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A model of a deformed nucleus in which the spheroidal collective field is steadily cranked about a fixed axis,
as introduced in previous papers, serves as a convenient approximation expected to reproduce some of the
dynamic inertial properties of the collective motion. The independent-nucleon behavior in a rotating har-
monic oscillator potential, deformed by the presence of the open-shell nucleons, gives the rigid-rotation
moment of inertia and is discussed here with an attempt at graphic clarity. This result is much larger than
observed and attention is here focused on the shortcomings of the harmonic oscillator approximation,
although, as suggested by Bohr and Mottleson, the discrepancy may also be largely due to the internucleon
interactions which have not been calculated adequately and are here neglected. The 1d—2s shell is treated as
a tractable illustrative case. The characteristic harmonic-oscillator degeneracy of the undeformed levels
within the magic-number groups, such as the 1d and 2s levels, profoundly aRects the perturbation calculation
of the moment of inertia through the energy denominators. Removing this degeneracy by lowering the states
of high l (as required in heavier nuclei for the magic numbers) has the effect of increasing the calculated
moment of inertia above the rigid-rotation value in most cases near the beginning of the shell and reducing it
in most cases near the end of the shell. The preponderance of prolate deformations is also discussed.

I 'HE efjective moment of inertia of a distorted
nucleus may conveniently be investigated by

constraining the fictitious potential (first approximation
to a self-consistent field) defining the wave functions to
rotate with constant angular velocity 0 about a fixed
axis in space. ' This procedure gives a rotational angular
momentum of the form'

&&I-.)o=»'2'I (sIL. IO) Is/(Z, «& —Z, &»), (1)

arising from the admixture of excited states i in a
perturbation theory by a relatively small Coriolis term
—AI,Q in the Hamiltonian. The essential approximation
in this model is the neglect of "recoil" fluctuations in the
angular velocity of the distorted eGective potential
contributed by the collective behavior of the many
nucleons, leaving the angular momentum not strictly a
constant of the motion. This may be accepted as an
alternative to the approximation involved in assuming
the "interaction" or "fiuctuations" to be small in other
treatments which in other manners formulate the sepa-
ration of the internal and collective aspects of the
motion. '~

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'D. R. Inglis, Phys. Rev. 96, 1059 (1954). Erratum: For a
correction in the method of deriving the expression for the
rotational energy, see Appendix.

~ A. Bohr and B.R. Mottelson, Kgl. Danske Videllskab. Selskab,
Mat. -fys. Medd. 30, No. 1 (1955}.See also S. A. Moszkowski,
Phys. Rev. 103, 1328 (1956); G. Luders (to be published).' A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 26,
No. 14 (1952);Rotational States of A tomic Nuclei (E.Munskgaards
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Early calculations' ' with this model have employed
three-dimensional harmonic oscillator potentials and
wave functions, elongated or Battened along an axis
perpendicular to the axis of rotation. The method was
first applied to artificially distorted closed-shell nuclei,
and it was shown' that the closed-shell nucleons in this
approximation contribute only the small moment of
inertia characteristic of irrotational Quid Row. ' In actual
nuclei the distortion is due to the presence of additional
open-shell nucleons and the observed moments of
inertia are, in most cases, about five times that large so
it appeared on this basis that the closed-shell nucleons
contribute much less than their proportionate share of
the moment of inertia.

Extending the treatment to include the contribution
of open-shell nucleons, Bohr and Mottelson' (without
pausing to present an explicit derivation, which is indeed
quite simple, as we shall see) give the very interesting
expression for the moment of inertia

5 (ce,—cps)'

P (m+e+1)
2MsMs cos+ces

Mg C03

+ g(rs —rial) . (2)

4 H. A. Tolhoek, Physica 21, 1 (1955);F. Coester, Phys. Rev. 99,
170 (1955};Bull. Am. Phys. Soc. Ser. II, 1, 194 (1956); Lipkin,
de-Shalit, and Talmi, Nuovo cimento 2, 773 (1955};S. Tomonaga,
Progr. Theoret. Phys. Japan 13, 467 (1955); F. Villars (to be
published). The related vibration problem is treated by J. M.
Araujo, Nuclear Phys. 1, 259 (1956).
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Here 1, m, and e are the quantum numbers in the three
dimensions de6ning the single-nucleon states, ~2 is the
oscillator frequency in the x and y directions and co3 the
oscillator frequency in the s direction. The last sum
containing P(n —zn) is zero for distorted closed shells
(~zW~z) and contains the small energy denominator
A(coz —coz)—which vanishes for a spherical nucleus—
corresponding to admixture of nearby states excited up
in one dimension and down in the other, making a large
contribution of the open-shell nucleons. The 6rst sum
corresponds to the contribution of more remote states
excited up (or down) in both relevant directions, and
gives the aforementioned irrotational-Row result for
distorted closed shells.

If the distortion is attributed to a few open-shell
nucleons by minimization of the total energy of the
oscillators with volume-preserving distortion, the dis-
tortion increases with additional nucleons through the
first half of the shell, and the contributions of the indi-
vidual terms in the second sum decrease through in-
crease of the energy denominators which depend on the
distortion. In this independent-nucleon approximation
with oscillator functions, one finds the somewhat
surprising result that these large contributions from the
last few nucleons (which are individually larger the
fewer the nucleons) bring the angular momentum and
hence the moment of inertia up to the very large value
corresponding to rigid rotation of the whole nucleus,
closed-shell nucleons and all.

In one sense, the rotational angular momentum is
thus not a collective property at all. It is contributed
almost entirely by the individual enterprise of the last
few nucleons outside closed shells, which are, to be sure,
moving in a collective environment.

By the extreme assumption of independent nucleons
in an oscillator potential, one has thus overshot the
experimental result, the rigid result being from two to
five times larger than observed. It seems very plausible,
especially as one looks at the details of the derivation,
that any tendency to limit the freedom of independent
motion of the nucleons would limit their freedom to
make these large contributions. It is thus not disturbing
that the simple result should be too large, but it is of
interest to investigate the deviations from this simple
behavior.

Bohr and Mottelson' have suggested as one, and
perhaps the most important, limitation on the freedom
of the nucleons, the interaction between the pairs of
open-shell nucleons such as give rise to energy separa-
tions within the ground configuration in a spherical
nucleus. In a brief discussion of the very special case of
two p nucleons, which is simple and yet qualitatively
representative, they introduce the parameter

v= U/Puuo,

where U is the energy separation between J=2 and
J=0 states induced by the pairwise interaction and ~0
is the oscillator frequency of the undistorted nucleus,

and find that the moments of inertia observed in much
more complicated cases correspond to the result ob-
tained for this simple case with v= —', . It thus seems
rather likely that interactions of a reasonable magnitude
may come close to modifying the simple result enough to
account for the observed results.

SINGLE-NUCLEON BEHAVIOR IN A ROTATING
HARMONIC OSCILLATOR POTENTIAL

The treatment of reference 1 applies explicitly to a
many-nucleon system, summations over excited states
extending over only those states not excluded by the
Pauli principle, in which individual nucleons are excited
upward in energy. The Coriolis perturbation (3) is a sum
of single-nucleon terms and the nucleon states thus
contribute individually to the moment of inertia. It has
been suggested by Villars that one may instead first
treat in a similar manner the Coriolis inhuence on
individual-nucleon properties, and then make up the
wave function of the system from these modified single-
nucleon wave functions. This simplifies the formulation.
considerably.

As in reference j., we consider an ellipsoidal zeroth-
order potential V symmetrical about the 2' axis cranked
so as to rotate slowly about the coincident x and x' axes
with angular speed Q. The Coriolis perturbation term in
the wave equation is

and for V we take the harmonic-oscillator simplification

(4)

where $'= (Mcoz/A)'*x', etc. The distortion from spherical
shape is carried out without change of volume, ~2'co3
=~0' = const. [In reference 1, a single distortion
parameter n= (cuz/&oz)"' was used. ] The single-nucleon
wave functions N~ „($',g', t') are then products of three
factors N~($') =H~($') exp( —P/2), etc., involving Her-
mite polynomials. By virtue of the familiar matrix
elements of $ and 8/8$, Eqs. (10) and (11) of reference
1, the angular momentum operator

has the matrix elements

(l, zn+1, n+1~l ~lnzn)

= ——,'z(nz+1)&(n+1)&(cuz —a)z)/((ego)z)& (6)

and

(f, nz+1, n —1~L, ~lnzn)

=—-', z(nz+1)&n&((oz+cuz)/(co~, )&. (7)

The type (6) connects states differing in energy by
(coz+ar&)A, while the type (7) connects states differing by
an excitation upward in one dimension and downward
in the other so that their energy difference (~z—coz)A is
relatively small. With the perturbed wave function
written P,=zz,+Q cs Np, where a denotes l, nz, n, and
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cs = —AQ(P~l, ~a)/(E, Es—), we may evaluate 7:

(1,),= P,*l,g,dr=2AQQ(a~l, [P)(P~l, ~a)/(Es E—)

whence

P (ns+ n+1)=P (ny-,') (~,++s)/u„

P (n —ns) =P (n+ ,')-((us —tus)/~s
(12)

= (Q/2' s&us) {[(m+1) (n+1)—nsn]

X (cur
—us)'/(rus+&us) +[(m+1)n —ns (n+ 1)]

X (~s+~s)'/(~s —~s)}
= (Q/2tustus)((ns+n+1) (~s—tus)'/(tus+cus)

+ (n —m) (tu.+tus)s/(cos —tus) ). (g)

We now define the moment of inertia by equating
A(l,),=d,Q, and have the result (2) when applied to a
single nucleon.

For a system of many nucleons, we might write a
wave function as an antisymmetric sum of products of
the f with the sets a chosen to describe a number of
closed shells and a few other nucleon states to make up

. the composite ground state, for example. The composite
angular momentum operator I., is a sum of the indi-
vidual l„and its expectation value I. is thus a sum of
the (l )„as given by (8), with sums over the quantum
numbers, P(ns+n+1) and P(n —ns), as in (2). The
first sum then contains the many small terms that add
up to the irrotational result, as in reference 1, for
distorted closed shells, and the second sum contains the
large terms with small energy denominators.

A rigid rotation of the mass distribution described by
these functions has the classical moment of inertia

a„.„p=M p (y"+s")A, =A[+ (rf")A /tu2+Q (i )A /~3]
=A[+ (ns+-,')/tus+P (n+-', )/(us]. (9)

Let us see in detail how (g) gives this result. The
motivation for the distortion is to be found in an
asymmetric distribution of the open-shell nucleons—
more excitation of the quantum numbers in o'ne direc-
tion than the others. Opposing the distortion is the
energy it costs to distort the closed shells. We write for
the energy

E= [2(os P (ns+-,')+n s P (n+-,')], (10)

with the assumption that the states are populated to
preserve the symmetry about z', that is, P l=g rn. In a
distortion with co2'~3= constant to conserve volume, we
have Btus/B~s= —&us/2cus, and with this condition mini-
mization of the energy, ' dE/deus ——0, gives

Z(~+ s)= (~s/~s)Z(n+ s), (11)
5 The definition (10) for the energy in the oscillator is at best

quite arbitrary, and justified only as a simple model. It even has
the wrong sign, and one thinks of subtracting a constant to make it
correspond more nearly to what one would get if one could satis-
factorily calculate the energy with, say, phenomenological nuclear
interactions Las suggested on pp. 704—705 of a recent paper: D. R.
Inglis, Phys. Rev. 97, 701 (1955)j. The potential V of Eq. (4)
contains parameters which could be used to minimize an energy so
calculated, rather than to minimize (10). Fquation (10) taken
literally implies that we consider it to give the average potential

CLASSICAL TREATMENT

A graphic description of this striking eGect may be
derived from the classical equations of motion,

y'+(ussy' = 2Qs',

s'+(uses'= —2'', (14)

where the inhomogeneous terms on the right represent
the familiar Coriolis acceleration 2vt& Q. A model for a
particle moving in such a rotating distorted harmonic-
oscillator potential may be made by hanging a pendulum
bob from a Y-shaped string suspension, as for a demon-
stration of Lissajou figures, but hung from a horizontal
stick cranked steadily about a vertical axis through its
center. Equations (14) are the same as for coupled
oscillators except for a phase shift of 90' introduced by
the time derivative in the coupling terms on the right,
and the method of solution is just the same. Without

plus kinetic energy within an additive constant. Nilsson (reference
6) points out that this counts the interactions twice, if V; is the
average potential felt by one nucleon, i, due to all the others,
V ' = Z 7'( V '7') Ay since each term appears again in Z; V;. Since
oscillators have mean kinetic equal to mean potential energy, this
suggests a factor. 4 on the right side of Eq. (10),as giving perhaps a
better approximation to the dependence of the energy on the
parameters, as it should be calculated. The argument is compli-
cated by considerations of saturation. The factor & would not
affect the minimization leading to (11),which depends on competi-
tion between oscillator energies only. It would require a change of
scale of the competing energy introduced in Eq. (19) in the
modification below, but is ignored there because D is arbitrary.

These sums in the last line of (8) lead to some interesting
cancellation, which in the latter term means, as sug-
gested above, that a very small excess population in the
s direction [P(n—ns)] leaves the energy denominator
so small that the individual terms are large enough to
contribute a large total angular momentum:

A P.(l,) = (AQ/2a s'(us)P (n+-,')
X [(~s+~s) (~s—~s)'/(~s+~s)
+ (~s—~s) (~~+~s)'/(~s —~s)]

= (AQ/russ(as) P (n+-', ) (~ss+(os')
=QA[P(ns+-', )/(os++(n+-,')/cps]=Qd„„u. (13)

Thus, when the deformation is attributed to the ex-
pansiveness of the last nucleons outside closed shells, the
moment of inertia has the large rigid value. It arises
both from the remote states through (6), contributing to
all the nucleons the small irrotational-Row result, and
from the nearby states which through (7) give nothing
for closed shells, but make exorbitantly large contribu-
tions for the few open-shell nucleons. The separation
into small terms from (6) and large terms from (7) has
been lost in the final expression (13), but the angular
momentum still comes mainly from the large terms and
from the open-shell nucleons.
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rotation the solutions have the double periodicity of
Lissajou 6gures, but with rotation we seek the singly-
periodic solutions corresponding to normal modes, with

y'= A cosset, s'= 8 since), (15)

whence (Iu22 —oI2)A —26mB= 0, etc. The secular determi-
nant set equal to zero then gives for the normal fre-
quencies

(oI22+oI22+ 4@2)oI2+ oI22oI 22 —0

oI2= (oI22+oI2'+41)2)/2~ L(oI2' —oI2 )/2 (16)
+20'(oI2'+oI2')/(oI2' —oIs')],

in the approximation in which the rate of rotation 0 is
considered small. With the plus sign, we have a normal
frequency somewhat larger than the larger frequency
~&, say, as is familiar for coupled oscillators,

~2 ~ 2L1+4Q2/(~ 2 ~ 2)j
in which the ratio of the amplitudes is

g/A = —20oI2/(oI22 —Iess) (17)

rather small, and (15) corresponds to a retrogressive
motion near the y axis as in Fig. 1(a). With the minus

return to the s axis. With rotation, it is possible to
select the initial velocity j' and thus to select the y'
amplitude in such a way that the Coriolis force arising
from the s' motion just compensates the excess of
restoring force in the y' direction, thus permitting the
return to the s' axis to coincide with the upper extreme
of the s' motion and bringing about an elliptical motion
as drawn in Fig. 1(b). (This compensation is exact
during the entire half-cycle and not just an average
eGect because of the simple harmonic way in which the
y' displacement and the s' velocity vary, in phase with
each other. ) Since this approximates the lower-frequency
original oscillation along the s axis, this is the lower-
frequency normal mode and when quantized is the 6rst
one to be filled beyond a closed shell. Its forward rota-
tion (in the same sense as 0) thus contributes additional
angular momentum to the system, and it is clear that
the orbit is fatter and the contribution greater, the
smaller the disparity between the y' and s' restoring
forces. It is similarly required that the higher-frequency
motion approximating the y' oscillation be retrogressive,
in order that the Coriolis force may make up for the
deficit of restoring force in the z' direction, as in
Fig. 1(a).

(a)
2

(c)

(X

I) &b)

I

I

(~)

FIG. 1. Classical orbits for a particle in a rotating spheroidal
harmonic oscillator field, (a) with higher frequency and retro-
gressive circulation; (b) with lower frequency and forward circula-
tion; (c) Corinlis deflection with rotation but without restoring
force; (d) Lissajou figure without rotation of the system

sign in (16), we have instead

oI2=oI 2[1—4@2/(oI22 —oI22)]
(18)

8/A = (oI22 —oI22)/20oI2,

which represents an orbit circulating in a forward sense
near the s' axis as in Fig. 1(b).

We may go one step further in unschallicItkeit and
dispense with even these simple equations. Consider
various ways we might start the particle at the bottom
of Fig. 1(b). If we start it up along the s' axis, the
Coriolis force alone makes it curve toward the right
(corresponding to motion along a straight line in space),
Fig. 1(c).If without the rotation we start it toward the
right along the orbit drawn, it would not follow that
orbit but, because of the relatively stronger restoring
force in the y' direction, would cross the s' axis before
reaching the top of the figure, describing the 6rst loop
of a Lissajou figure, Fig. 1(d). The greater the y'
amplitude, the greater is the force involved in this rapid

K&'~ =DP (19)

for each nucleon. D will ordinarily be taken as negative
to depress the levels with highest l, as required in the
magic-number scheme for the heavier nuclei of principal
interest. The additional term, although velocity-de-

S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 29, No. 16 (1955). See also K. Gottfried, Phys. Rev. 103,
1017 (1956).

DEPARTURE FROM OSCILLATOR POTENTIAL,
REMOVING THE d-s DEGENERACY

The insight given by the classical description makes
it clear that the possibility of obtaining so striking a
result depends sensitively on the simplifying assumption
that the effective nuclear potential may be approxi-
mated by a three-dimensional harmonic-oscillator po-
tential. An orbit bouncing from the walls of an elliptical
box is not so simple to modify as a Lissajou figure, for
example. In wave mechanics one may have the feeling
that the wave functions are not very sensitive to the
detailed shape of the potential, so the shape should not
make much difference. We have seen, however, that the
interplay of angular momentum operators and energy
denominators is crucial to the derived result. The energy
denominators are sensitively aGected by the simple
degeneracies introduced by the harmonic-oscillator
assumption.

A complete departure from the harmonic-oscillator
shape entails greatly complicated analysis, but a simple
departure which in the spherical limit merely removes
the l degeneracy is instructive. Following a suggestion
made by Nilsson in another problem, ' we introduce an
additional term in the Hamiltonian:
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pendent, has an eGect similar to a lowering of the bottom
of the potential function near the outside edge of the
nucleus, leaving it in eGect intermediate between
harmonic oscillator and square well.

the diagonal elements

X+= 3+d& (d'+2d+9)'*,

and the coefficients are

(23)

l tg n

NJ 020
I, 200

P+ d I, 011
eb101
I 002

Qe Ng Nc ub

4 —20 0 0
—2 40 0 0

0 06 0 0
0 006+d 0
0 00 0 6+d

—2 —20 0 0

—2
—2

()
(21)

0
4+2d

The states a f are arranged in order of ascending
energy, the high states at the top, for the prolate case in
which cv2) co3 and d is positive, D being negative.

The only nondiagonal elements connect n, u„and N~.
As a 6rst step in diagonalizing, one may remove the
degeneracy of I, and ey, and obtain for this part of the
matrix:

6= (u.+ui)/v2
P+ nd =P,= (u,—uq)/V2

3p(g= u~

2 0 —242
0 6 0, (22)—2%2 0 4+ 2d

all other nondiagonal elements remaining zero. We then
eliminate the remaining nondiagonal element by setting
p= c,P,+crier. The resulting two-row determinant gives

The matrix for l ' may be constructed from Kq. {7)and for l„'
and l,' by permutation, then l2 as the sum, The terms from l "" and
l„', but not l,', are multiplied by {1+a+~ ~ ), with e= (4/2M)~
= p(co3 613)/2')3, from the factor (303+o33)3/43o~3 in Eq. (7). The
small terms in e are neglected in this section.

To see this, consider a depression of the potential in the form of
a thin spheroidal shell of the form V= BS(p—' po), —with
p'= pt'3+rl"+3i"g& Th. is has matrix elements (200

~

V
~
200)

=P(4/5) p34—(4/3) pp3+1] and (200
~

V
~
020) = P(4/15) po4 —(4/3) po3

+1/, each with a factor 23r &Bpoo exp( —po ) omitted. These have
the same ratio as the corresponding matrix elements of 3C('),
namely, 4/( —2) as listed in Eq. (21) and used in the subsequent
calculation, for po

——(3/2) &. On the same scale of length, N3(t) has
its node at $= (1/2)&. The ratio remains negative between the
values p0=0.96 and p0=2.02, and a broad depression of the
potential in this general region would be expected to give results
qualitatively similar to those that follow.

In order to illustrate the type of inhuence that this
eGect can have on the moment of inertia, let us consider
the simplest relevant case (even though it comes in a
region of light nuclei where rotational states are not
observed), the originally degenerate 1d and 2s functions,
formed of the oscillator functions having l+ris+u= 2.

For these states the energy without rotation is given
by

(iIKio&+x 3
I j)

=AC(E+nz+1)o33+ (rr+k)o333~', 3+D(i
I
P

Ij)
=A(3o33+-,'o33)8;,+D(i I nd+PIj ), (2o)

with d= k(o33— o)3/3D. The term in A in the last line is the
same for all six states, and the matrix of the second term
is, to a sufficient approximation, in the simple /, m, n
representation:

c,+= L8/(X+ —2)'+1]—3,

cr+ ——W L1+ (X+—2)'/8] —
&.

(24)

We let the plus sign in X+ define p =c,+l,+c&+ll«,
which is the lower state (the factor D being negative) in
a prolate deformation or the depressed 1d state having
X+=l(i+1)=6 without deformation, and the minus
sign define P~, which is the 2s state with X =0 in the
appropriate limit. With p, =ll, and the other three
p,= u, , we then have a set of six states p; in which the
energy is diagonal and for which the matrix of I„
according to Eq. (6), is given by

l /ip=
4c
3l3 b

4a

0 0 0 c— 0 0
0 0 0 —1 0 0
0 0 0 0 —1 0

(25)—c 1 0 0 0 —c+
0 0 1 0 0 0
0 0 0 c+ 0 0

Here p= (o3s+o33)/2(o3sois)' and c+=V2c +—c~+. The
corresponding energies are

E,=X+D, Eo E,= (6+d——)D,
Eg=E,=6D, Eg X D. (2——6)—

In the evaluation of the angular momentum (l ); in
Eq. (8), we found small contributions from the states
excited upward (or downward) in two dimensions, and
large contributions from the states excited upward in
one dimension and downward in the other, that were
originally degenerate before the deformation. In order to
isolate the principal modi6cation introduced by X&2), we
may confine our attention to the large contributions by
summing only within this group of six "originally
degenerate" states:

(l.);= ~y,*l,y,dr=2I'(2+I (iIt. IP) I'/(E, —E,). (8')

(l.)g——A(v2c, —c )'/I 3+(d'+2d+9)&)
(l*) =(l ) =~/d
(l*) = —L(l ).+(l ) +(l*) 3

(l*) = (l*) = ~/d
(i.).=A (v2c.+—c~+)'/I 3—(d'+2d+9) '$.

(27)

Here A = 20p'/D and again d=k(o33 ois)/D-
The solid lines in Fig. 2 display the angular momenta

(27) for the six states a, b, c, d, e, f as functions of the
ratio d of distortion energy to 1d—2s splitting, the left
side corresponding to large distortion energy A(o» —o»),
the right side to large D. It is apparent from the de6ni-

In this approximation the angular momenta (divided by
ill) for the six individual states are
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8-

A

. xr' rr'
(d, e)

-2

tions of (I,) s and (I,), in (27) that the total angular
momentum of the closed shell consisting of the sum of
these states is zero, just as for the case with D= 0, the
large term containing P(e—ns) in (2) vanishing.

The small contribution which arises from summing
the terms in (m+rs+ 1) in the last line of Eq. (8) and is
not included in our calculation, is indeed small enough
to be neglected. These terms are not expected to be very
sensitive to D, because of their already large energy
denominators. The ratio of the sum of the small terms
to the sum of the large terms, as given by (8) for D= 0,
is

[(~s—~s)/(~s+~s)]'= [E(~—~)/Z(~+~+1)0' (28)

which for one nucleon in the shell (0'r) is (2/27)'= 0.005
and for the worst case of a half-filled shell (Si"with four
'nucleons in each of states a, b, and c) is (12/56)'=0.05.

The D= 0 values on the left side of Fig. 2 thus give the
rigid-rotation result derived from Eq. (8) within 5% or
less (which we neglect), and the departure of the curves
in Fig. 2 from their D=O limit indicates the ratio by
which they deviate from the rigid-rotation moment of
inertia, insofar as we may neglect the inQuence of D on
the distortion [a refinement discussed further below and
formulated in Eq. (35)j.

In the comparison of the prolate and oblate cases, the

l0

0 f

2-

(0)4-

0 .2 .8 I .8 .6
l lalI

-6-

-8-
I I.4 .6

l teal

FIG. 3.The energies as functions of the same abscissa as appears
in Fig. 2. The broken lines again refer to the oblate case. The
energy scale is inverted for the prolate case co2&era and upright for
the oblate case.

energies (26) play an important role and are shown in
Fig. 3, with solid lines for the prolate case and with
dotted lines and labels in parentheses for the oblate
case. The energy differences vary only gently in the
prolate case but there is a disturbing crossover of) =1curves (a) and (b,c) in the oblate case at D= ,f'

(cia
—s o&s).-

Accordingly, the curves for (I,)&,&
and (l,)i,&

blow up, as
shown in Fig. 2, because of the vanishing of an energy
denominator in Eq. (8'). In our present approximation
this would correspond to enormous values of the moment
of inertia over a rather wide range of parameters, if the
state (a) or (c) should be filled with an oblate deforma-
tion. But at the same time our present approximation,
being a perturbation treatment with the Coriolis per-
turbation assumed smaller than the energy denomi-
nators, becomes invalid. There enter large terms in the
angular momentum not only proportional to the first
power but also to higher powers of 0, thus making the
concept of an effective moment of inertia inapplicable,
and the proportionality of the rotational levels to I(1+1),
as observed so strikingly in many cases, would not be
expected. This proportionality is thus not obvious and
one should be alert for similar difFiculties in other
approximations.

0 .2 .4 .6 .8
',= --l)tal=lozt(, —,)l

I .8 .6 .4 .2 0
ldl =

I t (...)XOI

Fzo. 2. Angular momentum of a nucleon in the 1d+2s shell, as
dependent on the ratio of the deformation to the depression of the
1d below the 2s states, which are degenerate at the left side. To
give ethe component of angular momentum along the axis o
otation, the ordinate is to be multiplied by the constant (—4 / )—A d

=LAMA/2(co2ra3) jL(co2+ca3)'/(cai —cu3) j which is positive for the
prolate case shown by full lines. The six states of the shell are
labeled u -f in order of ascending energy for the prolate case. The
broken lines, with labels in parentheses (c) ~ ~ ~ (f), refer to an
oblate spheroidal deformation.

ORDER OF FILLING THE d-s SHELL

The simple deformed oscillator model with D=O
gives the result that prolate nuclei are stable in the first
part of the shell and oblate for the more-than-half-filled
shell. At first sight this seems contrary to what one
might believe in view of the simple expectation that a
single particle (with its orbit concentrated near a plane:
normal to I) should give a negative quadrupole moment,
either alone or in the deformation it induces, and

h llsimilarly that a single particle lacking from a s e
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TABLE I. Energy comparison for prolate and oblate
partly-filled shell.

No. of
neu-
trons

in shell g1

Prolate shell

l, m, n (8 0'/2 —ki

Oblate shell

l, m, n (81 8/2 —ki

12 78
10 71
8 69
6 57
4 50
2 43

0 2 0 26 26
2 0 0 25 23 0.0008
1 1 0 24 20 0.0039
0 1 1 23 17 0.01108
1 0 1 20 15 0.010
0 0 2 17 13 0.0086

0 0 2 26 26
1 0 1 21 25 0 0032
0 1 1 18 23 0.0061
0 2 0 15 21 0.01108
2 0 0 14 18 0 0064
1 1 0 13 15 0.0022

should give a positive moment. However, because of
the degeneracy, / is not a constant of the motion. For
projection quantum number k=0, the d and s states
mix giving a low state that is filled first and favors the
prolate shape.

First we minimize the energy E to obtain the stable
intrinsic deformations. In the simple oscillator model in
which we leave the 1d and 2s states degenerate by
putting D=0 in (20), we have, approximately,

The reason for filling the degenerate states b and c
equally in Table II, with one neutron in each rather
than two in one of them, is that this corresponds to
filling states characterized by a definite projection
E=&1, formed by taking the combinations
= (Nq+e, )/V2. Such states may be filled without violat-
ing the requirements for axial symmetry as represented
by our assumption that g l= P m. With these states,
the matrix (21) has more nondiagonal elements, but the
result is the same.

The two cases marked (prolate), in parentheses, are
cases in which the simple approximation of Eq. (31) and
Table I indicates an oblate shape as more stable. The
next approximation indicates that the prolate shape is
stable in these cases also, as is shown in Eq. (34) and
Table III. We thus avoid encountering the divergence
difficulty characteristic of certain oblate cases such as
the next-to-last line of Table II, involving states (g) and
(c). The difficulty is perhaps similarly avoided in heavy
nuclei.

with
E/A= 8a)g+ nba) 3, (29) DEFORMATION AS INFLUENCED BY LIFTING

THE DEGENERACY

e=p(i+m+1) and S=g(m+-,').
By putting co2'co3 ——co' and co3—co2= 6, we have

E/A= 3g, (2co2+( 3)+g2a
=g,co[1+(6/3(o)'1+g, a,

gi= 0',+S, gi= (2$—0',)/3.

By minimizing with respect to 6, we obtain

(30)

E=Ao&gi(1+ki),

&i= —(3g~/2gi)'= —[(+—~i'/2)/(tt+ +)j' (31)

The results of filling the shell with a pair of neutrons,

say, in each state, with no protons, are shown in the
columns headed —tt;1 in Table I. It is seen that with one
state filled the distortion contributes four times as much
to the stability of the prolate shape as of the oblate
shape, and that for just one state empty the opposite
tendency is just as pronounced. For two states filled (or
empty) the tendency is not nearly so strong, one
exceeding the other by about 50%, and at the half-
filled shell the prolate and oblate shapes are degenerate.
These tendencies extend also to cases with both protons
and neutrons present. This example is typical of
harmonic-oscillator results in the larger shells of heavier
nuclei. '

The filling of the d —s shell may be considered to
proceed as indicated by the examples listed in Table II.
The comparison with the rigid-rotation result is indi-
cated by the ratio d„i,/d„„q listed in the last two
columns for the sample 2d —1s separations given by
D= 2 and D= 1, corresponding to values taken from the
left half and the middle of Fig. 2, as compared to values
at the left edge. For D=O the ratio is, of course, unity
for all cases.

We have discussed the inRuence of lifting the de-

generacy on the energy denominators and thus on the
calculated angular momentum, for a given deformation.
We now consider the eQ'ect on the deformation and
thence on the angular momentum. For this purpose it is
necessary to have the energies E . ~ E~ expressed a
little more accurately than implied by the matrix (21),
with the terms in e= (6/2~)' explained in reference 7

now included. The diagonal elements of (21) have added
to them 4e, Se, Se, 2e, 2c, and 2e, respectively for u u~
and the two nondiagonal elements near the corner, those
involving N„are multiplied by (1+&). Thus SDe is
added to Et, and E, and 2Dc to E~ and E, of (26), and

l '= 3(1+~)+d~
l
L(d+1+ ~)'+ g(1+~)'3'I

=3(1+6)+de
l
[4+1+6+4/djl, (32)

the latter expansion being valid for
l
d

l
))1, as we begin

to remove the degeneracy. In this case, with the is and
2p shells filled and a number of nucleons in the 1d—2s

No. in shell
Neutrons Protons Shape

No. in states
a b c d e

Ratio to rigid
f D=$ D=1

10
10
10
10
10
6
4

2
2
1

10 oblate
8 oblate

10 (prolate)
8 (prolate)
2 prolate

prolate
2 prolate

prolate
2 prolate

prolate
prolate

4 4 4 4 4
2 4 4 4 4

4 4
4 4 4 3 3
4 2 2 2 2
2 2 2
4 1
2
4
2
1

0.50 0.41—16.9
0.05 0.00
0.33 0.33
1.7 2.11
0.68 0.67
1.91 2.33
1.42 1.67
2.52 3.17
2.52 3.17
2.52 3.17

TABLE II. Calculated moments of inertia compared to the
rigid-rotation value for various numbers of nucleons in the d —s
shell.
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TABLE III. Coefficients k; for the energy and k; for the inverse deformation expanded for small values of the parameter (D/444)
representing the lifting of the degeneracy. The moment of inertia contains a factor 44/hid; = I+k2(D/Ao&)+ kb(D/A14) . The values for
the prolate (pro. ) and oblate (ob.) cases are listed side by side. Concerning the order of filling states (a) and (/) in the oblate cases, see
reference 8.

QT o of Last state (half )
filled with

trons in neutrons
shell pro. ob.

-kI k2
both pro. ob. pro. ob. pro. ob. pro. ob.

h2

pro. ob. pro. ob.

10
8
6

2

de bc
(d,e) (b,c)
b,c f

(k,c) d,e
a (d,e)

71

57
50
43

0.0008 0,003
0.004 0.006
0.011 0.011
0.010 0.006
0.009 0.002

0.790 0.228
0.692 0.302
0.574 0.300
0.408 0.482
0.190 0.280

1.334 0.666
0.672 0.533
0 458 0 was

0.540 0.000
0.668 0.000

—11.833—5.333—3.166—3.333—3.583

5.916
4.266
3.166
4.166
7.166

1.141 1.014
1.125 0.773
1.105 0.474
0.810 0.360
0.419 0.209

840 105
85.3 43.7
20.1 20.1
267 0
385 0

E;„=Acegl[1+k1+k2(D/Ale)+ ks(D/A4e)2],

kl (3g2/2gl) y glk2 g3+g4(9g2/4gl)

glks= —Lgb(2gl/9g2)+ (gsg4)'(9/4gl)'],

be/6; =h, L1+h2(D/Ace)+hs(D/Abc)2],

hl ———2gl/9g2) h2 ——g4/2) hs ——(gb/g2)hl'.

(34)

(35)

Besides confining our attention to moderate deforma-
tions, A((co, but still definitely greater than zero, we
have specialized for D«AE in expanding (32), thus
looking at only the initial effect of beginning to lift the
degeneracy, in order to avoid the necessity of a separate
numerical minimization for each nucleus considered. We
thus seek an energy minimum near the one known from
the D= 0 case, but there is unfortunately no guarantee
that another minimum instead could not be the one
analogous to the situation in real heavy nuclei. (This
question might bear further investigation. )

In order both to evaluate this inhuence of lifting the
degeneracy on the calculated moment of inertia, and to
compare the stability of the prolate and oblate deforma-
tions, the coeKcients h, and k, of Eqs. (34) and (35) a«
listed in Table III, for a sequence of ways of populating
the d—s shell with neutrons. '

In the oblate case, d is negative (for negative D), and in this
expansion for large ~d

~
the absolute value sign in the second line of

(32) becomes relevant to the distinction between states (u) and
(f). In evaluating the g; in (34), we have made algebraic combi-
nations ignoring the absolute value sign, which means that we have

shell, N, in state p„Nb in 4kb, etc., the energy obtained
by summing equation (20) over the nucleons takes the
form

&/A= gl~LI+ (~/3~)2]+g2~
+.(D/A) Lgs+g (6/2ce)2]+ g D2/Ashy, (33)

gl
——36+(7/2)(N +fVb+N. +Ne jN,+Ny),

g2= (4/3)N, +3(N b+N,-) ', (Ne+N—,-+Nr),

g3 4N, +6(N b+N, )+6'(Ne+N, )+2Ng,
g4= 4N +5(Nb+N, )+2(Ne+N. +Nr),
gs= 4X —4ÃJ.

The g; are here expressed for positive d, applying to the
prolate shape with D negative. Minimizing with respect
to 141, we find, to order (D/Ale)2,

The moments of inertia as formulated in Eqs. (25)
and displayed in Fig. 2 are calculated with inclusion of
the effect of D (the lifting of the degeneracy) entering
through the secular problem (which is the main effect),
but with the inhuence of D on the deformation being
neglected. That is to say, only the first term h& of Eq.
(35) was taken into account. Since 6; appears in that
calculation of 4f in the denominator (as an energy
denominator), the terms in h2D/Aol and hs(D/Abc)'
modify the calculated moment of inertia as fractional
corrections. The immediate effect of introducing a small
negative D is to reduce 8„i, slightly, through the posi-
tive h&, but at least in the prolate case it takes only a
rather small value of D/Ace, of the order of 1/20 or even
considerably less for the nearly-filled shell, to enable the
h3 term to compensate this and increase 8„l, above the
values such as given in Table II. The behavior of this
simple expansion is suggestive of a rather involved
result from a more extensive calculation, but it is
perhaps likely that it would increase 8, l,, in the region
just beyond the validity of this expansion, and it shows
little promise of decreasing 8, i, by the substantial
factor needed in most cases to agree with experiment.

GREATER STABILITY OF PROLATE DEFORMATIONS

The values of (—kl) listed in Table III contribute to
stability and as in Table I show that with D=O the
prolate deformation is favored in the first half of the
shell and the oblate with the shell more than half-filled.
If D is negative, as we assume it must be for heavier
nuclei, the larger values of k2 listed favor stability, and
one notes that they slightly favor the oblate shape near
the beginning of the shell and strongly favor the prolate
shape with the shell half-filled or more. On the other
hand, the values of (—ks) as listed favor the prolate
shape throughout the shell, rather strongly toward the
beginning and end if D be large enough to make this
term matter. For the cases of two and four neutrons
near the beginning of the shell, the contribution k.
begins to challenge the favoring of the prolate shape by
kl when D/Aol becomes as large as about 1/20 or 1'o,

interchanged the labels (o) and (f). Rather than to rewrite (34),
the simplest way to compensate is to invert the order of filling
states (c) and (f) in this special calculation, and this has been
done in Table III.
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but with these values the k3 contribution is already
large enough to tip the balance in favor of the prolate
shape. With the shell half-filled or more, values of
D/M of only 1/100 suflice to overwhelm the small
values of k~ and make the prolate shape the more stable.

In this connection it should be recalled that D is
assumed to be negative for the sake of investigating the
1d—2s shell as a simplified analog of heavier nuclei, in
which the lifting of degeneracies is expected to involve
more complicated manifestations of these same eRects.
If experimental progress should ever suggest application
of these results to the fairly light nuclei to which the
calculation explicitly applies, a positive value of D
would presumably be more appropriate, in keeping with
the appearance of the 2s level only 0.87 Mev above the
'dg ground state of 0", well below the "center of
gravity" of the two levels of the 'd. With small positive
values of D/A~, the oblate shape is favored through at
least the last half of the shell in this approximation.
Such a variation in the sign of D would correspond to
having a central depression of the potential (contributed
perhaps by the is shell which is still an appreciable part
of the nucleus) in the region just above 0", and having
heavier nuclei better approximated by a well with a
Qatter bottom than that of the oscillator potential, in
keeping with the approximate constancy of nuclear
density.

Thus, with D negative, with id below 2s, we obtain
the result that the prolate shape is stable in this ap-
proximation. The extension of this stability to the more-
than-half-fi11ed shell comes from the nonlinear terms,
arising from expansion of the square root in Eq. (32), in
the energy E of the state a which is a mixture of the 2s
state and the 1d state with l. quantum number k=0 (in
the representation appropriate for large D). The prolate
energy is low because just these two k=0 states can
mix, and the projection k=0 favors the prolate shape.
The reason for the prolate deformation is then the same
as already pointed out by Moszkowski, ' explicitly in a
discussion of the next higher shell consisting of 1f and
2p. In that case, and with spin-orbit coupling taken into
account, he shows that it is the depression of the
1f7~2(k=-', ) by admixture mainly of the 2p, (k= —',) that
accounts for the stability of the prolate shape near the
middle of the shell.

It is gratifying to have this availability of more states
of lower projection quantum number k to be mixed
with each other as a qualitative explanation of the
preponderance of prolate deformations. It is not clear
that this is the main reason. According to Mottelson
and Nilsson and others, the large stable deformations
which start just above neutron number X=88 involve
crossover between the magic number groups. It is
possible, too, that pairwise interactions of particles, here
neglected except in the average potential, make an
essential contribution to the prolate stability in a calcu-

9 S. A. Moszkowski, Phys. Rev. 99, 803 (1955}.

lation carried far enough to include correlations of
nucleon positions and spin directions. That the eRect
should be in that direction is made plausible by the
consideration that the bulge on the surface of a sphere
associated with spheroidal deformation represents a
clustering of particles (opposed to the dissociation
represented by a depression in the surface), and that
with a prolate deformation the bulge has twice the
amplitude and about half the surface area as has an
equal oblate deformation, thus representing a more
compact clustering. Insofar as the few particles in the
cluster can correlate their spins in such a way as to take
advantage of the saturation properties of nuclear inter-
actions, this is a favorable situation for stability. This is
related to, but not quite the same as, the consideration
that the cubic terms in the expansion of the surface-
tension energy favor the prolate deformation. "There is
also a Coulomb infI.uence in the same direction. "These
are presumably all initial manifestations of the fact that
fission takes place by way of a prolate distortion, not by
way of a ring.
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APPENDIX

An expression for the moment of inertia in a rotating
spheroidal oscillator potential was derived in reference 1
from the rotational energy, but may be derived more
simply in that treatment without appeal to the rota-
tional energy by setting the angular momentum, " A

times Eq. (14) [equation references in this Appendix are
to reference 1j, equal to 8&, which yields for closed
shells

8 = (5/4(o) ( '—n )' Q'(m+1) (m+1), (36)

just as was obtained from the rotational energy,
Eq. (15).

There is, unfortunately, a difhculty in the treatment
of rotational energy presented in reference 1, as was
very kindly pointed out by Maria Goeppert Mayer. It
involves two errors which exactly compensate (and thus

"S.A. Moszkowski and C. H. Townes, Phys. Rev. 93, 306
(1954}.Note that in. the droplet model. one expects an oblate
deformation at the very beginning of a shell.

"That this is angular momentum in the space-fixed system is
seen from Eq. (2}, which shows that the linear momentum
operator refers to this system.
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seem to have hidden) one another and leave the equa-
tions used, such as Eq. (15), correct. The equation for
E&@, which we might call Eq. (8a) t appearing between
Eqs. (8) and (9)], should have the opposite sign to give
the familiar result that interacting states repel one
another in energy. This compensates an error in the
interpretation of the meaning of E, of which E'2) is a
part. E is the energy of the motion relative to the
rotating system, not relative to the space-fixed system
as it was taken to be, and to emphasize this it should
have been called E'. We have derived a Hamiltonian in
terms of the rotating coordinates x which differs from
the usual one in the x~ only by the perturbation term
K"', and we have made the transition to the Schrodinger
equation just as we would in the z, system with this
additional term. When we do it in the x,' system, " the
operator 8/Bt appearing in the Schrodinger equation
means differentiation with respect to the time with the
x,' held fixed (or considered as independent coordi-
nates), and when we seek a stationary solution

'20r when we, alternatively, transform the Schrodinger equa-
tion from the space-6xed to the rotating system, which means
transforming the time-derivative operator (it/Bt), = (8/Bt),
+ Z(sx'/Bt), 8/Bx'= (8/Bt) +n(z'8/Sy' y'it/Bz')—

lf(x ) expL(i/t't)E't], the constant A' thus comes to
mean energy in the x system.

The Coriolis force on a particle is normal to its velocity (in the
rotating system} and thus does no work (in this system) and the
6rst-order energy 8(')' vanishes. The fact that E(2)' for the ground
state is negative indicates that the Coriolis force makes possible a
mode of motion with a lowered energy (for example, by pressing
toward the center where the potential is lower when the circulation
is in a favorable sense).

By altering the sign of Eq. (13), to correct for the
error carried through from Eq. (8a), and comparing
with Eq. (14), we see that the magnitude of this energy
depression may be written

E"&'=—A(I. )0/2. (37)

The energy in the space-fixed system, as in the problem
of a gyroscope on a merry-go-round, differs from the
energy relative to the rotating axes by the term A(I.,)Q
which, when added to this E")', amounts to the same
thing as changing its sign:

Et"= E&"'+A(I.,)Q =A(I.,)Q/2. (38)
r

This represents the rotational energy and agrees in sign
and magnitude with Eqs. (13) and (15).


