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Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps
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An ohmic contact between a metal and an insulator facilitates the injection of electrons into the insulator.
Subsequent fiow of the electrons is space-charge limited. In real insulators the trapping of electrons in local-
ized states in the forbidden gap profoundly inQuences the current Row. The interesting features of the current
density-voltage (J—V) characteristic are confined within a "triangle" in the logJ —logV plane bounded
by three limiting curves: Ohm's law, Child's law for solids (J~ V') and a traps-filled-limit curve which has a
voltage threshold and an enormously steep current rise. Simple inequalities relating the true field at the
anode to the ohmic field facilitate qualitative discussion of the J—V characteristic. Exact solutions have
been obtained for an insulator with a single, discrete trap level in a simplified theory which idealizes the
ohmic contact and neglects the diffusive contribution to the current. The discrete trap level produces the
same type of nonlinearity discovered by Smith and Rose and attributed by them to traps distributed in
energy.

I. INTRODUCTION

' 'MPURITY and defect states in insulators profoundly
~ - inhuence their electrical and optical properties. This
makes it possible to use these properties to obtain in-

formation about the nature of the states. In this study
we shall discuss the effect of localized states in an in-

sulator on a particular electrical property, namely the

passage of currents limited by space charge.
The reason why space-charge forces play a prominent

role in the electrical properties of insulators as compared
to, say, semiconductors at room temperature, is that
these solids normally have a relatively low density of
free carriers and consequently charge unbalance is
easily produced by electrical fields. Very large eGects
can be produced through the use of ohmic contacts
which facilitate the direct injection of excess charge
into the insulator. The character and magnitude of
these eGects is due largely to the presence of localized
states which can trap and store charge in an equilibrium

with the free, mobile charge. The study of space-
charge-limited currents can therefore yield such in-

formation as the density, location-in-energy and capture
cross sections of the trapping states. Finally, the correct
interpretation of any electrical experiment on insulators

requires a proper accounting of the space-charge

forces.
Space-charge-limited currents in solids have pre-

viously been discussed by Mott and 'Gurney' for a trap-
free insulator, by Rose' for an insulator with localized

trapping states in the forbidden gap, and by Shockley

and Prim' and Dacey' for semiconductors with appro-

priate P—rt junctions. They have been studied experi-

mentally in insulators by Smith and Rose' and in semi-

conductors by Dacey. 4

~ N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (Oxford University Press, New York, 1940), first edition,
p. 172.

2 A. Rose, Phys. Rev. 97, 1538 (1955).' W. Shockley and R. C. Prim, Phys. Rev. 90, 753 (1953).
4 G. C. Dacey, Phys. Rev. 90, 759 (1953). 4 @' R. W. Smith and A. Rose, Phys. Rev. 97, 1531 (1955).

The present study is based on a simplified one dimen-
sional theory which neglects the diGusive contribution
to the current and idealizes the ohmic (injecting)
contact. The material covered largely complements
the pioneering studies of Rose, ' whose major concern
was with electron traps distributed in energy over
a region of the forbidden gap. We adopt at the
outset a very general point of view in that we specify
initially only the minimum amount of detail concerning
electron6 traps in the crystal. We show that the inter-
esting features of the J—V (current density us voltage)
characteristic are confined within a "triangle" in the
logJ —logV plane bounded by three limiting curves:
Ohm's law (J~ V), Child's law for solids (J~ Vs), and
a traps-filled-limit (TFL) curve which has a voltage
threshold and a enormously steep current rise. Also
we derive simple inequalities relating the true Geld at
the anode to the ohmic field. These inequalities facilitate
qualitative discussion of the J—V characteristic.
Exact solutions, within the framework of the simplified
theory, are presented for electron traps at a single
discrete level. These solutions exhibit the features pre-
dicted by the general, qualitative discussion.

Throughout this study the mks system of units is
employed. Further, a one-dimensional, plane geometry
is adopted for all problems.

II. BASIS FOR THE SIMPLIFIED THEORY

It is a direct consequence of the energy-band picture
for an insulator that an ohmic contact furnishes a
reservoir of free electrons which are in the insulator in
the region of the contact. This is illustrated in Fig.
1(A) which shows a simplified energy-band diagram for
an insulator, with a discrete trap level, in ohmic contact
with a metal in thermal and electrical equilibrium.
When voltage is applied across the insulator, as in Fig.
1(B), this reservoir will inject electrons into the bulk
of the insulator. The metal, in turn, is tightly coupled to

6 This article is concerned throughout with current Row involv-
ing only one sign of carrier. For the sake of definiteness we have
taken the carriers to be electrons.
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the reservoir and readily replenishes it so long as the
current is well below its saturation value for the partic-
ular contact at the given temperature. The plot of po-
tential V vs position x in Fig. 1(B)exhibits the minimum
which is characteristic of space-charge-limited currents.

The exact theory is based on three equations —a
current Qow equation, Poisson's equation, and an
equation of state relating the free-electron density to
the trapped-electron density at the same position.
Kith the sign conventions,

J= —Jx, 8= —Sx, h=dV/dx,

these equations are, respectively:

Dirac occupation function. F(x) is given byr

rs(x) =1V, exp(LF(x) —E,(x)7/kT},

where X, is the eGective density of states' in the con-
duction band at temperature T and E,(x) is the electron
energy at the conduction band minima at position x.

A set of traps of density Jt/i at energy Ei(x) are, in
quasi-thermal equilibrium with n(x), occupied accord-
ing to'

(E,(x)—F(x) q
n, (x)=X, 1+exp~

l )

J= eyrie eD(dry/—dx) = constant, (1')
with

=e(x)Xi(rs(x)+Ar} ', (5)

(e/e) (dh/dx) = (ts —n)+ (ts, —n,), (2)

ri and rs& are in quasi-thermal equilibrium, (3)

where J is the current density; J=
~
J~; 8 is the electric

field intensity; 8=
~ 8~; e is the magnitude of the elec-

tronic charge; p is the electronic mobility; D is the
diffusion constant for electrons; e is the static dielectric
constant of the insulator; e and as& are the densities of
free and trapped electrons, respectively; they are
functions of position x; n and n& are the values of e
and n&, respectively, in the bulk neutral crystal in
thermal and electrical equilibrium (no applied voltage).

The "quasi-thermal equilibrium" of (3) is a short-
hand way of stating that the steady-state Fermi level
F(x), defined with reference to e(x), determines the
occupancy of the electron traps via the usual Fermi-

V

iV= iV, exp(LEi(x) —E,(x)7/kT}.

The solution of Eqs. (1')—(3) requires specification of
a pair of boundary conditions. It is convenient to con-
sider the insulator as a semi-infinite crystal, thus in
Fig. 1, extended to x= ~. In Eq. (2), n and n& are then
taken at x= ~ . One of the two boundary conditions is
simply":

(boundary condition) rs(x)~n as x~~. (6)

From Eq. (3) it follows that m&(x)-+n& as x~co.
The second boundary condition must be specified at

the interface, x=o in Fig. 1.
The system of equations (1')—(3), with the electron

traps specified, can be reduced to a nonlinear second-
order diGerential equation in the free-carrier density
rs(x). It appears to be very dif)icult, and perhaps im-
possible, to obtain, in terms of known functions an
analytic solution of this equation obeying the boundary
condition (6). Also there are difhculties and uncer-
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' FIG. 1. Simplified energy-band diagrams for an injecting con-
tact of an insulator with a metal. (A): The contact in thermal and
electrical equilibrium. I' is the thermodynamic Fermi level, E& a
single, discrete trap level, and E, the bottom level of the conduc-
tion band. Eg and E, are functions of position x. The amount 1 of
downward-bending of the bands at the contact is, in a simplified
picture neglecting surface influences, given by the di8'erence of
work functions of the insulator and metal: F=CI—C~. The
density of electrons in the conduction band at position x, n(x), is
given by: a(x) =fir, exp(LF —E,(x) kjT/), E, being the effective
density of conduction-band states at temperature T. The slanted
solid lines denote the Fermi sea of electrons in the metal. (B):
The contact in steady state under an applied voltage. V is the
electric potential, E. the total free-carrier energy (both solid
lines). The corresponding thermodynamic equilibrium quantities,
V and E., are indicated by dashed lines.

~Here, for the sake of convenience, we are assuming non-
degeneracy of the electrons in the conduction band, even under
current flow. For insulators this will certainly be the usual
situation.' See, e.g., %.Shockley, "E/ectrons end Holesin Semiconductors"
(D. Van Nostrand Company, Inc. , New York, 1950), p. 240.

'The criterion for the validity of the assumption of quasi-
thermal equilibrium as written in (5), is that (e„)/(c„)=exp
X((E~ E,)/fcT). Here (e ) i—s the probability per unit time of
thermal ejection of an electron from an occupied trap into the
conduction band and (c„)= (vo„) is the probability per unit time
of capture of an electron from the conduction band into an un-
occupied trap, e being the velocity of the electron and 0„the cross
section for its capture by the trap. ( ) denotes, in each case, the
proper average over the conduction band states. This criterion
will be met under quite general conditions. However, if the
electric field intensity is high enough to "heat up" the electrons
to a temperature T, substantially exceeding the lattice tempera-
ture T and if 0-„ is strongly velocity dependent, then the condition
will not be met since (e„) will be essentially equal to its thermal
and electrical equilibrium value, (e„), whereas (c„) will di8er
substantially from its equilibrium value, (P. ).

For a finite crystal with the anode contact at x=u, it is as-
sumed simply that the solution for the semi-infinite crystal holds
undisturbed up to the point x= u. This is generally the procedure
followed in the treatment of this type of problem, and underlying
it is clearly the assumption, usually left implicit, that the anode
does not itself introduce constraints into the problem. This
assumption is made also in the "simplified theory" discussed in
this article.
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FIG. 2. Log-log plot of limiting current density (J) sersls
voltage (V) characteristics for space-charge-limited currents
in an insulator vvith traps.

tainties, related to the physics of the interface in es-
tablishing the appropriate boundary condition at @=0.
An analytic solution has been given by Shockley and
Prim' for the simplest possible problem of this type,
namely with n=0, n&

——0, ss& =—0 in Eq. (2). Even in this
case the solution is quite complicated. Their solution is
not useful for our present study because it omits all

trapping efFects.
In order to obtain a picture of the space-charge-

limited currents in an insulator, we have followed the
procedure of replacing the current flow equation (V)
by the simpler equation obtained by neglecting the
diffusive contribution to the current. Thus (1') is
replaced by

J=cap, 8=constant.

With this simpli6cation the boundary condition
appropriate for the description of space-charge-
limited currents is

(boundary condition) 8=0 at @=0 (the cathode

interface). (7)

Equations (1), (2), and (3) and the boundary condi-
tion (7) provide the mathematical framework for the

"simpli6ed theory" of space-charge-limited currents
in an insulator. The boundary condition (7) coupled
with Eq. (1) requires that e be infinite at the cathode
interface.

A discussion of the range of application of the
simplified theory is given in Sec. V.

III. LIMITING CURRENT DENSITY-VOLTAGE
CHARACTERISTICS. LOG J—LOGV "TRIANGLE"

An over-all view of the obtainable J—V character-
istics can be obtained by an examination of certain
limiting cases of 'current Qow. In Fig. 2 is shown a
log-log plot of current density J vs voltage V for three
such cases.

The lower curve is Ohm's law for the neutral crystal,
Jo,=enIJ, SO,, where bo is the ohmic electric 6eld inten-
sity, Bo——V,/a, with u the cathode-anode spacing and
V the applied voltage.

The upper curve is Child's law for solids, J,=9' V,'/
Su', valid for a trap-free crystal, n&=0, e~ —=0, with a
negligible "dark density" of carriers, n 0. It is obtained
by direct integration of Eqs. (1) and (2) using boundary
condition (7).

The Ohm's law and Child's law curves intersect at
the voltage V,&" '&=Sea'n/9e, This crossover occurs
when the excess injected carrier density at the anode,
calculated from Child's law, reaches the same magni-
tude as the dark density n.

The curve on the right, labeled traps-6lled-limit or
TFL, is the curve corresponding to the situation that
the traps in the crystal have all been filled prior to the
application of voltage. We note that there is a voltage
threshold, denoted by V &TFL), for current Bow. This
is due to the fact that before voltage is applied there is
already unneutralized charge in the traps which pre-
vents the injection of additional electrons at the
cathode. The voltage V,&T '=ea'ill'~/2e, with X~ the
total trap density, is necessary to overcome this
repulsion. The enormous steepness of the TFL curve
relative to the Ohm s law curve, as exhibited in Fig. 2,
follows only on the assumption that the trap density
X& greatly exceeds the dark density n. Indeed the ratio
of the slope ATOLL of the TFL curve to that, Dg, of the
Ohm's law curve at their point of intersection is
ATzr/Ao =X,/n. The TFL curve is practically vertical,
for 1V,/n))1, up to a decade or so below its extrapolated
intersection with the Child's law curve.

A mathematical treatment of the TFL law is given
in Appendix A. The mathematics of the transition,
in a trap-free crystal, from Ohm's law to Child's law is
also presented in Appendix A. The solution given there
also yields a correction to Child's law.

It is possible to state at the outset some quite general
properties of the true current density-voltage character-
istic in the real crystal with traps in relation to the
"triangle" of Fig. 2.

(i) The true J—V curve cannot lie below the Ohm's

law line. For the reservoir of electrons at the cathode
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can only have added, through injection, additional
carriers to those already present thermally. "

(ii) The true J—V curve cannot lie above the Child' s
law line, for voltages at which a significant amount of
carrier injection takes place, i.e., for V )V &" ~&.

For this represents the case that all of the excess, in-
jected charge in the insulator, corresponding to a given
applied voltage, is in the conduction band. If any of
this injected charge is trapped, then the current must
be correspondingly lower.

(iii) The true J—V curve cannot lie below the TFL
curve; i.e., it cannot lie to the right of this limit. For
this limit represents the most unfavorable situation,
current-wise, namely one in which the greatest possible
fraction of excess charge in the insulator is trapped,
and therefore the smallest fraction is available for
conduction.

Therefore the following conclusions may be drawn
about the behavior of the true J—V curve.

At voltages below the Ohm's law—Child's law cross-
over, V,(" '&, the true curve follows Ohm's law.

Above V (" ') the true curve lies somewhere inside
the "triangle". At voltage V (TFL), if the true J—V
curve lies suKciently below Child s law curve, it will

merge with the vertical portion of the TFL curve.
At higher voltages, where the TFL curve merges with

Child's law, namely somewhat above V, &TvL& (by
about 50%), the true J—V curve follows Child's law.

Since aB of the possible nonlinearities of interest in
the true J—V curve must lie inside the "triangle" of
Fig. (2), it is useful to know the size of this "triangle".
The key quantity determining this size is the ratio
V, tTFL'/V, &" '& =N~/n With tr.ap densities E~&10'4
cm ' being the rule for insulators in the current state of
their technology, there will obviously be plenty of
"room" available for nonlinearity.

IV. USEFUL INEQUALITY, SOME SIMPLIFICATIONS
IN REASONING, AND SOME CALCULATED RESULTS

Without actually solving Eqs. (1)—(3), some further
detailed information, beyond that of Sec. III, can be
obtained with the help of general arguments.

An important simplification results from the observa-
tion that the electric field intensity at the anode, 8„is
not very different in magnitude from the "ohmic" field
intensity 8n ——V /u. Indeed, we establish rigorously the
inequality"

8n(8. (28n. (g)

"A formal proof that N(x))ft for all x, in Eq. (2}, is easily
provided: n= at x=0. If n(x) &n at some x there must be a
first crossing point, say at x1, n{x1)=S. Immediately beyond x1,
a(x) &ft whence also, from Eqs. (2) and (3},dg/Cx&0. But e(x)
and G(x) simultaneously decreasing is inconsistent with Eq. (j.),
and the assumption of a crossing has produced a contradiction.

's Rose (reference 2) employs throughout his work the relation
Qt, t, =CV„where Qt t is the total injected, excess charge in the
insulator per unit cross-sectional area and C is taken as the
capacitance per unit area of the electrode-insulator combination.
For a plane-parallel geometry, this capacitance is e/I'a (mks units).
The inequality (8) is equivalent, for this geometry, to the inequal-

—ag2 0

Fio. 3. Convexity of the electric field intensity distribution 8
and consequent inequalities. The quantities under the geometric
figures are the areas of the corresponding figures.

We have already seen (footnote 11) that everywhere
throughout. the crystal e&n and n&)n&. Hence, from
Eq. (2), d8/dx) 0 and 8 increases monotonically from
zero at the cathode. Therefore, from Eqs. (1) and (3),
e and e& must both decrease monotonically going out
from the cathode. Hence from Eq. (2), d8/dx decreases
monotonically from infinity at the cathode. Finally, a
plot of 8 es x must have the convex shape indicated in
Fig. 3. But a comparison of the three areas, as in Fig. 3,
yields immediately the inequalities: 8,/2 & 8n (8,
which are equivalent to (8). For Child's law, 8,=38&/2.
Over the "vertical" portion of the traps-filled-limit law
in Fig. 2, 8 28n. t See (A15) of Appendix A.)

Noting, from Eq. (1), that J/Jn N(x) 8——(x)/n8n
=n,8./n8n, then, within a factor of two, the following
relations are valid:

J/Jn =ts./n, J=en~8n (9)

Here we have the first important simplification: The
current density can be estimated simply by determining
the free-carrier density at the anode, or equivalently,
the position of the steady-state Fermi level at the anode.

To relate J directly to V, it remains to relate e,
to V,. Integration of Eq. (2) under boundary condition
(7) gives: e8 /ea= (ng-n)+(e&n —n~), with fsn= (1/u)
&(Js e(x)dx and e@——(1/a) fp N~(x)Ch. We now make
the assumption that e, =mg and e~, =el. It would be
most desirable to set quite general and relatively
narrow limits, along the lines of (8), on the maximum
error incurred by these assumptions. Unfortunately the
traps-filled-limit case provides a counter-example to
show that this is impossible /see (A16) of Appendix A$.
Nevertheless, the discussion in Appendix A leads us to
expect that relatively small errors are incurred by these
assumptions. Replacing ~ by e, eN by e&„and 8, by

ity e/u&C&2e/a, and therefore Rose's assumption involves an
error of at most a factor of two,
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V,/a in the above equation gives

eV,/ea' = (n, —n)+ (n~, —n~). (10)

Combining (9) with (10) gives the desired relationship
between J and V,. To be sure, it is first necessary to
relate e, to e&„but in practice, once the energy distri-
bution of traps within the forbidden gap is known, this
is done very simply.

To illustrate the usefulness of the simplified approach
developed above we apply it to a case of particular
interest, namely that in which the traps are located at a
single, discrete energy level in the forbidden gap.

This case is illustrated in Fig. 4 where the location of
the steady-state Fermi level with respect to the energy
bands is plotted versus position for a given current Qow.
Actually the energy bands should be drawn tilted, as in
Fig. 1(3), due to the applied voltage, but since our
interest is in the relative location of F, we have drawn
the energy bands horizontal. According to the above
arguments, the over-all features of the current density-
voltage characteristic can be determined by fixing our
attention on the location in energy of F, the steady-
state Fermi level at the anode.

So long as F, lies below the trap level F& there is a
fixed ratio 8, independent of applied ttoltage, between n„
and Qga.'

)E& F. y e. —
)1 l: =8=

& Ir ) I,.
X, irS, —E,y

eel l (11)
Xg E kT

Thus, of the total charge density at the anode end only
the fraction 8 is available for conduction (assuming,
here, that 8«1). Since the effectiveness of the dark
density n of free carriers relative to the injected free
carriers is greater by the factor 1/8 over their trap-free
effectiveness, the transition voltage marking the
departure from Ohm's law will likewise be a factor
1/8 greater than the trap-free transition voltage
V &" ') of Fig. 2. Thus the J—V characteristic will
follow Ohm's law up to the voltage Ve, ,t" '& =ea'n/2e8.

For V,&»V,&VO (" '& F~liesbelowF&and the
J—V characteristic follows Child's law for solids
modified by the correction factor 8: 7= 98epV, '/Sa'.

At V =V (T~L& the traps 611 and the J—V character-
istic thereafter follows the traps-filled-limit law and
finally the full Child's law.

This same method of reasoning is easily generalized

AXXXX X& XXXXX XXXX E1f
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FIG. 4. Relative plot of the steady-state Fermi level P for a
given current flow in an insulator with a single, discrete trap
level E~.
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FIG. 5. Exact solutions for the simplified theory of space-
charge-limited currents in a CdS crystal with traps at a single,
discrete energy level. The dashed curves are the three limiting
characteristics of Fig. 2. For CdS, e/eo ——11.and p= 200 cm'/volt
sec at T=300'K. The solid curves are the*calculated solutions;
for all curves Eg=10" cm ', a=5X10 ' cm, E,—8=0.75 ev,
corresponding to n=10' cm ~ and resistivity p=3X10" ohm cry
at T=300'K.

to cover more complicated cases, such as several discrete
trap levels or distributions of trap levels.

Exact analytic solutions have been obtained, within
the framework of the simpli6ed theory, for the case of a
single, discrete trap level. These solutions, which are
presented in Appendix C, have been plotted graphically
in Fig. 5 using constants corresponding to a cadmium
sulfide crystal of high purity and convenient dimension
for experimental study. It is seen that the various curves
corresponding to different choices of trap depth G=E,
—E~, follow the above-predicted behavior. It is to be
noted that the curve corresponding to 6=0.7 ev be-
comes vertical at a voltage smaller than the V (T~L&

for the other curves, corresponding to the dashed verti-
cal line. The reason is (see Appendix A) that the thres-
hold voltage is accurately given by V (T~L) = eu'

X(X~—n, —n)/2e. For E, E=0.75 —ev and G=0.7 ev,
S&—n& —n=0.865%~, whereas for G&0.6 ev, X~—n& —n

gg.
The ratio of the slopes Ae, ,=dJ/d V of a modified

Child's law curve and Ae, TpL of the traps-filled-limit
curve at their (extrapolated) point of intersection is
4s, TFL/As, ~ = 1/8 with 8 given by (11).This change of
slope is so great that, if encountered in practice, would,
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prior to Rose's work, ' surely have been misinterpreted
as an electronic breakdown. Comparing the current
density J' E & at the onset of the almost vertical
portion of the J—V characteristic to that, J( x'~',
at the exit from this portion of the curve, we find that
the range of "verticality" is J&Ex' '/J& sm & =1/9.

V. CONCLUDING REMARKS

Both theoretically and experimentally much work
remains to be done on space-charge-limited currents in
insulators.

On the theoretical side it would be desirable to obtain
a quantitative estimate of the errors incurred by using
the simplified theory in place of the more accurate
theory characterized by Eq. (1'), boundary condition
(6) and another (unspecified) boundary condition at
the cathode. Clearly the solutions of the simplified
theory are completely in error in the immediate vicinity
of the cathode interface, since for all such solutions
n= ~ and dn/dr= —~ at @=0. Nonetheless, at cur-
rents which are space-charge limited, that is, for which
the potential minimum of Fig. 1(B) has not yet moved
past the interface, we will expect that far enough away
from the interface the solutions of the simplified theory
are actually quite accurate. If the region near the inter-
face where the di6usion current exceeds or is comparable
to drift current is of extent l(J), then at a distance I.
from the interface, where 1.))l(J), the solution of the
simplified theory should not be in error by more than
the factor 1+ED(J)/Lj, where E will be on the order
of two or less. This follows simply from the functional
form of the solutions in the Child's law case, the traps-
filled-limit case, etc. Beyond these general remarks, a
detailed evaluation of the errors in the solutions of the
simplified theory can only be obtained if the comparable
solutions of the accurate theory are also worked out. For
the one case in which the solutions have been obtained
for both theories, namely the trap-free insulator with
no free carriers in the dark. , the above remarks are
borne out by the calculations. "

The simplified theory, by its very nature, fails to give
any information whatever on the onset of saturation,
that is the point at which the potential minimum moves
past the interface and out of the insulator. Beyond this
point, the current is no longer completely space-charge-
limited. This region of the J—V characteristic can be
studied only by invoking the more accurate theory in
conjunction with a reasonably realistic picture of the
contact. Where the currents are well into the saturation
region, a simplified theory can again be invoked with
the boundary condition (7) replaced by a new boundary
condition related to the detailed electronic structure of
the contact.

On the experimental side, the work of Smith and
Rose' has provided abundant evidence for the existence
of space-charge-limited currents in an insulator with
traps, namely in CdS. In particular they have confirmed

"See reference 3, Fig. 5 on p. 756.

Child's law for solids by pulse measurements. They have
also measured extremely nonlinear steady-state cur-
rents" which they attribute to traps distributed in
energy in the forbidden gap. A more quantitative check
of theory with experiment can perhaps be obtained
through study of an insulator with a known density of
traps at a single, discrete trap level. The two solids
whose advanced state of technology make particularly
suitable candidates for such a study are germanium and
silicon. In a compensated sample with Xq donors/cm'
and X~ acceptors/cm' with X~)X~, at a temperature
low enough to condense most of the free carriers back
on the parent donors, and with E~&)n, there will be
Xg electron traps/cm', at the known donor level. For
germanium with hydrogenic-type (Group V) donors, the
experiment would have to be done at liquid-helium
temperature, and the results being sought would likely
be swamped by low-field breakdown. (However,
carrier injection under conditions of space-charge-
limitation might make itself felt in the prebreakdown
current region. 's)

Use of germanium doped with a nonhydrogenic type
of impurity o&ers the possibility of an experiment at
liquid air temperature. An example might be gold-
doped germanium, although here the double-acceptor
state of the gold would necessitate carefully-controlled
compensation. Silicon, suitably doped, also overs the
possibility of a critical experiment at liquid air tem-
perature.

The author would here like to express his con-
siderable indebtedness to Dr. H. S. Sommers, Jr., Dr.
A. Rose, Mr. R. W. Smith, Dr. L. Nergaard, and Dr.
D. O. North for many stimulating and helpful dis-
cussions. The general lines of reasoning employed in
the present study were first developed by Dr. Rose and
indeed form the intuitive basis for his earlier studies in
this field.

APPENDIX A. MATHEMATICAL SOLUTIONS FOR A
TRAP-FREE INSULATOR AND A TRAP-FILLED

INSULATOR

The solutions of Eqs. (1) and (2) for the two limiting
cases of a trap-free crystal and a trap-filled" crystal
follow almost identical lines and so may be discussed
together. Equation (2) may be written

(e/e)(d8/dx) =nTn;

~

~

upper sign for the trap-free crystal (n=n)
lower sign for the trap-filled crystal (n= Xi—ni —n).

(A1)
'4 See reference 5, Fig. 4 on p. 1534, curve labeled I and the

discussion on p. 1534."This possibility was pointed out by R. Bray (private commu-
nication).

"The equivalent of the trap-filled case has previously been
studied by Shockley and Prim (see reference 3, p. 754) in con-
nection with certain semiconductor problems. However, their
entire discussion, including their choice of normalized variables,
centers around particular types of transistor structures and
consequently the detailed form of thier solution, (2.7) through
(2.15),p. 755, is unsuitable for discussion of the insulator problem.
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dg/dw = (1/m) W 1, (A3)

and the definition of the potential, V(x) = Jo'B(x)~x,
becomes

p" dm I." I'
'V = N dg

I

l

— dQ
~o ~N "0 1&I

The integration of Eqs. (A3) and (A4), subject to the
boundary condition (7): N=O at w=0, gives

w= +u —ln(ian), (AS)

v =W-'u' —lain(i~I). (A6)

The range of I is from I=0 at m=0 to 1=1 at m = 00

for the upper sign, and for the lower sign, to I= at
VO= ~.

It would be desirable to obtain I and e as explicit
"simple" functions of w, but inspection of (AS) and
(A6) shows that this is clearly impossible over the entire
range of m, although it is a simple matter over limited
ranges of zv at its extremes, as is done below. In this
respect, these relatively simple limiting cases exhibit a
basic feature which appears almost universally through-
out the entire class of problems of space-charge-limited
current Qow with one sign of carrier. Namely it is, with
the exception of the Child's law case," [n=0 in Eq.
(A1)] (without or with the inclusion of the di8usion
current) apparently impossible to obtain explicit solu-
tions in closed form in terms of known functions.

Further, the form of the solution, namely Eqs. (A5)
and (A6), is also typical of what one encounters
generally, as seen in Appendix C following.

The solutions of Eqs. (AS) and (A6) are, for w small
and m large, respectively:

w«1: I (2w) &, v —', (2w) &;

uppel' Sign: I 1—8 8—'N'

lower sign: N~m, e~~x'.

(A7)

(A8)

For the further discussion of the problem, it is con-
venient to define an ohmic field intensity 8&, an ohmic-
like current density Jg and a dimensionless voltage
parameter n as follows:

Bg= V./a, Jg= enpBg, n= eV,/ena'= v,/w, ', (A9)

where subscript "u" denotes the value of a quantity at
the anode, x=a. With n (i.e., the applied voltage V,)
given, e„z„and I, are to be determined, and from

'~ See reference 3 for the explicit solutions in this case.

It is convenient to obtain the solutions in terms of
dimensionless distance, field, and potential variables
m, I, and e, respectively, defined as follows:

w =e'n'px/eJ, I=entI, B/J=n/n, v =e'n'p'V/e J' (A2)

The current Eq. (1) has been used in (A2) in expressing
I as a ratio of carrier densities.

The Poisson equation (Ai) becomes

these in turn are obtained the values of all physical
quantities of interest. Where analytic approximations
cannot be used, a useful procedure is to plot graphically,
using Eqs. (AS) and (A6), the ratio v/w' vs e. This
ratio decreases monotonically from at u=0 to 0 at
0= 1 for the upper sign, and to 2 at I= ~ for the lower
sign. With n given, this plot enables us to determine
uniquely the corresponding value of I,. The values of
w, and v are then obtained from Eqs. (AS) and (A6),
respectively. For the resulting current density J, free-
carrier density at the anode e„and field intensity at
the anode B„we have the relations, obtained from
(A2):

J'/Jg ——w,/v„m. /n= 1/e„B,/Bg=l, w,/v, . (A10)

The field intensity, free-carrier density, and potential
distributions along the insulator are conveniently ob-
tained from Eqs. (A5) and (A6) via the scaling relations.

x/a=w/w. , B(x)/B,=N,/n(x)=N/I„
V(x)/V, =v/v, . (A11)

For n greater than unity, N,«1 and expansion of
in(1+I), in (A5) and (A6), as a power series in I leads,
via the approximations (A7) including higher order
terms, to the analytic approximations

J 9 3 e, 3 7 8, 3 1
-n+-; —=n+—;— -W—. (A12)

Jo 8 4 n 4 12 Bg 2 6n

This is the Child's law region of current; indeed the
relation J/Jg ——9n/8 is exactly Child's law. The approxi-
mations (A12) are very accurate for n& 1 and quite fair
for 0.7(n(1. Note that n=1 corresponds to a voltage
equal to twice V,(" ~& for the trap-free crystal and to
twice V &~~L) for the trap-filled crystal.

Beyond this point it is convenient to discuss the two
cases separately.

(i) The trap free crystal; O-hm's law aed the Ohm's law-
Child's lcm transition. —For n«1, e, is very close to
unity, and the following analytic approximations are
useful:

J e. t 1-=ig-', n; 1+ exp —
]
-+1

(

n En

1+-,'n. (A13)
gg

This is obviously the Ohm's law region of current. The
approximations (A13) are very accurate for n(0.2.

Comparing (A12) (upper sign) with (A13) we see
that a good estimate for the transition point from
Ohm's law to Child's law is n=~ corresponding to
V 'g &= (ea'/2c)n as in Fig. 2.

(ii) The trap filled crystal (Th-e traps filled limit law)--
The threshold voltage V ~~~~) of Fig. 2 corresponds to
n= —,'. At voltages slightly above threshold, i.e., for
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a—-',«1, N,))i and the approximations (A8) (lower
sign) are valid. The field intensity varies linearly with
distance, and the potential parabolically, corresponding
to a constant excess charge density e(11)',—ni —n). In
this range of voltages the following analytic approxi-
mations are useful (note that ni —-', =(V,—V, (TFL&)/

(TFL)) ~

J 2(«—2)

»[1/(« —2)7+»»[1/(« —k)7—1

en&(( (V V (TFL))

a ln[V. (TFL&/(V. —V.(T-&)7

(A14)

(A15)

The "verticality" of the J—V curve for the traps-61led-
limit case for V near threshold, V,&TFL), follows from
(A14).

To establish the size of the error made by substituting
n, for no ——(1/a) Jp'n(x)dx, we note that integration of
Eq. (A1) (lower sign) gives eB /ea=no+n. Fore. ,—-,'«1,
h, may be replaced by 2ho from (A15). From (A9) and
(A15):

n
(A16)

n(& 2 1n[1/(« —-', )7

It may be concluded then, that, except for the case that
(V,—V,(TFL&)/V, 'TF L& is very small indeed, the
approximation (A17) is correct within a factor of two or
three. Since for the real crystal, e &n is impossible, it is
in any case, not physically sensible to take (V,—V ( FL&)/V, ' F &&(1 in the argument of the above
logarithm. Since we would expect that the greatest

Since n,/no —4 as o.,—)~, it follows that it is impossible
to establish a general inequality, along the lines of (8),
confining n„within relatively narrow limits, near eo,.

The simplified arguments of Sec. IV, namely Eqs. (9)
and (10), applied to the traps-filled case give the result

(V V (TFL))/V (TFL)((1 ~

J= (en&i/a) [v,—v, (TFL&7. (A17)

The difference voltage, V —V (TFL)& appears in (A17)
.instead of V, alone as in Eq. ('10), because in the TFL
case h(0) &0 until V,)V, (TFL&. Comparing the J,»„
of (A17) with the J,„ t, of (A14), we have

error arising from the approximation n =eg occurs
precisely in the TFL case, we conclude quite generally
that this approximation, and its companion eg, =n ~g, do
not lead to errors of more than a factor of two or three.

APPENDIX B. INSULATOR WITH
"SHALLOW" TRAPS

Electron traps at a given location in an insulator are
said to be "shallow" if they lie, energetically, above the
steady-state Fermi level for electrons at that position.
The property of being "shallow" is clearly not an
intrinsic property of the trap, but depends both on the
degree of excitation of the insulator and on the tempera-
ture. We have already seen, in the discussion of Sec. IV,
that if the traps are shallow then there is a fixed ratio 8,
independent of app/ied cottage, between n and n(. For a
discrete trap level, 8 is given by (11).Assuming that
0«1, at distances sufficiently removed from the cathode
(in the simplified theory n = ~ at the cathode requires
that all traps be filled near the cathode), Eq. (2) can be
written

(8e/e) (d 8/dx) =n —n. (31)
An appropriate set of dimensionless variables for the
description of the solution in this case is obtained simply
by replacing e by 8e in (A1), (A2), and (A9):

1 1 'vy ~
'(o()= 'N) I&)=I,—Vy = F, &Kg

=8Q = . (32)
0 0 Ky ~

The results (A12) and (A13) are now valid with u
replaced by n&. The transition point from Ohm's law to
Child's law is ng=-', . corresponding to the transition
voltage V(), ,(" ' = ea'n/2&8 From t.he relation J/J(&
~9«/8, valid for «))1, is obtained the modified
Child's law, 1=98e)((V,'/8a'. This modified Child's law
is often described by referring to a "reduced effective
mobility" p,&=Op. In our opinion this is not an appro-
priate description since, for example, it fails completely
to describe the modified transition voltage Vg, ,&" ',
which does not involve the mobility. Mathematically,
the above discussion indicates that it would be more
appropriate to deine a "reduced effective dielectric
constant" ~&=He. Physically, however, this does not
have much significance.

APPENDIX C. MATHEMATICAL SOLUTIONS FOR AN
INSULATOR WITH A SINGLE DISCRETE

TRAP LEVEL

The equations to be integrated are (1), (2), and (4),
the last being the equation of state for a single, discrete
level. Letting M=n+ni, the solution is conveniently
expressed in terms of the dimensionless variables ~, t,
and p defined in direct analogy with the variables m, I
and i) respectively of (A2)

(o = e'M'px/eJ; 7i= eMp 8/J =M/n;
(o =e'M'p'V/eJ' (C1).
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The equation of state (4) can be rewritten

n,/M= c/(1+bX), with c=N, /M, b= N/M,

N=N, expt (Ei—E,)/kTj. (C2)

The Poisson equation (2) becomes

with

8=1/2bBp', Bp= (c+b—1)/2b; g=-', {(1+2b) b—1l;
2bBo+1 0'.

8=
2bBo(1+g) 2 (1+2') 2 (1+g)(1+2')

) (1+9)C

pi= dX. (C3)
1+bX J p (1—X) (1+bX)+cX

For the potential,

r" dpi t" Xs(1+8.)
y= ~' ~—dX= dX. (C4)

"p dX "p (1—X) (1+bX)+cX

The range of X is from X=O at co=0 to X=X,
=M/n at p)= ~.

Equations (C3) and (C4), subject to the boundary
condition (7):X=O at pi=0, are directly integrated by
the use of partial fractions. It is convenient to express
the results in terms of the new "normalized" dimension-
less variables 0, A, and C defined by

S=
2(1+q) 4(1+g)s

(1+5)8
2 (1+g)(1+2') 4(1+g)'(1+2')

The results (C6) and (C7) and the accompanying ex-
pression for the coefficients can be expressed in an
algebraically more compact form. However, the above
form is one which the author has found particularly
suitable for actual calculations. Underlying the choice
of this form is the fact that b«1, whence g -', b(1——',8),
in cases of particular interest, such as those plotted up
in Fig. 5. In analogy with (A9), a new dimensionless
parameter n~ is defined

n~ ——e V,/eMa'=C, /Q '.

Q=pi/X, A=X/X, C = p/X
J, e„and h, are determined from

(C5) J/Ja ——Q./C. ; n./n= 1/A. ; h./Bo /t. Q./e. . (C——9)

The Anal equations, without any approximations, are

0', 2
Q= —h.——ln 1+—(1+q)A(1—A) —A.'

2

Each portion of the J—t/' characteristic is associated
with a definite range of A in Eqs. (C6) and (C7). This
detailed association is listed in Table I. For each range

Tax,E I. The ranges of A associated with the diferent portions
of the J—t/ characteristic for a single, discrete trap level. 8=
1/2bBps& l =Bpb& Bp= (c+b—1)/2b Lsee (C2l j.'

(C6)
Range of A

1 to 0.97
0.9'7 to 0.1
0.1 to 10$
10& to O.if
0.1& to 108
108 to b

8~A

Associated portion of theJ—V characteristic

Ohm's law
Transition
Modified Child's law
Transition
Traps-filled-limit law
Transition
Child's law

a If the values of 8 and f are such that one of the ranges listed for A. is not
available, then the corresponding portion will be missing from the J-V
characteristic.

(C7) of A. appropriate simplifications of Eqs. (C6) and (C7)
are readily worked out.


