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Moments of Inertia of Freely Rotating Systems

H. J. LpriN, A. DE-SHALIT, AND I. TALMI
Department of Physics, The Weizmann Institute of Science, Rehovoth, Israel

(Received June 4, 1956)

A formula is derived for the moment of inertia of a freely rotating system. Although this formula is
similar in form to the one derived by Inglis for a system of particles in an externally rotated potential, there
are certain significant differences. The meaning of these differences is discussed and an attempt is made to
clarify the question of the validity of the Inglis formula in the case of real nuclei.

HE existence of bands of rotational states in
nuclei has been verified recently in an appreciable
number of cases. In each rotational band several states
are found having energies given by
h2

E=E¢+—J(J+1),
29

where E, is a constant for the particular band, J is the
angular momentum of the state, and 4 is a constant,
characteristic of each band, known as the “effective
moment of inertia.” All the states in a given band have
apparently a common intrinsic structure; they differ
from one another only in the amount of collective rota-
tion present. The experimental evidence indicating this
type of structure includes a number of independent
observations in addition to the energy values: static
quadrupole moments, E2 transition probabilities, and
beta-decay branching ratios.!* Some of these observa-
tions, such as branching ratios in beta decays leading
to different members of the same rotational multiplet,
require for their interpretation only the assumption of
the separability of the internal motion from a collective
rotation. Other observations require the evaluation of
some intrinsic parameters from a more detailed model.
In particular the separation in energy between states
of the same rotational band depends upon the effective
moment of inertia, whose evaluation depends upon
further details of the nuclear model.

One of the more successful attempts to account for
the experimentally observed moments of inertia is due
to Inglis,2? and is now known as the “cranking model.”
The nucleus is represented by a system of nucleons
moving in a deformed potential which is rotating with
a given angular velocity. The energy of the system is
calculated by perturbation theory to give a power
series in the angular velocity; the coefficient of the
quadratic term is interpreted as 9. The following ex-
pression is obtained for the effective moment of inertia
of a two-dimensional system in the state |0):
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1 A. Bohr and B. R. Mottelson, in Beta- and Gamma-Ray Spec-

troscopy, edited by K. Siegbahn (North Holland Publishing Com-
pany, Amsterdam, 1955), Chap. 17.

2A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat.-fys. Medd. 30, 1 (1955). .

3D. R. Inglis, Phys. Rev. 96, 1059 (1954).

where L is total angular momentum operator, |0) and
| B) are states of the system of particles in the deformed
potential, unperturbed by rotation, and E; and E, are
the corresponding unperturbed energies.

The validity of this approach may be questioned,
since the rotation of the nucleus is an externally forced
rotation imposed by “cranking’ the external potential,
while in actual nuclei collective rotations are free rota-
tions resulting from the mutual interaction of the par-
ticles themselves. Also, the limitations under which the
use of ‘“deformed shell-model” wave functions is
justified are not clear. This point is of particular sig-
nificance since the Inglis formula (1) as it stands re-
quires the use of such functions and is not valid if the
exact wave functions for the system are introduced.
The latter must be eigenfunctions of L, since the total
angular momentum of an isolated system is always a
good quantum number; hence all nondiagonal matrix
elements of L vanish, and the formula (1) gives a
meaningless result.

The use of the external rotation also introduces im-
plicitly an extra degree of freedom into the system which
is not present in the real nucleus. This problem has
been discussed* and has certain implications which will
be considered in a subsequent paper.

In this note, a formula is derived for the moment of
inertia of a freely rotating system, without the use of
externally imposed rotation or additional degrees of
freedom. This formula is similar in form to (1) and is
valid when the exact wave functions and energy values
are introduced. The treatment is applicable to freely
rotating systems and also to systems oscillating freely
in a potential well binding the system to a fixed ori-
entation. In the latter case the new formula reduces to
the Inglis formula (1) in first approximation. Certain
similarities between these oscillating wave functions
and deformed shell-model wave functions are discussed,
but no rigorous justification for the use of the latter
is given.

Consider a dynamical system for which bands of
rotational states are known to exist. For simplicity, a
two-dimensional system is considered; the generaliza-
tion to three dimensions does not involve any funda-
mental difficulties. Let the system be specified by an
angle ¢, describing the orientation of a set of moving

4 Lipkin, de-Shalit, and Talmi, Nuovo cimento 2, 773 (1955).
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coordinate axes fixed in the system, and by a set of
independent “intrinsic” coordinates and momenta g,
and p;, describing the internal degrees of freedom of the
system with respect to the moving axes. All the ¢; and
$; commute with ¢ and with its canonically conjugate
momentum L, the total angular momentum of the
system. Assume that the Hamiltonian of the system
can be written in the form proposed by Bohr and
Mottelson,® consisting of a rotational energy, an in-
trinsic energy, and a coupling term:
2

H= %-i—H int(Qi,20) + H coup1 (L,qi, ). (2)

The existence of rotational bands in the system
implies a separation to a good approximation of the
intrinsic motion from the collective rotation.?* One can
therefore assume that by a proper choice of the system
of moving axes, the Hamiltonian (2) can be made
approximately separable; that is, (1) Heoup can be
neglected; (2) the off-diagonal elements of 1/9 can be
neglected in the representation in which H is diagonal.
The effective moment of inertia J is therefore an opera-
tor whose expectation value depends upon the state of
the system, but which does not mix different states.
Let us assume further that the operator J depends only
upon the intrinsic variables p; and ¢..® These assump-
tions necessary for the following treatment can be
summarized in mathematical form as follows:

(@) Heooup=0,
(b) [H,9]=0, 3)
(C) [L,g]=[¢,g]=0,
The experimental value of the moment of inertia
associated with a given rotational band is given by the
expectation value of the operator 4 in any state of the

rotational band. An expression for (g) can be obtained
directly from the relations (3) and the identities

O|CH,4]|k)
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where f(¢) is any periodic function of ¢ with period 27
(ie., single valued), 4 is any operator, |0) and |%)
two distinct eigenstates of the Hamiltonian (2), and
E, and E, the corresponding eigenvalues of H, as-
sumed to be discrete and distinct.

Using Eq. (4b) and the rules for matrix multiplica-

tion, one obtains OICEAT| B
k0 E.—E,

5 A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat.-fys. Medd. 27, 16 (1953).

61t must be emphasized that these assumptions are never
exactly satisfied in any real dynamical system, except that of the
rigid rotator, because of the action of centrifugal and Coriolis
forces which couple the intrinsic and rotational motions and which
change the moment .of inertia as a function of the speed of rota-
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To get an expression for (0]9|0), choose” A=J sing.
Then, using relations (3) and (4)

[#,47]= —ih[L cosp+(cos)L]/2, (6)

0| (cosp)L+L coso|k)|?
<0|9]0>=%Z]< | (cosg) | >|. s
k= (E—Eo){0]cos?|0)

The expression (7) is by no means unique. Different
expressions for the moment of inertia can be obtained
by using any other periodic function of ¢ instead of
sing in the expression for the operator 4. The choice of
sing is quite arbitrary and is mainly for simplicity. It
should be noted that the expression (7) differs formally
from the formula (1) only by the presence of the factors
cosg. It is just these factors which make the relation
(7) valid for eigenfunctions of a freely rotating system
which are eigenfunctions of L. This can easily be verified
by inserting the appropriate wave functions and energy
differences in Eq. (7). The result, however, is trivial
since the moment of inertia can be computed directly
from the energy difference E;— Ey.

The above derivation can be extended to apply to
certain systems which are not in free rotation. For
such systems the moment of inertia is not directly ob-
tainable from the energy eigenvalues and the formula
(7) is no longer trivial.

Let a term depending only upon ¢ be added to the
Hamiltonian (2) to obtain

L2

H' = '2_;_'+Hint (qsyps) +H coup (L,gi,p0)+ Vig). (8)

and

If the conditions (3) are still satisfied, then Eq. (6) is
valid for the Hamiltonian (8) which differs from (2)
only by a term commuting with ¢ and ¢. Thus, the
above derivation and Eq. (7) are valid for the system
described by the new Hamiltonian (8). The states of
the system are no longer those describing free rotation
but are modified by the potential V(¢). If this potential
has the form of a well centered about ¢=0, the possi-
bility exists of bound states in which the system oscil-
lates about the equilibrium position ¢=0. If this bind-
ing is sufficiently strong, the wave function describing
the system is appreciable only in a small region about
¢=0, where cos¢ can be taken as equal to unity. For

tion. The treatment given here merely assumes that these effects
are negligible to a first approximation.

7 Special care should be taken in choosing 4. Since explicit use
is made of matrix multiplication, it must be guaranteed that the
state 4 | k) remains in the space of the set of eigenfunctions |&).
As our functions are assumed to be single valued, they should be
periodic in ¢ with period 27. Thus only operators which are
periodic in ¢ with period 2 can be used for 4. The simpler choice
A =¢, which leads to the Inglis formula (1) exactly, is thus er-
roneous and leads to inconsistent results.

8 This derivation of the expression for the moment of inertia
resulted from a remark of A. Bohr (private communication) re-
garding a possible derivation of the Inglis formula based upon the
relation [H,¢]= (i/%)(L/9). The difficulties encountered in the
interpretation of the relations obtained in this way are avoided
in the present derivation, as discussed in the note above. The
authors would like to take this opportunity to thank Dr. Bohr
for helpful discussions on this subject.
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such a strongly bound system, the formula (7) reduces
to the same form as the formula (1).

It should be noted that the moment of inertia calcu-
lated for the bound system (8) is exactly equal to that
of the freely rotating system (2) which differs from it
only by the absence of the potential V(). It is there-
fore possible to calculate the moment of inertia of freely
rotating systems by use of the Inglis formula (1) with
eigenfunctions of a strongly bound oscillating system
having the same intrinsicstructureasthe original system.

It must be emphasized that there is another important
difference between the new formula (7) and the Inglis
formula (1), in addition to the purely formal difference
involving the factors cos¢. The expression (7) refers
directly to a freely rotating system, or to one having
that certain type of bound rotation described by the
Hamiltonian (8). The eigenfunctions and energy values
of this system appear in the formula. The eigenfunctions
and energies used in the Inglis formula (1) are those
for a system of particles moving in a deformed potential
well which is fixed in space. Two questions are suggested
by this difference: (1) Can the derivation of Eq. (7)
be extended to apply to systems described by shell-
model wave functions; (2) What is the relation between
the moment of inertia of the shell-model system and
that of the real freely-rotating nucleus?

Although the question of the validity of the use of
shell-model wave functions is not rigorously answered
in this paper, it can be somewhat clarified by examining
the simpler analogous case of collective translation of
the entire nucleus (motion of the center of mass of the
system).

The close analogy between the problems of collective
translation and collective rotation has been discussed.
The treatment of rotation given above can be applied
to collective translation simply by replacing the opera-
tors L and ¢, respectively by the total linear momentum
and the coordinate of the center of mass. The inertial
parameter 9 given by the formula analogous to Eq. (7)
is just the total mass of the system. This formula
should be valid for systems moving in free translation
and also for those oscillating in a potential binding the
system to a fixed position in space. Since center-of-mass
motion is well known, the analysis of this problem in
the case of nuclei should shed some light on the validity
of the use of shell-model wave functions in (7).

The problem of center-of-mass motion in the system
described by a shell model with a harmonic oscillator
potential has been treated by a number of investigators.®
It is shown that the states of this system describe a
nucleus whose center of mass is bound to the origin of
the coordinate system by harmonic oscillator potential,
and which therefore undergoes harmonic oscillations.
These collective oscillations are not coupled to the
internal degrees of freedom of the system (Hooup1=0).

9 H. A. Bethe and M. E. Rose, Phys. Rev. 51, 283 (1937); J. P.
Elliott and T. H. R. Skyrme, Proc. Roy. Soc. (London) A232,

1(5615 ()1955); H. R. Post, Proc. Phys. Soc. (London) A66, 649
1953).
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It is therefore possible to use this model to study the
intrinsic motion of a free unbound system which has
the same intrinsic motion as the shell model; it is
merely necessary to beware of the spurious effects of
the center-of-mass oscillations which have no counter-
part in the free system.

The treatment of these collective translations is
directly analogous to that of the rotational oscillations
expressed by the Hamiltonian (8). The translational
formula analogous to the Inglis formula (1) therefore
gives exactly the total mass of the system when the
shell-model wave functions and energies are introduced.
The total mass of the shell-model system is of course
exactly equal to that of the unbound system.

However, difficulties are encountered if any potential
other than the harmonic oscillator is used for the shell
model. Exact separation between intrinsic and center-
of-mass motions occurs only in the case of the harmonic
oscillator potential?®; in all other cases, Hecoupt does not
vanish and states of different intrinsic properties are
mixed by center-of-mass motion. If the shell-model
potential depends upon the particle momenta as well
as upon the coordinates (e.g., a term of spin-orbit
coupling), the equation analogous to Eq. (6) is no
longer valid, and the Inglis formula no Jonger gives the
total mass of the system.

Much of the treatment of the center-of-mass problem
can be carried over to the rotational case. The shell-
model potential used here is not spherically symmetric;
a typical example is the anisotropic harmonic oscilla-
tor.?!! The number of degrees of freedom of the shell-
model system is equal to that of the original system;
hence degrees of freedom corresponding to the rota-
tional degree of freedom of the original nucleus must
exist also in the shell model. The shell-model system
does not rotate freely, nor is it held to a fixed orienta-
tion; rather, it oscillates with small amplitude about
an equilibrium orientation (these fluctuations in nuclear
orientation can be shown by choosing some system of
axes to specify the orientation of the nucleus, e.g., the
principal axes of inertia, and by calculating the mean
and mean square values of the Euler angles defining
the orientation of these axes).

By analogy with the center-of-mass case, one would
expect the Inglis formula to be approximately valid for
the rotational case, using shell-model wave functions
and energies, if the following two conditions are satis-
fied : (1) The collective oscillation described by the shell
model must not be coupled too strongly to the intrinsic
motion; (2) the effective “collective potential”’ binding
the system to a given orientation must commute
approximately with ¢. Methods for checking whether or
not these conditions are satisfied in particular cases
are being developed and will be reported in a subse-
quent paper.

10T, Talmi, Helv. Phys. Acta 25, 185 (1952).

1S, Gallone and C. Salvetti, Nuovo cimento 10, 145 (1953);

D. Pfirsch, Z. Physik 132, 409 (1952); S. G. Nilsson, Kgl. Danske
Videnskab. Selskab, Mat.-fys. Medd. 29, 16 (1955).



