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Amplitudes of Thermal Vibration at Fusion
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on the basis of theoretical results from the Debye-Wailer theory of the thermal dependence of x-ray
reQection intensity, relatively accurate values of the Lindemann constant are determined for ten metals
by use of rigidity moduli at fusion with previously determined bulk moduli. Agreement of the derived
value p of the critical ratio of root-mean-square amplitude of thermal vibration to nearest-neighbor distance
at fusion, with the corresponding value from x-ray intensity data, is improved for the one case (Al) favorable
for comparison. The average p over the body-centered cubic, face-centered cubic, and hexagonal lattice
types is 0.11&, in excellent agreement with the value 0.105 given by Gruneisen. Relatively accurate values
of the Lindemann constant for Pb and Al imply that this quantity cannot be a strict constant over a
lattice type; however, the assumption of an average over the lattice type yields an excellent approximation
for the face-centered cubic elements.

I. INTRODUCTION

'N a previous paper' by the author, it was shown that
~ . the Lindemann law of melting can be derived under
certain assumptions from the Debye-Wailer theory' of
the thermal dependence of the intensity of x-ray
reQection by a solid. In a paper submitted for publica-
tion at about the same time, Cartz' likewise pointed out
this fact. He deduced values of Lindemann constants
and of the amplitude of thermal vibration at fusion,
consonant, ' in general, with those of I. The thermal
amplitudes of I were determined from extrapolated
bulk moduli under the assumption, which is unessential
to the theory and was made in default of easily available
data, that the Poisson ratio of a solid is approximately
constant from the normal to the melting temperature.
The purpose of this paper is to obtain improved values
of the amplitudes by use of rigidity moduli at fusion
with bulk moduli from I, and to examine the implica-
tions on the validity of Lindemann's law.

In view of this refinement, corresponding ones can
be made in the theoretical results of I. Zener and
Silinsky4 have shown that the Debye method of
obtaining an average wave velocity from the reciprocal
cubes thereof should be modified for the Debye fre-
quency appearing in the Debye-Wailer formula to
correspond to reciprocal squares. In conformity with
this result, the coefficient s of the Debye frequency in
I will be replaced by 5, defined by

S =3(3/&~)'*[(&+~ )/(& —a )
+4(&+ -)/(~ —2 -)7 ' (&)

* Now at Research Laboratories, Allis-Chalmers Manufacturing
Company, Milwaukee, Wisconsin.' J.J; Gilvarry, Phys. Rev. 102, 308 (1956), referred to hereafter
as I.' P. Debye, Ann. Physik 42, 49 (1914);I. Wailer, Z. Physik 51,
213 (1923}.

'L. Cartz, Proc. Phys. Soc. (London) B68, 951, 957 (1955).
Direct comparison of Cartz's amplitudes with those of I is not
easily possible, since he uses a mean-square amplitude three times
that of I (i.e., the square of the body diagonal of three mutually
perpendicular amplitudes) and does not insist rigorously that
all thermodynamic variables be evaluated at the fusion point.

4 C. Zener and S. Bilinsky, Phys. Rev. 50, 101 (1936).

in terms of the fusion value o. of Poisson's ratio. The
value of 5 divers from s at most by the factor 1.07
(in the limit o. ~-', ). The volume e per atom in terms
of the nearest-neighbor distance r in the lattice at
fusion will be taken as

=)r ', (2)

where X has the value 4/343 and 1/V2 for body-centered
cubic and ideally close-packed lattices, respectively
(it appeared only numerically as the latter value in
I). The corresponding Lindemann constant c becomes

c= (V3/2s. )X-'*/p, (3)

where p = [(u') A,7~/r is the critical ratio of root-
mean-square amplitude [(u')7' of thermal vibration to
nearest-neighbor distance at fusion. The theory of I
yields

c'=S 'K V„/RT„,

where E,„and V are the bulk modulus and atomic
volume at fusion, respectively, and E. is the gas constant,
to determine the Lindemann constant c for an element.

The value of the ratio p follows from Eq. (3), and
thus the fusion value of the amplitude itself can be
obtained by use of Eq. (2); for simplicity, results will
be exhibited in terms of c and p only. Note that the
theoretical results above yield values of the amplitude
of thermal vibration at fusion unambiguously on the
basis of the Debye-Wailer theory, independently of any
presumptions on the validity of the Lindemann law.

II. TREATMENT OF THE DATA

Since extrapolated values of the bulk modulus E'
at fusion are available from I, the corresponding Poisson
ratio 0 can be found if one additional elastic parameter
is known for the polycrystalline material at fusion.
For all the elements (except Na) discussed, Koster'
has determined Young's moduli by the method of
transverse oscillations of a rod; he presents numerical
values at normal temperature in tabular form, and
shows the temperature variation graphically up to

~ W. Koster, Z. Metallkunde 39, 1 (1948).
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either the melting temperature or 1000'C. If Y is
the fusion value of the modulus (determined by
graphical extrapolation, if necessary), the corresponding
value of 0 follows as

~-= sL1 —s(Y-/E-)1

Further, Bordoni' has presented in graphical form, for
a number of elements at temperatures up to about
600'K, the velocities of extensional waves in rods as
measured by an ultrasonic pulse technique. Hence,
linear extrapolation of Bordoni's data to the melting
point permits an alternative determination of F, and
thus of o from Eq. (5). In general, the results of
Koster, supplemented by those of Bordoni, represent
the main source of the data employed.

For the alkali metals, the only data available to
determine the Poisson ratio correspond to measurements
on single crystals; hence the question of determining
a proper average 0 to fix the Debye temperature at
fusion arises. Analytic methods7 are available to deter-
mine the Debye temperature from an average over a
sphere of the reciprocal cubes of the three propagation
velocities for a cubic crystal, but these methods entail
an amount of labor hardly commensurate with the
accuracy of extrapolated data, in general. In this
circumstance, use of a simpler averaging procedure is
indicated. That used in I is reliable only when the
anisotropy is small, which is not the case for the
alkali metals (the Poisson ratios o,f f, t and oaf f t used in
I to obtain an average 0. are actually the ratios 0»&
and 0'rpp).

The basis of the method used here is the fact that the
melting temperature is not structure-sensitive for a
pure element, since it is apparently the same for a
single crystal and for a polycrystalline aggregate. ' To
obtain the elastic constants of an aggregate from those
of the single crystal, Voight" has suggested the averag-
ing over all lattice orientations of the relations express-
ing the stress in a single crystal in terms of the given
strain; alternatively, Reuss" has proposed averaging
the relations expressing the strain in terms of the given
stress. The Voight and Reuss methods correspond to
the assumption of uniform strain and stress, respectively,
in an aggregate. Measured moduli for polycrystalline
samples lie between the values computed on the two
methods, of which the Voight value is higher; these
facts have been explained theoretically by Hill. "
Further, Hill noted that the polycrystalline value lies

' P. G. Bordoni, Ricerca sci. 25, 84/ (1955).' P. M. Sutton, Phys. Rev. 99, 1826 (1955). This author cites
prior references.

C. Zener, Etasticity artd Attetasticity of Metals (University of
Chicago Press, Chicago, 1948},pp. 18, 156.' P. G. Bordoni and M. Nuovo, Nuovo cimento (supplement)
1, 155 {1955).' W. Voight, Lehrbuch der Xristallphysik (B. G. Teubner,
Leipzig, 1928), p. 962.

~ A. Reuss, Z. angew. Math. Meek. 9, 55 {1929).
's R. Hill, Proc. Phys. Soc. (London) 65, 349 (1952).

closely midway between the Reuss and Voight values,
empirically, which led him to suggest use of the corre-
sponding mean in practical computation.

On the basis of Hil1. 's work, the rigidity G of a
polycrystalline aggregate of cubic crystals can be
written as the arithmetical mean,

G=-,'((cll c12+3c44)/5+5/[4(cu —c12) '+3c44 '])) (6)

of the Voight and Reuss values, in terms of the elastic
stiGness constants c;;. The arithmetical mean of the
Voight and Reuss values of the bulk modulus E is
simply the usual value,

E= s (Cll+2Cls),

for a cubic crystal. The corresponding value o. of
Poisson s ratio at fusion is given in terms of E and
the fusion value G of G by

o. =-', [1—3G /(3E +G )7,

which will be used as an appropriate average. As a
check on the method, the Debye temperature O~ at
80'K was computed for Na from the elastic constants
of Quimby and Siegel." The result is O~= 158'K;
this value can be compared with 0~=159'K obtained
from heat capacity data, and 0~=164'K obtained by
Quimby and Siegel from an average of wave velocities
(not reciprocal cubes thereof) over 360 points on a
sphere.

A salient peculiarity in the evaluation of c from Eq.
(4) can be noted. Since V and T are generally known
with reasonable accuracy, the major uncertainty in c
arises from error in the value of E and the value of
I' or G used to determine 0 . If Y is used, the
error bc in c is given by

8c (1—2o „q t dS„i 8Y„

c ( 2S ) 0 da„) Y

1
t

1—2o i dS„-8E
+ -+] /, (9)

2 E 2S„) do„E„
in terms of errors in the data. The coefficient of oE /E
is a function only of o. showing a zero at 0. =0.42
and a minimum value —0.16 at o- =0; since the
coefficient of hY /Y is —', less that of BE /E, the
latter coefficient is always small relative to that of
5Y /Y . If G is used as a datum, the corresponding
coefficients in the analog of Eq. (9) show a similar
behavior, but the zero of the coeflicient of 5E /E
occurs at o =0.5. Thus, although Eq. (4) expresses c
as a function of all the independent elastic parameters,
the value is most sensitive to those determining the
rigidity at fusion. As a general statement, the extrapola-
tion necessary to obtain Y or G is considerably less
than, and the accuracy correspondingly greater, than

'3 S. L. Quimby and S. Siegel, Phys. Rev. 54, 293 (1938).
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is the case for E (extrapolations from 75-100'C to
the melting point were necessary in I when only
Bridgman's data were available). On the other hand,
the error bo. in the Poisson ratio at fusion is

if I" is used as a datum, with a corresponding equation
if G is used. Thus, the value of o does not show
insensitivity to bE . Hence, the values of Lindemann
constants and vibration amplitudes obtained are
considerably more reliable, in general, than the corre-
sponding Poisson ratios.

For a cubic metal, the foregoing results mean that the
Lindemann constant depends most strongly on the
shear moduli, c44 and the diGerence c11—c12. In this
restricted sense, a point of contact is made between
the present theory and those identifying fusion with
the vanishing of c44 (Born") or of cii—cis (Durand").

TmLz I. Values of Lindemann constants.

Lattice t~('C)

Na b.c.c. 97.6

Fe
Pb

b.c.c. 1532
f.c.c. 327.4

Al f.c.c. 660.1

Ag
CU¹i
Pt
Zn
Mg

f.c.c.
f.c.c.
h.c.p.
h.c.p.

960.8
1083

1453 .
1769
419.5
651

0.37
0.30
0.29
0.44
0.42
0.44
0.43'
0.435
0.43'
0.34
0.35
0.33
0.35
0.35
0.37
0.34
0.36
0.33
0.40
0.24

(0.28)
(0.28)

S 2KmVm/
Om Res C cAv

0.37
0.31'
0.4pb

0.46b
0 44'
0.46~
0.46'
0.46'
0.45'
0.38b
0 37o
0.40'
0.37g
0.34g
0.38b
0.3,b
0.3Io
0.3gb
0.4,b
0.30b
0 3gb

0.35'

7.2 2.7 2.7
7.0 2.6
4.g 2.2 2.2
6.2 2.5 2.64
9.3 3.1
6.3 2.5
6.6 2.6
6.6 2.6
6.6 2.6
9.9 3.2 3.22

11.4 3.4
8.6 2.9

11.0 3.3
10.9 3.3
8.9 3.0 3.0
6 7 2.6 2.p

10 32
9.3 3.g 3.g
43

17 4.1 4.1
9.p 3.p 3.2
12 34

a Quimby and Siegel (reference 13); first line, K~ from I; second line,
K~ from ultrasonic single-crystal data.

b Koster (reference 5).
e Bordoni (reference 6).
d Siegel and Cummerow (reference 19).
e Bordoni and Nuovo (reference 9); first and second lines, extensional

and torsional velocities, respectively. used with Km from I; last line,
extensional and torsional velocities from ultrasonic data used for Km.

f Birch and Bancroft (reference 21).
I Sutton (reference 22); first line, K~ from I; second line, K~ from

ultrasonic single-crystal data.

'4 M. Born, J. Chem. Phys. 7, 591 {1939).
'~ M. A. Durand, Phys. Rev. 50, 449 (1936).

III. LINDEMANN CONSTANTS

The discussion will be con6ned to elements with
cubic or hexagonal lattices, since only for these lattice
types can the theory of I be applied with a degree of
strictness. In Table I, computed values of the Poisson
ratio o at the fusion temperature t are shown with
corresponding values oo at normal temperature for
comparison, where the latter quantity is obtained from

the same sources of data and by the same method as is
o . The third column from the right gives the ratio
S 'E V /ET obtained by use of values of V and
E from I, unless otherwise noted. The penultimate
and last columns show values of the Lindernann
constant c from Eq. (4) and of the average value cA„ for
an element, respectively. All computed values shown
were rounded after computation from unrounded
quantities.

For sodium, the elastic constants c„at fusion and at
normal temperature were determined by graphical
extrapolation of those measured by Quimby and
Siegel" over the temperature range —193'C to —63'C
by an ultrasonic pulse technique. The results obtained
are shown in the 6rst line of Table I when values of G
from Eq. (6) are combined with bulk moduli from I,
and in the second line when these values of G are taken
with bulk moduli computed from the elastic constants
themselves by Eq. (7). Both sets of data imply only a
small change in Poisson ratio from the normal to the
fusion temperature. In spite of inconsistencies in the
Poisson ratios, "the two sets of data yield approximately
the same value of the Lindemann constant; this
behavior is consistent with the discussion of Sec. II,
since the value of G is common to the two sets. The
value of cA„diB'ers significantly from the result (3.8) of
I, because of difference in the Poisson ratios.

The temperature variation of Young's modulus for
0. iron is given by Koster up to the transition tempera-
ture (906'C) to the 7 phase. In the neighborhood of
the n —y transition, the rate of decrease of the modulus
for n iron increases sharply relative to the value at
lower temperature; this qualitative behavior has been
noted independently. "As a consequence, extrapolation
of the Young's modulus for this phase yields an essen-
tially vanishing value at the melting point. Since the
b-phase stable near fusion is merely a reappearance of
the normal n phase, this result is in disagreement with
the general behavior that accurate experiments near
the melting point have led one to expect." However,
Koster's values of Young's modulus for the y phase
show a closely linear variation with temperature from
the n —y transition point to the limit 1000'C appearing.
Hence, the modulus of the y phase was extrapolated
linearly to the melting temperature 1532'C, on the
presumption that this value would not diGer greatly
from that for the b phase, stable over the relatively
narrow range 1400'C to fusion. The results of Table I
for iron show a relatively large change in Poisson
ratio from the normal to the fusion temperature, and
the result for c differs correspondingly from the value
(3.2) of I.

In the case of lead, the 6rst two lines of Table I
t"The lower values shown are close to that (0.315) for —183'C

obtained by O. Bender LAnn. Physik 34, 339 (1939)j by an
averaging procedure from single-crystal constants."J.R. Frederick, J. Acoust. Soc. 'Am. 20, 586 (1948).

's L. Hunter and S. Siegel, Phys. Rev. 61, 85 (1942).
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correspond to the data of Koster (no extrapolation)
and Bordoni (small extrapolation); the results diBer
somewhat as regards Poisson ratios and values of c.
The values of the third line correspond to a 0 obtained
from an ultrasonic determination by Siegel and Cum-
merow" of the temperature variation of Young's
modulus up to 2' below the melting point. The results
are in close agreement with those derived by means of
Koster's data. The last three lines show results obtained
with only slight extrapolation (from about 30' below

melting) from ultrasonic determinations by Bordoni
and Nuovo' of the relative variation with temperature
of the velocities of extensional and torsional waves in
rods. Of the three lines, the 6rst and second correspond
to E from I, and a V from the extensional velocity
and a 6 from the torsional velocity, respectively;
the last line corresponds to an independent E and a
0. derived by joint use of the extensional and torsional
velocities. "Again, the results agree well with those from
Koster's data.

For aluminum, results of three computations similar
to the erst three for Pb are presented, but a check is
possible from single-crystal constants. The first two
lines of Table I for this metal give consonant results
obtained from the data of Koster (no extrapolation)
and Bordoni (moderate extrapolation). The values in
the third line were computed from data on the variation
of rigidity with temperature up to 13' below fusion,
determined dynamically from the resonant frequency
of a cylinder by Birch and Bancroft."The three values
of c agree very well. The fourth line shows results from
bulk rnoduli of I and rigidities obtained by Eq. (6)
from elastic constants measured ultrasonically by
Sutton"; the

fifth

line shows corresponding results when

Eq. (7) is used to obtain bulk moduli from the elastic
constants themselves. Determination of fusion values
of the constants required extrapolation from 500'C.
The two values of c agree well with the preceding three,
in spite of some discrepancies in Poisson ratios (and an
abnormal'~ slight decrease with temperature when only
single-crystal data are used).

For the remaining face-centered elements of Table I,
relatively large extrapolations were necessary in I
to obtain E, but considerably smaller extrapolations
(from about 1000'C to melting) are needed to obtain
F from Koster's results. Moderate increases in Poisson
ratio up to fusion are shown (the decrease for Cu
derived from Bordoni's data is anomalous" ). For the
hexagonal elements, increases of Poisson ratio to fusion

rs S. Siegei and R. Cummerow, J. Chem Phys. 8, 847 (1940).
The value of the modulus for normal temperature was taken from
Koster. t'

2'In all three cases, normal values were Axed by the average
value of 00 shown, and a bulk modulus from I.

~'F. Birch and R. Bancroft, J. Chem. Phys. 8, 641 (1940).
The last tabular entry on the rigidity variation was used, and the
value at normal temperature was taken as an average from
Forsythe. '4

ss P. M. Sutton, Phys. Rev. 91, 816 (1953).

TmLE II. Comparison of critical ratios p:of vibration amplitude to
nearest-neighbor distance at melting, from x-ray and fusion data.

Al
Cu

p(x-ray),
from I

0.082
0.07g

p (fusion),
Table I

0.0763
0.08'

p (fusion),
from I

0.066
0.079

appear which are somewhat larger than average. In
general, all values of oo shown in Table I agree reason-
ably welP' with values of I and with independent data. 24

For the two cases (Na and Al) where bulk moduli
derived by extrapolation of statically determined
values can be compared with extrapolated values from
elastic constants of single crystals determined ultra-
sonically, the latter are significantly less (by some
25% or more). The difference appears also when only
ultrasonic data for a polycrystalline sample (Pb) are
used, and may represent an eGect associated with grain
boundaries when low-frequency or static measurements
are made on polycrystalline specimens. ' The behavior
appears as a greater curvature in the graph of E' ~s
temperature, exhibited by the ultrasonic data, 's in
general, and tends to justify the method of extrapolation
of Bridgman's data employed in I. Further, the increase
of Poisson ratio from normal to melting temperature
seems generally smaller when derived with use (or
partial use) of ultrasonic as against other measurements.
Hunter and Siegel" found sudden kinks in plotted
elastic constants within a few degrees of the melting
temperature, and Bordoni and Nuovo' refer to similar
behavior. The possibility of any such kinks has been
neglected in extrapolation to the melting point, on
the presumption that they are caused by secondary
processes (possibly hole formation") not covered by:
the present theory.

~' That for Mg is in poor agreement with the value 0.35 given in
I. No comparison value for Zn could be found, but the rather low
value shown checks with independent data of Forsythe (reference
24) on rigidity and Young's modulus.

'4 W. E. Forsythe, Smithsonial Physical Tables (Smithsonian
Institution, Washington, D. C., 1954).

»L. G. Carpenter, J. Chem. Phys. 21, 2245 (1953); K. F,
Stripp and J. G. Kirirwood, J. Chem. Phys. 22, 1579 (1954).

IV. DISCUSSION

In Table II, x-ray values from I for Al and Cu,
determined by the Debye-Wailer formula, of the
critical ratio p of vibration amplitude to nearest-
neighbor distance at fusion are shown for comparison
with values obtained by Eq. (3) from cA„of Table I,
and with the corresponding values from I. Agreement
with p(x-ray) is improved by the present value for
Al, but not for Cu. However, p(x-ray) for Al was
determined by quadratic extrapolation of x-ray
intensity data to the melting point, whereas sufBcient
data were available in the case of Cu (where the range of
extrapolation is greater) for only a linear extrapolation.

Average values cA, of the Lindemann constant c
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ALE III. Average values of Lindemann constants
and critical ratios.

Lattice

b.c.c.
f.c.c.
h.c.p.

&Av

2.5
2.86
3 a 5

10»CAv
(erg/'K) &

mOle I«

1.9
2.20
27

PAv

0.13
0.111
0.091

'6 Each entry under an element in Table I was included sep-
arately; this procedure gives greater weight to the more reliable
values.

~7 E. Gruneisen in Bussdbuch der I'hysik (Verlag Julius Springer,
Berlin, 1926), Vol. 10, p. 51. In a previous publication t Ann.
Physik 39, 258 (1912)j, Griineisen gave the value 0.085.

over the three lattice types" of Table I are shown in

Table III. Corresponding average values of the molar
Lindemann constant C= E&Rlc (E is Avogadro's
number) and of p from Eq. (3) are shown likewise.
The diGerence of pA„ for the body-centered elements
from that for the face-centered elements is probably
significant, in view of the consistency of the data in

Table I, but the corresponding difference for the
hexagonal elements probably is not significant on the
basis of the data. The average value 0.11' of p over all
three lattice types agrees excellently with the value of
0.10s (or somewhat less) estimated by Gruneisen, s'

in contrast to the considerably lower value 0.072
obtained in I from extrapolated bulk moduli on the
assumption that the Poisson ratio of a solid is constant
up to fission.

The most significant aspect of the data shown in
Table I is the disparity in cA, for Pb and Al, where the
accuracy is high. Including probable errors, one
obtains v=2.64%0.13 and c=3.22&0.1~ for Pb and Al,
respectively, and hence the diGerence of the two values
seems definitely outside the range corresponding to
probable error. On the basis of this counter-example,
one can state that the Lindemann constant cannot
be a strict constant over a lattice type. That the use
of an average c over a lattice type represents a very
good approximation, in general, can be shown from
the corresponding correlation coefficient for the Linde-
mann relation over the face-centered cubic elements.
For the line of regression" of S E & on (RT /V )',

the correlation coeKcient is r=0.92, and for that of
S 'E on RT /V, the value is r=0.89. These results
mean that for the drst and the second case, a fraction
r'=0.85 and r'=0.79, respectively, of the variance from
a straight average of the dependent variable is removed

by the presumed linear relation with an average c
(unity implies perfect correlation).

It has been emphasized that the values of the
Poisson ratio at fusion are far less reliable than the
Lindemann constants. When E is obtained entirely
from ultrasonic data (three cases, Na, Pb, Al), the
average value of 0 —O.

p is 0.01 within the accuracy
of the data. When E is obtained by extrapolation from
static measurement, the average value of 0 —Op over
the cubic metals is 0.02 when Fe is excluded (because of
the presence of phase transitions). In both cases,
consonant values of c are found, because of the lower
E implied by the purely ultrasonic data, as already
alluded to.

V. CONCLUSION

The fact implied by these results, that the Lindemann
constant cannot be a true constant over a lattice type,
is in agreement with the order of the approximations
necessary to derive the Lindemann law from the
order-disorder fusion theory of Lennard-Jones and
Devonshire. "The evaluation of the Gruneisen constant
in terms of fusion parameters, as given in I, shows
excellent agreement with values obtained from Grunei-
sen's law, and the result yields the Simon fusion
equation very directly. " The relation in question
requires only that the critical ratio p be constant along
a fusion curve (if o is at most slowly varying), and it
may well be that this approximate constancy along
the melting curve for a particular element represents
the true content of the Lindemann relation. An applica-
tion of the relation to determine temperatures in the
earth's interior (to be presented elsewhere) yields results
concordant with this view.

Thanks are due Dr. F. R. Gilmore of the RAND
Corporation for a critical reading of the manuscript, and
Miss E. Force for the computational work.

s' J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc.
(London) A170, 464 (1939)."J.J. Gilvarry, Phys. Rev. 102, 325 (1956).


