation. Using (5) and the expression for the operator A,
we obtain

((pro I
A tEoe'~'Ae '~'I pro))

27M

( Z (parol~ e.lpi —k&i)
PXI

Here

x (pi —k Ail e'"'I p ——',k xi)

X(y—-', kXilu e
I y+ok bio)

X (p+-', k &ol e '"'I yiAo)) (6)

(gitiil e ~ e„l gogo) = (egi"', n e,ggo"'),

where Ng~, 2» ~ are spinor functions.
Let

((p+-,'k Xo I
e ' '

I piXo) (yi —k Xi
I

e' 'I p ——,'k X,))
=f Xpky(p ~)

The equation coeKcients and initial conditions (10)
and (12) for f~"o "'(p,r) and fo"o"o(pi,ti) are independent
on the spin orientation and therefore, on summing over
Xo and X& for a fixed energy sign, one may drop the
spinor indices in these functions.

Inserting (5) and {6) in (4), summing over the
photon polarization, and averaging over the initial
state spins, we get

Ii———', Q I
XO, t

QXO)0

7N dp] dp
&(pi,y) fo(pi, ti) f~(p, ~) (&)

(2~)o (2~)o
where

&(yi, y)= Z '

(yi&ole e.lyi —k&i)

i.e., p is an element of the density matrix in the mo-
mentum representation. We shall call the quantity
fq(p, r) the averaged density matrix.

The problem of averaging the transition rate reduces
to determination of the averaged density matrix and
to evaluation of the sum (8) and the integral (7).

III. EQUATION FOR AVERAGED DENSITY MATRIX

As was shown in4 the averaged density matrix
satisfies the equation

gf Aping(p ~)+i(g, Xo g Xy)f ioit(p ~)
8

+g(g, ~Xi g Xz))

X I fg"»i(p', 7)—folio" i(p, 7)j, (9)

together with the initial condition which follows from
the definition of fj, (p,7):

f& ' '(P r) I
=o=~o, oi —&I2.

This equation differs from the classical kinetic
equation in that the diGerence E~+,~~'—E~ ~~~' enters
the left-hand side instead of (BZ/8p) k and the collision
term is the half-sum of the usual collision terms for the
momentum p+-', k and energy E,+l~"o and for the
momentum p —iok and energy Eo lq"'. For k«P, (9)
changes into the classical kinetic equation for the kth
I"ourier component of the distribution function. The
function fo(yi, ti) satisfies the equation

8fo"o"o(p»ti) t' dp'
I
I"-»I'~(~»"'—& "')

gati " (2or)'

and initial condition

XOXIY
~XO gal)0

fo""o(pi,ti) I i,=o=&»,oo.

X(p—ik&il ir ~ s„l p+ —k& ). (8) From (11) and (12), we find

(12)

dpi'
fo"o"o(pi,ti) =1.

(2or)'

It may be noted that the quantity (13)
(y+-', k Xol pl y—-,'k Xi)

= (p+ok &ol e ' 'I pi&o) (pi —k 4I e' 'I p —ok 4) It follows from (11) and (12) that foi»o differs from
= (p+-', k Ao I

e '~'poe'"'I —
p —-', k Xi) zero only for pi ——po, and therefore a function wo(6, ti)
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can be introduced, in accord with the formula

dpi'
fo"'"'(y, t~) =B(P —Po)vo(e, t,)dP,de,

(2v.)' (14)

The difference E~iq"' —Zo;q"& in (9) takes the form

„X,

= L1+(P~+gn)'j' —f1+I (Po—&)n+gnÃ'.,(e,t,) I „=,=b(e),

where e= (y&
—po)/p, is a vector in the direction of the

difference between po and pq. From (13), we obtain

g2
=k 1— Q2

2po(po —&) 2po(po —&)

Using (16) and integrating (9) over p, we get

(2o)

(14') Bv(o1,r)
+i(a——,'bg') v(rt, r)

87

Sg
I V(g(n' —n)) I'{v(n' r) —v(n, r) )dn, (21)

(2or)'~

It is easy to see that fK(p, r) difFers from zero only
for values of P which are close to g=Po —+ok. For r=0,
it follows from (10) that

k2 POA
p'= poo+—pok+ pok(1 —cos(pg, k)) =g'I 1+ gp I,

2g'

where rt~ is a small angle between p~ and k.
We now introduce vectors corresponding to the

angles between p and k and between p' and k:

where

1
a=hi 1—

2po(po —&) &

gk p~n'= (21')
Po(Po —&) g

For V(f) we adopt the expression

n=y. /g; O'=P. '/g; g=pO .I -(»-) krZe2
V(f) =

'+K' aHere p~ and p~' designate the projections of p and p'
on the plane perpendicular to k. The 8 functions in the
right-hand part of (9) may be rewritten as follows where a is the Thomas-Fermi radius a 137/Z&.

Inserting this in (21), we get

88
+i(a —,'brj) v——

87

g&(n"—n') i
8(&'+:~—&v+;~)=bi P P~,— I—=b(P P). —

4(g~-', u) )

(22)

Thus during collisions the modulus of p remains
approximately constant, with an accuracy hp/p~rp.
One may use the approximate constancy of p to
determine the function v(g, r) from the formula

4nZ2e4 p dg'
Lv(n', r) —v(n, )3, (23)

g' ~ L(n' —~)'+8~'j'

8g=K/g.
dp

fK(p, r) =b(P g)v(rt, r)dPdrt-
(2or)'

(16) Expanding v(rt', r) into a power series of rt' —ot, we
obtain from (23) the Fokker-Planck differential
equation:From condition (10), we obtain

Bv
+i(a ,'—bg') v =q—A„-v,

87(pg ——,'k), p„
v(~, r) I,=o=b(~ —~o); »=

g g (24)
2~~Z"4

lnl —
I
=—.

g (8y) g
where ohio is the vector of the angle between p~ ——',k
and k. Vector rto is related to vector 6 introduced in the
foregoing by the relation

t "8d8 t 8oy

The vector of the angle between n=k/k and the
initial direction of the electron has been denoted by 8.
From de6nition (15), we obtain The next term is of the order

p= (pn)n+p =gn+got
y+-,k=Pon+gg; p ——,Ir—(Po—k)n+ get.

t'~' etN 8'v 1
8' ~82—A„V.

my~ g

The quantity 02 may be determined from the condi-
tion of applicability of the Fokker-Planck expansion.P&»»» y&& g

)
The 6rst term of the series expansion is

PO PO PO PO PO PO
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The quantities

"p U p

v'd v and v'= e'~'v

will be needed in further calculations. The equation
for v' can be obtained from Eq. '(24) by replacing a by
c'= a—k.

The significant values of p2 are determined by the
relation

(a' ioh'—')v'

baal'v'

qA v' rP (q/b) &. (25)

This estimation will be conlrmed below.
Thus, the condition for expansion of v into a series

has the form

8$(b/q)& ln(82/8i); 8o (q/b)&L&; L= ln(8&/8i). (26)

At suKciently high energies, 82 may be of the same
order of magnitude as the angle of diR'raction by the
nucleus which is equal to 1/gR, and in this case the
upper limit of integration with respect to rod

—
p1r is

determined by the quantity 1/gR. Putting It'.—0.5roZ&,

we obtain, for 8o) 1/gR,

L=ln(137'/0. 5Z&) =2 ln(190/Z&). (27)

From (29) we then get

Z(pi, p) =$ P Sp(o;Be+Aeo;)(o,~C+Deo, )
i~1,2

= BD+AC —(Bn) (Cn) —(An) (Dn). (31)

Each of the terms in (31) is close to unity. However,
as further calculations show, the complete expression
is of order rP We. now express (31) as a sum of small

'

terms, in each of which only the first term of the
expansion in powers of 1/p, is retained.

Each of the vectors A, B, C, and D can be expressed
as the sum of two terms, one of these being parallel and
the other perpendicular to n: A= Ai+Ao, A&rrn; Ao J n
and similarly for B, C, and D.

From (31), we then obtain

L= (Di—Ci)(&i—Ai)+BoDo+AoCo. (32)

The magnitude of each term in (32) is of order

~1/po ol'

Using (17), (19), and (30), we find with the required
accuracy

IV. SUMMATION OVER ELECTRON SPIN AND PHOTON
POLARIZATION

It is not possible to carry out the summation over )«
and Xi in expression (8) in the usual manner since the
momentum subscripts in the spinor functions are
diferent.

The summation in (8) can be reduced to the determi-
nation of the trace of two-row matrices. The spinor
functions are taken in the form

A1——C1——1——;
po

81=D1=1-
po —k

go1 o

2= Bp ——

po

g'g
~ 0

po —& po

2=Ei+Eop1go,

Insertion in (32) gives

po —&

(33)

lVt7, V1=
t~C/(~. +1)3v. 0

(28)

g'Lpo'+(po —~)'j (34)
K2=

po'(po-&)' po'(po-&)'
0 1

E02=
1+V/(&.+1)'7

V. PROBABILITY OF BREMSSTRAHLUNG

where a1, 0.2, and era are the Pauli matrices. The "3"
axis is oriented along n.

Substitution in (8) gives

o' %(pi—k) EFpio' '

&(pi, p)=-: 2 Sp +
Zpi —k+1 Epi+1

o,o (p+-', k) e(p ——',k)o;- l

X + . (29)
&p+,o+1 &p )o+1

We introduce the notation

Let W„(po,k)dk designate the probability of emission

per unit length of a photon having an energy lying
between k and &+de. The initial electron f function is
normalized per unit volume or, for c=1, per unit 8ux;
thus from formulas (3) and {7),we obtain

k2

W„=-', g (Q)d@
i, , v J (2pr)'

gX~p

2 Re dao'"' Iid8. (35)
(2s.)' "o

P1

+pl+ 1

pi —k

p+-', k

+p+k&+1

p —-,'k

Ep so+1

(3o)

Inserting into (7) the expressions for vo, v, and 2
defined by formulas (14), (16), and (34), we obtain

m'e f
) I dS= vo(B,t )v(g, ) [Xi+Kop1go jdBdp1d4

k
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lore' ( g
uo~ ~o+8, ti lu(rf, r)

& po
Igd4 =

2

( ~ ) d d d~ ) t(ttr, r; s7o)ds7p—=hi(rf, r); ) u(rt, r; rto)rtpdrto= —(rt, r).
0

Fxpressing 8 through rtp and 5 by formula (18), we get Thus, the photon angular distribution is the same as
that for multiple scattered electrons with an energy pp.

Let

Using the normalization condition (14') for sp, we obtain

e'g'k
W, = Re dre'" t (Z+Zqqo)

(2 )'p '

Xs (rt, r)drtdrtp. (36)

We denote the significant value of T in this integral by
rp. From (24) and (25), we obtain the estimates

q/b, o 1/brP 1/(bq)'*, rt' q o. (37)

Since the coefficients in Eq. (24) do not contain s7p,
the equations for hi and R will coincide with (24) and
the initial conditions hi(rf, r) ~, p= 1 ' R(rt, r)

~
~ p=rt

follow directly from (17).
The coeKcients in Eq. (24) contain only rP, and

the solution can therefore be written in the form
hi(rt, r) =h(z, r); R(s7,r) =rtg(z, r), where s=-', rt; h and
g satisfy the equations

p8'h 1 Bh)
+i—(a bz) h—=2zq

~
+——

BT (as' s az&

po 1—X~0—~ cm.
Qh Z

(38)

If the time of motion of the electron in the medium ~

is much greater than Tp, the upper limit of the integra
in (35) with respect to r can be replaced by infinity
and 8"„ceases to depend on

Only the case t)&Tp or l)&l~ will be considered below;
l is the thickness of the scattering material and l~ = cTp.

For a condensed medium (I=3X10" cm '), one
obtains from (37):

8g (8 g 2 Bg)—+i(a—bs)g =2zq
~

+-—
BT EBs' s Bsj

We introduce the functions

q i(z) = )t' e's'h(s, r)dr,
a

q s(s) =s " e'"g(s, r)dr

(4o)

(41)

For g= 10, Ep 10"ev (Pp = 10"——/5X 10P=2 X 10")&and
h= ispp, one obtains 4 0.2 cm.

Fol f))Tp, the angular distribution of the photons
can easily be found. The width of the angular distri-
bution defined by the function sp(8, ti) is of the order
(0')A„qti. However, rP rtps qr; therefore the function
sp (grtp/po+ f), ti) can be replaced by vp (il, t) and the
photon angular distribution is given by the expression

W„'(p„h,e)dS=so(8, t)W„(po,h)d5. (39)

Then, according to (36),

e'hgs
Re Ei psids+ 2Es posdz . (42)

~ p2sl pp

The equations for p& and q» can be obtained by
integrating (40) over r and using the initial conditions
for h and g:

LO

0.9

spsi"+ v i'+i (o +Ps) v i= —1/2q,

z sos +$ (o +th) los = —s/2q,

(43)

(44)

0.8 TAnr. z I. Values of the functions g(s) and G(s) of Eq. (47).

0.6
G ( s)

0.5

02

O. l

Ir
GO 0 I 02 09 0.4 0.5 0.6 0.7 0.8 0.9 I.O I.I l.2 s

FIG. 1. Values of the functions p(s) and G(s) of Eq. (47).

0
0.05
0.i
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.5
2.0

0
0.258
0.446
0.686
0.805
0.880
0.931
0.954
0.965
0.975
0.985
0.990
0.998
0.999

G (s)

0
0.094
0.206
0.475
0.695
0.800
0.875
0.917
0.945
0.963
0.975
0.985
0.994
0.998
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where

)0; P=
4Po(Po k)—q

kg'

2Po(Po —k)q
)0. (45)

8o (q/b) &L&= (1/2P) &L& L&/gs'. (50)

The estimate (26) for 8o can be expressed in a more
convenient form:

The solution of Eqs. (43) and (44) and the compu-
tation of the integrals in (42) are carried out in the
Appendix. The following results are obtained:

Put s&1; then

28
B{k'+2Lpo'+(Po-k)'j).

3orpo'k

sinst(or 1 t"
G(s)=48s'! —— ' e " dt !,

&4 2"o sinh(t/2)

X
@(s)=12s' coth-e —'* sinsxdx —&ns',J,

!s=—!—
8g &po(po-k)q&

Re ooids= G(s); Re gods= 4 (s),
& o 12qao ~ o 6aPq

This expression differs from the familiar formula (see,
for example reference 6) only by a factor of the order
of unity under the logarithm sign. The uncertainty of
the factor under the logarithm sign is a result of
application of the Fokker-Planck method. Solution of
the integral equation (23), a difficult task, should yield
more precise formulas.

Since the functions P and G are close to unity for

(4y) s=1, a convenient formula can be obtained by defining
the numerical factor under the logarithm sign in the
following manner

L= ln (8o/8i) = ln (190/Z&s'*). (51)
The function g(s) was introduced in reference 3. The
values of @(s) and G(s) are presented in Table I, and
are plotted in Fig. 1.

The asymptotic behavior of p and G is given by the
formulas

In this case, lV„ is de6ned for s&1, and for s=1 it
coincides with the usual expression.

For s«1, Eqs. (48) and (49) yield

Se'

4 8M~6s )

0.012
4 s~~~i—

s'

W„= aspp, '+(p, —k)'j
orpo'k

0.022
6, 0

—+12ms'; 6, „—+1—

e' ( 8
I Cpo'+(po —k)'j (52)

~po' (kpo(po —k) &

For s& 1, one obtains

s4 I

In this case, the emission probability is proportional
to the square root of the density.

For k((po, one obtains from (49) (see reference 3)

Re pmdz
a 1 (2q)

gp ~g
Ps QP 4b)

Re ygdz

which con6rms the estimate of the signiicant values of
g', qo' given above.

Substitution of (24), (34), (45), and (46) into (42)
yields

e'kg'! G
W, = Ei +2Eo

2'po' 12qa' 6apq

.28 (49)
&{k'G()+2~P'+(po—k)'~~()) '

3orp(Pk

8=2s.z'e'e ln(8o/8, ).

Se'
W„= ay(s).

37rk
(53)

k. ( 1M:-1— ; o~= =k! 1+-
2 ~') (54)

Taking account of e in the normalization factor of A is
equivalent to multiplication of 8', by a factor which is
close to unity and which can therefore be dropped.

At very small photon energies the deviation of the
dielectric constant from unity must be taken into
account. The dielectric constant e enters the initial
formulas through normalization of operator A and also
enters the integral over r in (3), where e'o' should be
replaced by e'"', oo= k/go.

By considering the frequencies o&))ioo= (4irNZe )&,

one obtains
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Thus, the eGect of the dielectric constant on the
calculations is equivalent to substitution of the quantity
n defined in (45) by n'.

(g —a (o —k
t=a+ =—a! 1+p,2

2q 2q
(55)

Using (49) and (47) one obtains for small k instead
of (53) a more general formula

(56)

which is in agreement with the result obtained in
reference 7 for this limiting case. Thus, radiation in a
medium is not attended by any infrared catastrophe
di%culties.

In order to introduce the shower unit of length, it
will be convenient to define a function P(s) which takes
into account the variation of L with energy:

where 8' differs from 8 in that under the logarithm
sign s is replaced by sp. At sp&1, p)&1 one Ands

4 k
8'„=—Ze4L --,

3'Ir po

In lead (to—0.5 cm), for k= ~ipo, we obtain for s=1
the values P0=2X10'to, Eo=5X10" ev; for s=0.2
which corresponds to a. 30% deviation of (67) from the
Bethe-Heitler formula, we obtain ED=1.25&(10" ev;
the value s = s~ corresponds to an energy Eo—2)& 10"ev.

VI. PROBABILITY FOR PAIR PRODUCTION

I.et W, (k,po) denote the probability per unit length
of production of a pair, the electron of which possesses
an energy lying between po and po+dpo (W„ is summed
over all possible positron states).

The probability for the inverse process S„may be
found by summing over negative-energy states in (8)
and by changing the sign of E"' in (9). The final
formulas are obtained from those given above by
replacing po —k with k —po. For example, the quantity
g=-,'(po+po —k) changes into g=-,'(po —po+k) =-', k.
Thus, the probability I/I/„, which divers from 8'~ only
in statistical weight, can be obtained from (49) by
replacing po —k by k —po.

pa' 2e'
[W„= W,= B(s) G(s)

P2 3~/

po' ( po) '
+2,+! 1—

I &(~) (62)
k & k)

$(s) = 1+(lns/ins, ), 1&s)~s,
s&1

2 $(Sy

s,& =Z&/190. Here s differs from s only in that po —k has been
replaced by k—po. The probability of pair production

Here, si is the value of s for which 1.=2 In(190/Z&).
Formulas (51) and (58) yield

8=2~ee4Z'$(s) ln(190/Z') = —',s X137$(s)/to',

1 4Nt, 4Z' t'190 ~
in]

137 EZ&)

3o'=to(mc/k) =2.59X10 fo,

(59)

, ~(~)! po' ) po~'
G(&)+2, +I 1—

I y(~) (63)
3k ! O' L. k)

At s=i this expression transforms into the familiar
formula for pair production, ' For s«1, we get

where to ls the shower unit expressed in centimeters.
From expression (47) for s, one finds , 4k(~) po* ) po&'

W~tp'= +! 1—!!s.
E k)

2kto'

I po(pp —k)137m g(s) & Formulas (61) and (63) are solutions of the brems-
strahlung and pair production problem for high energies

37X 103! ! . (60) in condensed media.
(po(po —k) &

The probability of emission per shower unit length is ACKNOWLEDGMENTS
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APPENDIX

1 1t t"'d$ 1
Re

i ~, «sx e 2q Aili, $ (Xi2—P)~
Re e(X)=

X-+0, arg) 0

Separating from integral (2A) the divergence at

Equations (43) and (44) can be solved by the
Laplace method. Assuming

m(X) =
) yi(s) e—"'ds,

0

one obtains from (43)

Hence

P —io.
Q+ Q=

X'+ip 2qlw. (X'+ip)
(1A)

as

t'Xi —$) " 1 1
X! !

——+—ln—
E) i+/) Xi lI i X

Re —ln! —
!=—,

&.-e, «s& -0 Xp 4X) 4p

Re e(X)

1 1 (Xi+Xq &

I())=-
2q (X,2—X') ~ A,—Xl

'A~, argX ~0

1 ~'dx 1 p1 —xq ~

Im
gpq 2qp J, x (1—x')~(1yx)

where

(
X ! !, (2A) Inserting x= tanh(t/2) and separating the imaginary

"~ «l i'—&')' &l i+&& part, we 6nd

Q
~
—in /4

2 k

—pye i+/4— poO

Repids= G(s);
12gn

The arbitrary constant $i is determined from the condi-
tion of finiteness of the function yi(s) at s~~. For
this it is necessary that the function e(X) does not
possess any singularities in the right semiplane, i.e.,
$1 ~1~

Expression (42) contains

Re q (s)ds=Reg„oN(X).

sinst(s 1
G(s) =48s'! —— e-" dt !; (3A)

(4 2& 0 sinh (//2) j
n 1 (

2(2p)' gg &Po(Po—&)q&

In order to solve Eq. (44), it will be convenient to
introduce f= p2 —(i/2qP),

sf"+i(n+Ps) f=n/2qP.

y(O) —(~/2qPZ)

x'+ip x'+ip

At lI. =0, I(X) has a logarithmic singularity and therefore Inserting v(X) = J'e "*fdz, we obtain

limy oe(X) depends on how X approaches zero. It
follows from the expression

(4A)

(SA)

f
Rel(X) =

q»(0) =0 and therefore f(0)= i/2qP T—he solu. tion of

Eq. (5A) is

be satisfied.

Re q&ids =Rel (0)
Jo

that it is sufhcient for X to approach zero along the
real axis in order that the equality

2qP Xi2—X' EXi—XJ

t
"'(

x
p) &x,+g)

Rev(0) is calculated in exactly the saxne manner as
Reu(0).
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cosst+sinst sinst
$=3s e " dt+24s', e " dt 6s—rs'

4O sinhtcosh'(t/2)
1 p' (1—x

Re .()t) = Re
x~o, arsx=0 2' x~o, arsx =0 & p t 1+x) (7A)=12s' ' coth(t/2)e "sinstdt 6r—rs'

Jp
I" dx- t1—xq a -

t'Xry
~

x &1+x/ EX) j
The functions p(s) and G(s) can be expressed through

the logarithmic derivatives of the F function.

Performing once again the substitution $/Xt=x and where

separating the divergent part from the integral, we

obtain

00

=6s—6srs'+24s' P
&=t (k+s)'+s'

m-n r sinst
Re «(X) = ~ —+—cz e " dt

x-+0, arsx =o 2qp' l 4 "s stnht
G (s) =48s'(-,'sr+ Im@ (s+-', —is)]

Inserting x=tanh(t/2) and separating the real part, P(s)=12s'{—ImL%"(s—is)+%(s+1—is)]——',sr)

we get

(8A)

Thus,

1 (Pq & r" cosst+sinst
g
—st dt~

2 &2P "o sinh(t/2) I

1
= 12srss —48s' Q

s=s (k+s+-')'+s'

Re@gds=
Jp

Refdz= y(s),
6npg

These formulas are useful for the tabulations of p(s)

(6A)
and G(s).

a Relations (8A) were obtained by S. A. Heiietz.
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Time Variation of Primary Heavy Nuclei in Cosmic Radiation*

MASATOSHI KOSHIBA AND MARCEL SCHEIN
Department of Physics, University of Chicago, Chicago, Ittirsois
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The time variation of heavy nuclei in the primary cosmic radiation was investigated by using the method
of a moving-plate mechanism which was Bown to an altitude of 100 000 feet by a Skyhook. balloon. The
results obtained clearly indicate a time variation of primary heavy nuclei Z&10. The variation is charac-
terized by its maximum at around 9:00A.M. , having an amplitude of 34+7% at the maximum. Comparisons
are made with other experimental data on the same subject and also with the neutron intensity variation
on the same day at Climax, Colorado. Possible consequences of this rather large Quctuation of the primary
heavy nuclei are discussed.

I. INTRODUCTION

HE primary cosmic radiation has long been
studied as to the intensity, the energy spectrum,

the chemical or isotopical composition. ' The investiga-
tion of the intensity variation with time, among others,
is of importance in order to understand the problem of
where and how the primary cosmic radiation is ac-
celerated or modulated. Some information on. this sub-

3ect has been obtained from the observations at sea

level .or at mountain altitudes using counters, ioniza-

*Supported in part by a joint program of the Once of Naval
Research and the U. S. Atomic Energy Commission.

~ Summaries on these subjects are given, for example, in J. G.
Wilson, Progress il Cosmic Ray Physus -(North-Holland Publish-
ing Company, Amsterdam, 1952); %'. Heisenberg, Xosmische
Struhlgng (Springer-Verlag, Berlin, 1.953}.

tion-chambers, and neutron detectors. For example,
from these observations we know approximately the
type of intensity variations that exist in the cosmic
radiation, the energy dependence of the intensity
variation of a certain type, etc.'

These investigations, however, are based on the ob-
servations of secondary eGects which were generated in
the atmosphere by the interactions of the primary
radiation; thus implying, among others: (1) that it is,
in general, impossible to detect the intensity Quctua-

tions of very low-energy primary particles which do not
give rise to observable sects in detectors deep in the
atmosphere, and (2) that at the present time the
variations of heavy nuclei which constitute only a
small fraction of the primary cosmic radiation cannot


