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Self-Energy of the Polaron for Intermediate Temperatures*
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Approximate eigenvalues of the Frohlich Hamiltonian, used as a model to represent the behavior of the
electron coupled to the optical modes of an ionic crystal, are obtained for temperatures at which there is an
appreciable probability of real phonons being present in the 6eld. The method used is an extension of the
variational technique employed by Gurari to obtain the eigenvalues at absolute zero. Correlations between
phonons are neglected. The results obtained indicate that an electron in equilibrium with the lattice will have
a strongly temperature-dependent effective mass for intermediate temperatures.

I. INTRODUCTION

HE approximate Hamiltonian derived by
Frohlich' to represent the behavior of the strongly

interacting electrons and lattice oscillations in an ionic
crystal is

H=Hp+H&,

The average number of phonons in each mode is given
by

n = [e"" 1]— (5)

where 0 is defined by the relation Euv= kQ, and is of the
order of magnitude of the Debye temperature.

A typical ionic crystal, NaCl, has 0=368' and
0=315'. The values of rt for two temperatures are

p2
Hp= +Itrd Z ap as~

28$

p e'It ~'
(a,te 'p' -a,e'p-')—

(yroV) p q

(2)
T('K) 273 530
n 0.35 1.0.

The validity of the present analysis is restricted to
temperatures of the order of room temperature or lower.

II. CALCULATIONS

In the above expressions, p and r refer to the electron
coordinates; co is the characteristic optical phonon
frequency and is obtained from the reststrahl frequency;
g,t and u, are creation and annihilation operators for
phonons of wave vector q; V is the normalization vol-
ume; and p is given by

I= (2trtro/ttt) &,

and the dimensionless coupling constant

(6)

Following Frohlich, the Hamiltonian is most con-
veniently expressed in units of 4o, by de6ning the
inverse length

1 cos (1 1)
4rl (e~ ep)

(4)
(1 1)e'I

A=
ep ) A&7

where e„ is the optical and eo the static dielectric
constant of the ionic crystal under consideration.

A number of approximations are made by Frohlich
in obtaining Eqs. (2) and (3). They are still valid at
the higher temperatures presently under consideration.

Consider a polaron (the electron with its associated
cloud of virtual phonons) in equilibrium with the
lattice. At absolute zero, there is a vacuum of real
phonons. The eGect of 6nite temperatures is to put real
phonons into the field, in addition to the virtual
phonons surrounding the electron. lf the temperature
is not too high, it is reasonable to assume that these
real phonons are described by the Bose distribution.
Since the frequency is assumed to be independent of the
wave vector, all modes of the system are equally excited.

*This work was performed while the author was a visitor at the
General Electric Research Laboratory, Schenectady, New York.

t National Science Foundation Postdoctoral Fellow.
H. Frolich, Advances in Phys. 3, 325 (1954). This review

article contains references to earlier work in the field.

H' =Hp'+Ht',
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V' and q' are now dimensionless quantities; V and q,
introduced previously, were not. The dimensionless
number X is a c number representing the total wave
vector of the system; (K—P q'a, tap) is clearly the
electron wave vector.

2 Lee, Low, and Pines, Phys. Rev. 90, 297 (1953).

For NaC1, the coupling constant is n—5.5.
The electron operators may be eliminated by applying

the unitary transformation'

S=exp (—i Q a, ta, .q' r').

The resulting Hamiltonian is
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~. =«- V'-'2, q'L(n+1) If; I'-nl g'I'l&'
-~'+V'- 2, &(1+P)(.+1)If;I'
-(1-~") lg, I

+'(4-)'~'-'
XL(n+1)(f;*—f;)—&(g ~

—g )j). (14)

(9)E= (+,H+); (q,%)=1,

which is stationary in the energy and has been employed
previously to obtain eigenvalues at absolute zero.

The normalized wave function for the uncoupled
fields in the (n, k) representation is'

E ' is the energy of the uncoupled 6eld. The wave
vector of the electron is equal to the total wave vector,

The calculations are performed by using the ex- and
pression,

~.=V' 'IIIn')=V' 'IIIn). (10) lt,&
——(K—g, nq') =K, (15)

The physical model to be used as the basis of the trial
wave function (valid in the intermediate coupling
region with which we are concerned) is that the electron
can be associated with an arbitrary number of virtual
phonons in addition to the real phonons present. Cor-
relations between phonons are neglected. However,
some average e8ect of correlation is taken into account
through the variational procedure. If one allows no
more than unit changes in occupation number, the
trial wave functions take on a rather simple form.
Since the occupation number is at most of order unity
for the temperatures of present interest, such trial
functions take into reasonable account the various
degenerate states of the uncoupled system which exist
for these higher energies. The speci6c form of the
normalized trial wave functions is postulated to be

4' =Up; U=II U, ,

6E„SE„5E„SE„
=0

8f 8f* 8g 5g*
(16)

Equation (16) serves to determine all the hitherto
unknown functions. If we define x„ to be'

~-= V' 'Z. «'((n+1) If'I' —nl g'I'}, (17)

we obtain for f and g

f;= —(4s-rr) lip' —'L1+P—2q' (K—sr )j—', (18)
and

g, = ( 4a)'*iq' '$ 1+q—"+2q'. (K—sr„)j '. (19)

since Q,.q'=0. The energy of the uncoupled 6elds is
therefore

E„'=)'s'+ nS, (15a)

where S is the total number of optical phonon modes.
We minimize (12) by setting

U'= Il+ v' '(l f'I'+ I g'I')3 '

XL&+V' *'(f, ~"+g'~, )j

The functions f* and g* are complex conjugates of

(11) f and g respectively.
Substitution of the explicit forms of f and g into

expression (14) and rearrangement yields

where

g„=g„s+g„

E„'=(K P, nq')'—+P;n,

(12)

(13)

'The n's in Eq. (10) are integers. The average values of n,
obtained from Eq. (5), are substituted in the hnal result only.

' M. Gurari, Phil. Mag. 44, 329 (1954).
The operator V does not represent a canonical transformation,

since it is not unitary. Correction terms to the self-energy therefore
cannot be calculated by the technique of reference 2. For a phonon
vacuum, V is equivalent to (but not identical with) the unitary
transformation U, employed in reference 2.

+„is a generalization to higher temperatures of the trial
functions used by Gurari for absolute zero. 4 The func-

tions, f, f*, g, and g* are assumed to be unknown,

independently varying functions of q' and E. The
virtual phonon cloud surrounding the electron, as
represented by the above trial function, is a semi-

classical one, insofar that the Geld operators commute

and the held components are independent of each
other. '

Substitution of Eq. (11) in expression (9) yields, for

large V',

4mn 1 n+1
V' s' P 1+P—2q' (K—sr )

(20)—1+q"+2q' (K—x.) I

To complete the calculation, we allow the box
normalization to go over into a continuum, replacing
the sum by an integral and V' by (2s.)s. Two types of
terms appear in Eq. (20): the term proportional to
(n+1) corresponds to phonon emission processes, and
the term proportional to e to absorption processes. In
the momentum region E(1 (which is also the region

where
I
K—sr„l (1, as will be seen below), only virtual

emissions and reabsorptions can take place. However,
real absorptions and re-emissions can occur. Since we

are interested only in virtual processes in the calculation
of the self-energy, we must follow the usual method of
taking principal values about the singularities to
eliminate the real processes.

Since K is the only direction present in the problem, x„must
be a vector in the K direction.
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The results of integration are

sin '(E—«„)E„'=—~„'—(m+1)n—
K—z„

and

csin '(E—K„)',—(n—+1)n'

(E—~„)'

-', (n+1)n
~.=E +O(E') .

1+-,' (v+1)n

(22)

III. RESULTS AND DISCUSSION

Equation (22) can be used to obtain the results. In
appropriate dimensions, they are, for p'/2m(her,

8 =h(oE„=E.„'—(m+1)nkuu+P'/2m~ O(P4), —(23)

where

(24)

m*= m{1+-,' (n+1)n}. (25)

The energy of the electron-phonon system therefore
consists of three parts: the energy of the free phonon
field; a lowering of the bottom of the conduction band;
and an increase in the effective mass of the electron.
All of these eGects depend on e, and therefore on the
temperature. At absolute zero, the results reduce to
those obtained in references 2 and 3. For o. small, they
reduce to the results obtained from second order
pertubation theory. But since in the actual physical
situations 6m~i, both the bottom of the band and the
polaron mass are predicted to be rather strongly

(21)
(E—~„)[1—(E—a„)']-*'

An expansion in powers of k yields

E.'= —~„'—(x+1)n[1+-,' (E—~„)'+

temperature-dependent in the present case.~ This
suggests that temperature-dependent terms, such as
the eGective mass, which are associated with the large
magnitude of the electron-phonon coupling, should also
appear in transport phenomena, for example, mobility
measurements. Low and Pines' have calculated such
intermediate-coupling e6ects in the vicinity of absolute
zero.

One may object to the use of the variational procedure
in the present case. The Ritz-Rayleigh procedure is
most useful in obtaining upper limit estimates of the
energy change of the ground state; that is, the band
shift at absolute zero. To obtain good approximations
to higher eigenvalues, we would need to use exact
eigenfunctions for all previous eigenvalues, or else, to
employ the Courant minimax principle. The situation
is more serious with the eGective-mass result than with
the band shift, since the former represents the curva-
ture, and therefore the second derivative of the curve
of E verses k for an eigenvalue which in itself is not too
well known. ' The above results must therefore be taken
only semiquantitatively. In their defense, one can say
that the trial functions used represent a reasonable
approximation to the physical situation and are es-
sentially orthonormal. Further, since they are used in a
stationary expression, the energy levels should not be
too sensitive to errors in the trial function.
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7 A temperature dependence of effective mass and of band gap
is also obtained in the case of electrons interacting with acoustical
phonons. The effective coupling constant is of the order 10 '
smaller for this case than for the case of optical phonons in ionic
crystals, so that this temperature dependence is negligibly small.' F. E. Low and D. Pines, Phys. Rev. 98, 414 (1955).

QThis difhculty already exists in the work of Lee, Low, and
Pines. Their estimate of correction terms indicates that the error
of their effective-mass results is more than four times as great as
the error in the calculation of band shifts at absolute zero.


