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Effects of Nondegeneracy of Nuclear Ground State on Low-Energy Neutron Reactions
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The imaginary part of the potential acting on a neutron moving in the nucleus is shown to be very sensitive
to the departure of the nuclear ground-state wave function from that of an independent-particle model. The
nucleon-nucleon interaction which gives rise to the neutron absorption also leads to correlation structure in
the nuclear wave function. This manifests itself both in the partial emptying of the independent-particle
states near the Fermi momentum and in the velocity dependence of the real part of the average potential seen
by the neutron. These effects are determined by using interaction operators derived in studies of the nuclear
saturation problem. The result is that the velocity dependence of the potential reduces U& by a factor of
about eight; the departure of the nuclear state from complete degeneracy gives an increase of roughly 5 in the
opposite direction. Thus, the two effects nearly cancel so that the final prediction for U& at a density
corresponding to E.=1.40)&10 "A& cm is close to the empirical value. It is also found that Ul decreases
rapidly for higher nuclear densities, suggesting that the neutron absorption may be primarily a surface
phenomenon.

I. INTRODUCTION
' 'N a previous paper' (to be referred to as I) a theory
~ ~ of the interactions of low-energy neutrons with
nuclei was developed, following closely methods used in
the study of the properties of the ground state and the
low excited states of nuclei. ' "It is the purpose of this
paper to remove some of the approximations made in I
and to give a more accurate determination of the
imaginary part of the average potential acting on the
neutron. In the course of the calculation, the physical
significance of the general approximation method used
will be developed in greater detail than in I.

The imaginary part of the average potential which
acts on a nucleon moving through nuclear matter in its
ground state is a measure of the rate at which the
neutron through its interactions loses energy to nuclear
excitation, i.e., to compound nucleus formation. An
elementary way of estimating this rate was developed
by Goldberger" for high energies and more recently
applied by Lane and Wandel" to the low-energy neutron
region. In these calculations the nucleus is idealized as a
degenerate Fermi gas and the rate of excitation de-
termined by a use of the experimentally determined
nucleon-nucleon cross section to give the mean-free path
for a nucleon in nuclear matter. The features of the
process which are not treated correctly in this approxi-
mation are the alteration of the nucleon-nucleon scat-
tering by the presence of the dense nuclear matter, and
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the departure of the nuclear wave function from that of
an idealized independent-particle model. A further error
arises from the assumption that only the simple excita-
tions resulting from a single interaction of the incoming
neutron with a bound nucleon need be considered.
Consequently the effects of more complicated compound
and collective excitations are not taken into account. A
surprising feature of the calculations of Lane and
Wandel based on this simple approximation scheme,
however, is that their results are iri semiquantitative
agreement with experiment, both in energy dependence
and in magnitude.

The calculation of the imaginary potential given in I
is a determination of the rate at which the simplest
excited states of the nucleus decay, transferring their
energy into multiparticle excitations. These states are
not simple independent-nucleon states in the sense of
the shell model, but rather the simplest states of
excitation of the actual nucleus, i.e., eigenstates of the
true nuclear Hamiltonian with the particle-particle
interactions included. To clarify the relationship be-
tween the actual nuclear states and the states of the
independent-particle model, we shall restate here some
of the results obtained in other applications of the
methods of this paper, particularly in the theory of
nuclear models~ and in the theory of configuration
mixing. " It is convenient to consider first a system of
particles moving without mutual interaction in an ex-
ternal potential which for example may be taken to be
the typical well of the independent-particle model. The

7 independent-particle states may be filled uniformly to
give a degenerate Fermi gas; this is the lowest state of
the system. Other possible states may have, for ex-

4 ample, one nucleon moving in an excited state, two
particles in excited states, one hole in the filled states
and one excited particle, etc. These typical independent-

particle states are indicated schematically in Figs. 1(A),
1(B), and 1(C).

We next consider the alteration of the independent-
particle states as the particle-particle forces are adia-
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batically "turned on" from zero to their actual value.
One consequence is that the energy levels all shift
downward as a result of the perturbation. This inter-
action energy is of course the origin of the actual nuclear
binding. Another eBect of the perturbation is that the
independent-particle levels are mixed with nearby levels
so that the amplitude for occupying a given level is
distributed among many nearby levels. "This alteration
of the population of the independent-particle levels is
indicated schematically in Figs. 1(D), 1(E), and 1(F).

The connection between the nuclear wave function
and the independent-particle wave function can be ex-
pressed formally using the methods of the previous
nuclear studies. "We consider an independent-particle
wave function 4s describing A+1 nucleons occupying
various independent-particle states. When the inter-
actions are turned on, the wave function goes over into

+=~o,
where F is the correlation function or "model operator"
(in. the sense of Eden) which introduces the correlation
structure into the wave function to account properly for
the effects of the strong two-body interactions. At the
same time the energy of the system shifts downward
from the unperturbed energy

kF

jE

kF kF

identified with a quasi-independent-particle excited
state of the type indicated in Fig. 1(D).Taking ks as the
momentum of the excited state to which the quasi-
independent excited state is connected Las in the
relationship between the states of Fig. 1(A) and 1(D)j,
the energy of the system is

KF

Fro. 1.Typical independent-particle-states L(A), (8), and (C) g
and the related quasi-independent-particle nuclear states L(D),
(E), and (F), respectively]. The relative population of the inde-
pendent-particle states is schematically indicated by the vertical
amplitudes. The shift of the levels in energy is not shown.

to
e= Q, k,s/23I,

E=g, (k, /2M)+-,' P; g;(E;;, ;,—exchange), (2)
E=P + +-,' P (E, ; —exchange)

~=& 2M 2M

where the sums run over all occupied states. The E;, ;,.
are the diagonal elements of the two-body reaction
matrix which is determined by the self-consistency
procedure discussed in detail in reference 4.

The exact relationship between 4 and 4'0 is deter-
mined by F; the distribution of the original independent-
particle state among the nearby states is given by the
matrix elements of F with respect to the independent-
particle states. If the alteration of the independent-
particle states is not too great; i.e., if F does not diGer
too much from unity, it is convenient to retain some of
the language of the independent-particle model in
characterizing the nuclear states. For example, the state
schematically indicated by Fig. 1(D) is closely connected
with the independent-particle state of Fig. 1(A).To keep
this relationship in mind but to emphasize the lack of an
exact one-to-one relationship between the actual nuclear
states and the independent-particle states, we shall
refer to the former as quasi-independent-particle states.
With this distinction clearly in mind, we now return to
our problem.

In I, to simplify the determination of the real part of
the potential acting on a neutron, the nuclear state
formed by the entrant neutron and the nucleus was

"A similar description is used by Lane, Thomas, and %igner in
their "intermediate coupling" model of the nucleus )Phys. Rev.
98, 693 (1955)g."For a detailed discussion of the following, see references 5, 7, 8,
and 10.

1P (ICo', o,—exchange), (3)

U~ (0) =Re g (Es;, s,—exchange), (4)

is discussed in I. The result obtained for neutrons was

where M*=M is the eGective nucleon mass for a
nucleon moving at momenta near the Fermi momentum.
For protons, the result is similar except that E„should
be replaced by E„—E„where E, is a mean value of the
Coulomb energy of the proton in the nucleus. Equation
(5) is valid at a density corresponding to a radius of
8=1.40&(10 "A'. To correct this to the density de-

where the third term in E is the internal interaction
energy of the core and the fourth term is the interaction
energy of particle "0" with the core particles. The
solution of the problem is completed by adjusting ko so
that the total energy of the system of 2 nucleons plus
the one excited particle at momentum ko minus the
energy of the nucleus with A nucleons is equal to the
energy of the incoming neutron. This determination of
the real part of the interaction energy,



K. A. 8RUECKNER

termined by Saxon's" analyses of scattering, which give
E= 1.33)&10 "A &, we somewhat arbitrarily multiply 68
Mev by (1.40/1.33)'. The resulting potential acting on a
proton (taking E,=14 Mev) is shown in Fig. 2 for
0 =M*/M= 0.52 and 0 =0.60; the correct value of 0 lies
between these values. The agreement with the indicated
experimental points is reasonably good.

In the approximation made in I which identified the
neutron-nucleus state with a true nuclear eigenstate (a
quasi-independent-particle state) absorption cannot
take place if the energy of excitation is less than the
energy at which particle emission can occur. This is
clearly the case in an actual nucleus where the nuclear
levels become metastable for such energies. Thus the
imaginary part of the potential determined in the ap-
proximation of I vanishes at zero energy of the incoming
neutron. At higher energies, the single-particle level is
broadened since particle emission can occur. When the
width of the single-particle levels is su%.ciently great to
overlap many compound levels, the methods of I gave
an imaginary potential of

z
l'i-=1241

I I I
Mev.

(8 Mev2 E M
(6)

Inserting values of M*/M between 0.5 and 0.6 as de-
termined in the saturation studies, the result for
neutrons of 2 Mev is Vz =0.3 to 0.4 Mev, which is a
factor of roughly Qve smaller than that determined
empirically. " This considerable discrepancy between
theory and experiment is somewhat puzzling at first
sight. A possible source of the too-small value for Vz
lies in the neglect of more complex excitations: we shall
show, however, that the principal error lies in the
neglect of the difference between the quasi-independent
particle and the true independent particle states.

It is apparent that while the methods of I predicted
(correctly) the vanishing at zero energy of theimaginary
potential acting on a particle in a quasi-independent-
particle state, it cannot be correct that a neutron sees
similarly a vanishing absorption as the energy tends to
zero. The anomaly is resolved if we recall that the
neutron state bears only an approximate one-to-one
relation with the quasi-independent-particle state or
conversely that the quasi-independent-particle wave
function can be expanded into independent-particle
wave functions in which expansion the single-nucleon
state has an amplitude less than unity. Thus in I we
have neglected the incomplete overlap of the incoming
neutron wave function with the quasi-independent-
particle function; it is the incompleteness of this overlap
which leads to an increase in Vz relative to that
determined in I.

An alternative way of expressing this feature is to
observe that the true nuclear state (itself degenerate in

"Melkanoft', Moszkowski, Nodvik, and Saxon, Phys. Rev. 101,
507 (1956).

"Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954).

the sense that all of the low states are filled) expanded in
independent-nucleon states is not a degenerate Fermi
gas, but, because of the effects of the strong particle-
particle forces, is only partially degenerate. Conse-
quently, the incoming nucleon sees only the partially
degenerate nucleus and is less a6'ected in its absorption
by the exclusion principle. We shall see that the conse-
quence of this weakening of the exclusion sects leads to
an increase in Vi to bring it into approximate agree-
ment with experiment.

We shall also in this paper improve our estimates of
the effects of nuclear binding by using for the reaction
matrices which determine the particle-particle inter-
action, a better approximation based on the results of
the saturation studies of references 2 to 4.

II. FORMAL EXPRESSION FOR VI~

The expression" given in I [Eq. (1)j for the average
potential acting on a neutron is (we do not indicate ex-
change efFects explicitly)

(7)

where 4'(A) is the true nuclear ground-state wave
function. Eo;, the reaction matrix for particles 0 and i,
is related to the potential acting between the neutron
and the ith bound nucleon by the integral equation

&o,= i 0,+no, (&—&) '&0',

where H is the sum of the exact Hamiltonian for the
nucleus and the Hamiltonian for the neutron moving in
the "optical potential" of the nucleus. In order to solve
this integral equation, it is necessary to introduce the
exact nuclear wave functions so that (E—H) ' can be
expressed as a simple diagonal operator.

To avoid this complication, in the computations of I
Eq. (8) was replaced by a simpler equation analogous to
that used in the saturation studies. A simple extension
of the methods used there led to the equation for the
potential acting on a quasi-particle state (connected
with the single-nucleon state by the F transformation)

V(0) =P (4'p(A), Ep,@p(A) ),

where
e(A) =Fr, (A),

and the reaction matrix E is computed by solving an
equation similar to Eq. (8) except that H is replaced by
an operator diagonal with respect to the independent-
particle or model states. It is this approximation which
we wish now to remove.

We shall compute the potential directly from Eq. (7)
for W. The real part of the average potential is only
slightly affected by the difference between 4 and% 0, the

'~ For a detailed discussion of some of the following points, see
N. C. Francis and K. M. Watson, Phys. Rev, 92, 291 (1953).
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imaginary part of the potential, however, is much more
sensitive to the difference. Thus we shall attempt to
improve the determination of Vz only. To do this, we
need erst a good approximation to the nuclear wave
function O'. It is convenient to base our study on the
independent-particle wave function 0'0, thus we shall
express the departure of the true nuclear wave function
from 40 by determining the alteration of the population
of the independent-particle levels. We shall neglect
surface effects and treat the nuclear medium as infinite;
this allows us to use plane waves for the independent
particle states. We cannot expect in this approximation
to determine the fluctuation in the potential associated
with the discrete structure of the nucleus, but only the
average value.

The transformation or correlation function F which
connects 4' with +0 is given by the set of coupled
equations' '

1F=1+-Z I'P''~,
e»

F',=1+- 2 ~~I'~i,
e iq'gkl

where the operators I are the nondiagonal part of the
reaction matrix. We shall in this calculation assume that
the departure of F from unity is primarily the result of
the two-body correlation in the nucleus, i.e., we take

E„—+iq) 'K —„„]
~ g I

It„...l
~~(E,+E, E. E—.). —(15)

At this stage, we approximate E&;, „by the real reac-
tion matrix; this is a good approximation as long as
ImE is smaller. The sum over m, n is over all empty
states of the state%'; if we were to approximate%' by%'0,
the degenerate state, then the sum would run only over
states above the Fermi momentum. Finally, the imagi-
nary part of the potential acting on particle 1 is

l'r (1)= E
i (filled) mn (empty)

X8(Eg+E, E E)—, (1—6)

where again the sum over i is over all filled states of the
physical nucleus 0' rather than the model 40. The
remaining problem is to compute F%'0 which gives the
departure of 4 from the degenerate gas 4'0 and then to
carry out the sums of Eq. (16).

broadening of the initial state due to absorption is large
compared with the compound level widths. These condi-
tions are well satisfied in this application.

The imaginary part of E&;, &; is

fml~ 1 1 1m[&1 1~+2 Dl (El+E

F—1+—Q I;;. (12)
III. DETERMINATION OF WAVE FUNCTION

A. Reaction Matrix

The two-body operator I operating on the state%'0 of the
system (degenerate Fermi gas) then has the effect of
emptying two states and filling two previously empty
states. We return to the explicit determination of F in
this approximation in the next section.

The remaining problem is the determination of the
imaginary part of the potential. In determining this we
make the following approximations: for the change of
the energy of the nucleus upon the change of state of
particles, we use the reduced mass approximation'

E(k) =k'/2M*+ constant, (13)

where M* is the effective nucleon mass. We take for the
matrix element of the energy denominator in a state
where particles occupying levels 0, / have made a
transition to levels ~, j

1/eA, t, ;;——1/(Eq+E~ E, E,+iq), (1—4)—
where g is a positive real infinitesimal which specifies the
nature of the singularity on the energy shell. The sign
of g must be chosen positive since loss from the initial
state (or incident beam, in scattering terminology) is

occurring. This approximate specification of the imagi-
nary part of the energy denominator is valid only when

many levels are summed over and when the energy

For the reaction matrix, we shall use a result which
follows from the studies of the saturation problem. 4 We
shall use the same form for the reaction matrix both in
determining the departure of the ground state from a
degenerate Fermi gas and in estimating the transition
rate in evaluating the imaginary part of the potential.
In the latter case, since transitions are occurring, it is
not quite correct to use the reaction matrix which is
applicable only to the stationary state. Instead the ap-
propriate scattering matrix should be determined. When
the transition rate is low, however, as it is in the cases
we study, the difference between the reaction matrix
and scattering matrix is very small and will be neglected
here.

In the saturation studies it was shown that an accu-
rate approximation to the two-body reaction matrix can
be obtained by solving the two-body problem in the
presence of the external velocity-dependent nuclear
potential. The approximation used in the saturation
studies was to replace the actual two-body central and
noncentral potentials by square walls with repulsive
cores which predict both the two-body scattering and
the reaction matrices correctly for low momentum
values. Since it will be evident as we proceed that in this
problem it is the small momentum transfers which are
most important, we shall adopt the same approximation
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obvious notation, the amplitude is

A(k, ',k, ',kk, kt)

(k„kliEik,k,), (25)
k2+k2 k 2 k2

where because of momentum conservation we must have

1.0x I 0 ~'cm~

0.5

k,+k;=kk+kt. (26)

The summation over momentum states alone can be
replaced by an integral,

dk/(2g)', (28)

leaving only a sum over spins and isotopic spins. This is
most simply evaluated, taking proper account of the
exclusion principle, in the following way. First we break
the probability P(k;—') into terms arising from transi-
tions out of triplet and out of singlet spin states, i.e., we
write

P(k,—)=P„„„„(k,-)yP,„;„„(k,-). (29)

If we 6x our attention on a proton, the sum over the
neutrons is given by

2j4P triplet+ jPsinglet}1 (30)

the factor of 2 coming from 2 neutrons per momentum
state, and ss and rs being the a priori weighting for the
two spin states. For the protons, since we are considering
only s-state interactions, only singlet spin states con-
tribute. The result is

2X (2/4) P.;,l, , (31)

the factors coming from two protons per state, s u priori
probability for a singlet spin state, and 2 from the
identity of the two protons. Combining these, we have
for the net probability

3 (P triplet+ Ps in glet) /2. (32)

Thus it is convenient to consider the average of singlet
and triplet as was anticipated in the discussion of the
foregoing reaction matrix.

The integral of Eq. (27) is carried out in Appendix I;
the result is

where

and

P(k, ')= pf[kr(kr -k,)/n'j, —

p=-', (VpM*/2mnkr)', (34)

f(x) = 1+6x—2x(2+3x) in[1+ (1/x)]. (35)

We first fix our attention on the probability for emptying
the state k,. This we determine by summing the square
of the probability amplitude over all initial states which
are compatible with a fixed state k; and with the
momentum conservation condition, i.e.,

P(k,—') = P ~

A (k,—',k,
—',k&,kt) i'tlk, +k&, ke+kt. (27)

k/p.

ho l.5

FIG. 3. The average of the singlet and triplet reaction matrices
(k~IC~k) as a function of k. For comparison, the Born approxima-
tion to the s-wave scattering from an exponential well and the
average of experimental values for singlet and triplet scattering is
given.

IV. DETERMINATION OF THE IMAGINARY PART
OF THE POTENTIAL

We now combine the results of the last section with
Eq. (16) for the imaginary part of the potential. The
integrals cannot be carried out in closed form; they can
be considerably simplified, however, if we make use of
the fact that for a neutron of low energy and therefore
with momentum close to kg, the exclusion principle
forces all final momenta to lie near to kp. This is true
even when the nondegeneracy of the ground state is
taken into account since this affects appreciably only
states near kp. The integral to be evaluated is, again
going from summation to integration and introducing
the proper spin weighting,

3 4x
Vr~ ——— dk, dk (kt'k, '~ E~klk, )'

4 (2~)s ~

Xfi(Er+E,—Er' —E,')p(k~)

X[1—P(k ')][1—P(k )], (36)

where E' is again the average over singlet and triplet
spin states. For a degenerate state,

p(x) =1, x(kr,

=0, x)kg.
(37)

The probability P(kz) that a previously empty state
of momentum kk is now occupied is, in the approxima-
tion used in evaluating the integral of Eq. (27), identical
with Eq. (33) except that kr —k; is replaced by k& kF-
The distribution is given in Fig. 3 for the two choices of
the constants Vo and M* appropriate to the densities
p= 1.0 and q= 0.9. The result is sensitive to the density
since the reaction matrices decrease appreciably in
going to higher densities and the velocity dependence of
the nuclear potential also increases somewhat, resulting
in a lower eGective mass.
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The term quadratic in E—Ep is the only contribution
which does not vanish for the fully degenerate state; the
other terms arise from the partial emptying of the state
near the Fermi momentum. These terms give the major
contribution to the imaginary potential for the low
excitations for which the approximations used in de-
riving Eq. (44) are valid. It is interesting to note the
reasons for the approximate equality of these results
with those of Lane and Wandel. "If at p= 1 we take only
the contribution for the fully degenerate state, i.e.,

f E Ez 'z-
Vz (degenerate) =0.265~

(8 Mev)

then our result" is less than theirs by a factor of about 6.
This difference originates primarily in the velocity de-
pendence of the potential, which not only lowers the
density of states into which transitions can occur by a
factor of almost exactly two, but also reduces the
difference between the neutron momentum inside the
nucleus and the momentum of the last 6lled levels.
These effects depend on the cube of the effective mass
which therefore gives a factor of (M*/M)' zs in the
result. This very marked reduction is compensated by
the correction for the absence of complete degeneracy
which, as Eq. (44) shows, increases the imaginary
potential at p= 1.0 by about a factor of 6ve. Thus there
are two large but partially compensating effects which
must be included to give a reasonable result.

It is obvious that the extreme sensitivity of the
imaginary potential to slight density changes makes it
impossible to draw other than qualitative conclusions
from our results. It is not clear that the rapid change of
V& with q is completely meaningful; this feature does
suggest, however, that the absorbing part of the po-
tential may be weaker in the central regions of higher
density and smaller p than in the peripheral regions.

V. CONCLUSIONS

In concluding, we would like to point out some general
features of our results. We have shown that the depar-
ture of the nuclear ground state from a pure inde-
pendent-particle state has a pronounced eftect on the
imaginary potential. The departure is the consequence
of position correlations in the wave function due to the
strong particle-particle forces; these are also responsible
for the interaction of the incoming neutron with the
bound nucleons which causes the excitation of the bound
particles and the absorption of the neutron. Thus a
realistic model must simultaneously introduce both of
these effects. The velocity dependence of the effective
potential also may be a quite general feature of nuclear
structure. It is closely related to the saturating character
of the nuclear forces; it is also an alternative way of

"This result is very close to that obtained in I; the agreement,
however, is partially coincidental since a different range, strength,
and exchange character were assumed for the particle-particle
interaction.

describing the symmetry energy of the nucleus. There-
fore its presence has strong empirical as well as theo-
retical basis.

To summarize: our results emphasize the importance
of a detailed knowledge of the nuclear ground state
properties since they reveal a perhaps unexpected
sensitivity of the imaginary potential to the precise
correlation structure of the nucleus.

APPENDIX A. INTEGRATION FOR F%'p

The integral of Eq. (2"l) is

3
P(k,-')= I dk dk

(2~)' "
8M*x Vpn

k.2+k,2 k 2 k 2

1 t 2

X (A1)
f~'+ L2 (k' —»)j'+ Lk(k. —kz) j') '~

with total momentum conservation giving k~+k, =kz,.
+kz. We then introduce the new variables

k=-,'(k;—k;),

k'=-,'(kz —kz,),
(A2)

which bring the integral to a particularly simple form:

P(k; ') = (4~Von)'(M*)'
(2s)

)()Idkdk' (A3)
(k2 k~2)2 (~2+k2+k~2)4

The requirement of the exclusion principle is that

~k;—l+k'~ & k„
fk;—k—k'[&k„ (A4)

~k,+2k~ ~k, . (AS)

The integration over the angles of k, taking k;—k a,s fhe
polar axis, gives

dn'=4
t k"+(k,—k)'-k ')/2k'lk, -kl

~k,—l ~2&k,~—k'2
(A6)

=0
~

k,—I ~2&k,2—k'2

if (k' —~k;—k~)'&kp'

The integration over the angles of k is facilitated by the
introduction of the variable p= k,—k, so that

dQy= 2n.dp, = 2m-pdp/k, k. (A7)

and the integration over k, , extending only over the
filled states, gives a restriction
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The angular integrals then give

( pdp p'+k" ki—2

(22r)2JI
k,kk' k'p

(A8)

where the lower limit on the p integration is the larger of
~k,—k~ and (k22 —k")'. The upper limit on the p
integration must be chosen so that

APPENDIX Bo. INTEGRATION FOR V&mzg~zzy

We wish to evaluate the integral of Eq. (36):

f (ki) = I dk'dk' (ki~k''I &l kik')9(Ei+E' —&4 —&')

&P(k')L1 —P(k ')3D —P(k'')] (81)

We change variables to
pmax= k.+k) (A9)

but also so that Eq. (AS) is satisfied. This requires that
—,'(ki —k,) =k,

(82)

or in terms of p,

k,2+4kk, P+4k2( k22, (A10)
bringing Eq. (81) to the form

&(1—
Pl (P'+2kpp'+k')'j}, (83)

p —2(kp +k ' ) k (A11) (4 y )2

The remaining integration can be readily carried out if i=, , „, I ~ Ip l
i l)

we now make use of the fact that the integrals over k

and k' are strongly convergent so that most of the Pl (P' —2kpp +k')'3}
contributions to the integral come from small values of
k and k'. Thus in the limits of integration on p we choose

and
p, =-,'(k22+k, 2) —k' (A12) where we have written k,—k=p and k'p=kpp, '. The

delta function on energy can be remo'ved by using
p; =kp2 —k", (A13)

since for small k and k', these will be the correctly chosen
limits. We then change variables, letting P'+k"—k22

=x'. The integral over p becomes

(ki kF~) +k 2 —k2 @~~de

t'k2 —k") M*
' dk'5 (84)

and everywhere setting k'= k. The angular integral over
k is again simplified by the use of the variable p. The
angular integrations are

Finally, since we are interested primarily in k,2 near to
k+2, we replace p by k~. The integral over x then gives J kk, J „

1 (kp2 —k 2

4k'& 2

The remaining integral over k and k' is

3 (22r)'
P(k,—') = (42r VonM*)2 kdk

(22r)' 4kF' "o

(A1S)
X (1—

Pl (P'+2kp p'+k') '3}

&&(1—Pl:(P' —2kpp'+k')'3} (8S)

These integrals cannot be carried out in closed form, but
they can be brought to manageable simplicity if we
work only to second order in the small quantities

X
~

L g (ky 2 —kP) +k&$~

pk~2 —k,2

kdk
~

— '+k —k

6=k1 kII

o'=p —kp,
(86)

& (,+k,+k„) 4(k, k„), (A16)
and p as defined in Eq. (34). To make the dependence on
these small quantities more explicit, we write

In this result, to be consistent with our other approxi-
mations, we replace the multiplying factor 1(k, by
1/k2. This integral is now of standard form; it is most
easily carried out if we write

1 d
(n2+k2+k~2) —4 — (n2+k2+kI2) —I (A 17)

6 d(n')'

(p'+ 2kpI4'+ k') ' kF+ o'+ kp', —
(P'—2k''+ k') *'ki +e' ki2', — —
(2p'+ 2k' —k22) l—k p+ 24' —o.

p(x) =1 p f(k p x), —x(ki;—

(8&)

The result of the final integrations is given in Eq. (33). =pf(x kp), —x&kp. (8g)



LOW —ENERGY NEUTRON REACTIONS

Working only to leading order in the small quantities,
we have, for e'&0,

From this result we find the following for the term
quadratic in e.

e'/4k

The term independent of e is

(813)

f(x)dx . (89)
2p

de' f(x)dh+ e'de'f(2»') ) (814)J,—k e'—k 0

If e'&0, the integral gives
which by a change in the order of integration becomes

26

—p ~ f(x)dh for —e'(k,
k~,

for —e'& k.

(810)

2p r'
1
2

~o

~2k

dxxf(x)+ (k ', x)—f(—x)dx
"k

~2k

+-', xdxf(x) . (815)
~o

When we introduce the variable e' of Zq. (86), the next
integral over p becomes, if e(k,

2 (g2e

-p) de'p(kg+2»' —e) ) f(x)dx
k e' —k

The term linear in e is

f(x)dx+kf(2k)+ ,' f(—x)dx . (816)

Finally the last integral over k is

a+ p ~(
e'—to[

+—p de'p(k p+2»' —e)
k &p J„

h(4~Vpn)'(M*)'(2~)' t
" kdk

f(x)dx (811) .
2k J (,~2k, )4

E(ki) =

The last contribution can be dropped since in the
integration over k, the contribution for k less than ~ is of
order e2p and hence can be neglected to our desired
accuracy. The integration over e' then gives, to 6rst
order in e2, ep, and p,

2 E2 0 2e

—+p ~ de' t f(x)dx
e—k e'—i

[
c'—k[

»2
- )p ~2k

X —+ep f(x)dx+kf(2k)+-', f(x)dhJ, 00

+p xf(x)dx+ ,' f(x)-dx
Jo "o

2k

+ " (k ,'x) f(x)dx—-. (817)

After slight rearrangement, this integral becomes
+p d»J

aP 0

f(x)dx
(4x-n VpM*)'(2~)'

{e'+eppp+p~i),
12n'kx

(818)

+ ' e'de'f(2»' «) . (812)—
where Fi and Pp are defined in Eq. (40).


