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The barrier theory of the infrared photoconductivity of PbS films is discussed, according to which the
high resistance of the films arises from #-p-» barriers at the surfaces between the crystallites forming the
films, the barriers being formed in the oxidizing process used in preparing the films. Under the action of
light, electron hole pairs are formed, these carriers become trapped in the #- and p-type regions, respectively,
the resulting charge density lowers the barriers, and hence the conductivity is increased. This theory is
worked out quantitatively, and compared with experimental results of Mahlman on films of the type
actually used as sensitive photoconductors. The theory shows good qualitative and quantitative agreement
with experiment in numerous respects, including the explanation of the dark conductivity of the films and
its dependence on temperature, the photoconductivity as a function of irradiance and temperature, the
time constants involved in the rise or decay of the photoconductivity, and the short-wave limit of the
photoconductivity. In working out the theory of the barrier model, we use the properties of the bulk material
as determined by Petritz and Scanlon, and the properties of the films are found to be consistent with our
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knowledge of the behavior of the bulk material.

1. INTRODUCTION

EAD sulfide films are among the most sensitive
infrared photoconductors known. One of the sug-
gested explanations' is that in the dark there are
barriers interposed between different crystallites of the
film, which increase the resistivity beyond that of the
bulk material, and that illumination reduces the height
of these barriers, increasing the conductivity. It is the
purpose of the present paper to work out some details
of this barrier theory, and to show that in fact it is
capable of describing many of the observed features of
PbS photoconductivity. It is not claimed in any way
that the barrier effect is the only mechanism present in
PbS. Other mechanisms for photoconductivity are well
known ; Rose? has given a good description of them, and
has concluded that it is hardly possible to deduce the
mechanism uniquely from an experimental study of
photoconductivity of a particular substance. With this
conclusion we agree. Furthermore, it is very likely that
more than one mechanism is simultaneously present in
PbS. The main reason for believing this is the wide
variation in properties from one PbS film to another of
similar preparation. One film may, for example, show
a variation of conductivity with irradiance that is less
rapid than linear, the next one may have a more rapid
variation than linear, in a way strongly suggesting a
superposition of mechanisms arising from details in the
preparation beyond the control of the experimenter.
However, a barrier theory seems capable of explaining
many features of the experimental behavior, and since
it was not considered by Rose in the general discussion
quoted above, it seems worth developing here. We shall
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compare the theory with experimental results on photo-
conductive films of high sensitivity obtained by Mahl-
man?® and others, while on the staff of Electronics
Corporation of America. I am grateful to Dr. Mahlman,
to Professor W. B. Nottingham, and to others who have
been connected with ECA, for valuable discussion.

2. DARK CONDUCTIVITY

One cannot hope to understand the photoconductivity
of PbS films without having a good understanding of
the conductivity of these films in the dark, and par-
ticularly of the variation of conductivity with prepara-
tion and with temperature. In Fig. 1 we show the
logarithm of the conductivity as a function of 10%/T,
where T is the absolute temperature, for a considerable
number of films of a type actually used as photocon-
ductors. These are chemically deposited films which
differ in the amount of oxidation treatment which they
have received. Unoxidized films show a high con-
ductivity, varying only little with temperature. As the
oxidation is increased, the resistance increases, par-
ticularly at the low temperatures, the curves showing a
much steeper slope. Some films show a slope which
approaches approximately a maximum value given by
an exponential exp(—AE/kT), where AE is about 0.35
to 0.37 ev. Still further oxidation decreases the slope
again, increasing the conductivity, until finally a highly
oxidized film has a temperature dependence of con-
ductivity much like an unoxidized film. Evaporated
films treated directly with oxygen show similar charac-
teristics, depending upon the amount of exposure to
oxygen. The films of highest resistance are those which
show the greatest photoconductivity. It has been shown
by various workers* that the unoxidized films have the
properties of n-type semiconductors, and that the
properties change to those of p-type semiconductors as

3G. W. Mahlman, Phys. Rev. 103, 1619 (1956), preceding
paper.
4 For instance, H. Hintenburger, Z. Physik 119, 1 (1942).
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F16. 1. Logarithm of conductivity vs 103/7T, for a number of
experimental films (from G. W. Mahlman). The percentages
indicate amount of oxidizing treatment, in arbitrary units. The
films with highest photoconductive sensitivity are those with 20%
to 409, oxidizing treatment.

we pass through the state of maximum resistance, and
maximum photoconductivity.

Before seeking the interpretation of these facts in
terms of the barrier theory, let us ask how the properties
of the films compare with those of bulk PbS. A careful
study of this material has recently been made by
Petritz and Scanlon.’ They have made measurements of
the mobility of both holes and electrons as a function of
temperature (both mobilities are approximately equal,
and both vary approximately as T-%2), and of the
effective masses of holes and electrons (they estimate
values of the effective mass of electrons varying from
0.22 to 0.34m,, where m, is the electron mass, and for
holes values from 0.1 to 0.36; since these estimates are
not very certain, we adopt in the present calculations a
value 0.30 for both holes and electrons). In Table I we
give values for the mobility of either holes or electrons

TABLE I. Assumed mobilities of holes or electrons in PbS
(from graph of Petritz and Scanlon).

103/T p(cm2/volt sec)

300
540
940
1300
1750
2300
2800
3400

SOV W

—

8 R. L. Petritz and W. W. Scanlon, Phys. Rev. 97, 1627 (1955).
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as a function of temperature, scaled off the graphs given
by Petritz and Scanlon, and used as a basis of the
calculations in this paper. Petritz and Scanlon also
estimate the gap width as 0.37 ev. On the basis of these
values we can compute the intrinsic conductivity of pure
PbS by the equation

2
0=Z;[(2WM*/€T)%eXp(—AE/ZkT)e(u++#—)], ¢y

where m* is the effective mass (assumed to be 0.3m, for
both electrons and holes), AE is the gap width 0.37 ev,
and uy and u_ are the mobilities of holes and electrons,
assumed equal and taken from Table I.

In Fig. 2 we show the intrinsic conductivity so com-
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F16. 2. Logarithm of conductivity »s 103/7, for intrinsic PbS,
computed from results of Petritz and Scanlon. The curves for the
experimental films of Fig. 1 are included for comparison.

puted, and for comparison the conductivities of the
same films shown in Fig. 1. It is at once obvious that
some films have a much higher resistance than the
intrinsic material. The slope of the intrinsic curve
corresponds to the value AE/2, where AE is the experi-
mental gap width of 0.37 ev, whereas the films of highest
resistance have curves with a slope which empirically
is very close to twice this value, or AE rather than
AE/2. Our limiting films of high resistance are not, then,
composed of intrinsic material. The greater slope of the
conductivity curves for the films is, of course, the
feature which results in the higher film resistance at
low temperature.

It is well known that a material containing z-p-n
junctions can have an effective resistance much higher
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than that of intrinsic material. Let us see how barriers
resulting from such junctions can very plausibly be
present in the films, and how they can result in the
observed conductivities.

First we have to know a few facts about the physical
nature of the films. They are about 0.2 u in thickness,
and are seen under the electron microscope to consist
of crystallites whose dimensions are about 0.1 g, in
contact. The unoxidized material, as we have stated,
is # type, presumably on account of sulfur vacancies.
We may now assume that the oxidizing treatment which
changes the n-type material to p-type penetrates into
the surfaces of separation between crystallites, in which
the diffusion of the oxidizing agent would be rapid,
and produces a thin layer of p-type material between
the crystallites. Such a layer of p-type material between
the n-type crystallites will produce #-p-» barriers of the
required sort to result in a high resistance.

In Fig. 3 we show the way in which the energy bands
will vary through such an #-p-» barrier, in three differ-
ent cases of increasing thickness of p-type material
(which presumably corresponds to increasing amounts
of oxidation). We shall come later to the method of
calculation of such curves. In Fig. 3(a) the layer is too
thin to allow the development of a barrier of maximum
height. In Fig. 3(b) the barrier is completely developed,
and in Fig. 3(c) the layer of p-type material is so thick
that there is not enough #-type material left to form a
complete z-type barrier in the p-type material. We shall
see later that all of these cases are likely to be met in
practice, with the sizes of crystallites and probable
concentration of impurities which we actually have.

We can now consider the expected behavior of the
conductivity as a function of temperature for these
three cases. In case (a) conductivity will take place
largely by electrons which have enough energy to
surmount the barriers in the thin p-type layers, so
that the film will act like an #-type semiconductor. We
may assume that the mobility of those electrons which
can surmount the barrier is substantially the same as
that of the electrons in the intrinsic material, and that
the effect of the barriers is merely to reduce the number
of electrons which can surmount them, and thus to
carry current through the film. If AE is the height of the
top of the barrier above the Fermi level, the current
will then have an exponential factor exp(—AE/kT),
and we see that AE can be anything from a very small
value (for the case where the barriers are not developed)
up to 0.37 ev [when they are completely developed, as
in case (b)]. Hence we may expect to find films whose
conductivity curves show slopes anywhere from a small
value to the value corresponding to 0.37 ev, or twice
the slope of the intrinsic material. Films are observed
with characteristics all through this range.

From the discussion just given, we see that the
case (b), where the barriers are fully developed, will
lead to a conductivity curve with slope corresponding
to 0.37 ev, as is found experimentally for the films of
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highest resistance. In this case conductivity will be
produced both by holes and electrons, for now the holes
just able to pass below the barriers marked “n” in
Fig. 3(b) in the valence band will be as plentiful as the
electrons able to surmount the barriers marked “p” in
Fig. 3(b) in the conduction band. This is in agreement
with the experimental fact that it is at this point of
maximum resistance that the character of the con-
ductivity changes from # type to p type. We also see
clearly from this case why it is that such a model can
lead to a much higher resistance than one has in the
intrinsic material : current must be carried by minority
carriers in both #-type and p-type regions (that is, in
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Fic. 3. Energy bands in barrier model of PbS. (a) Partially
developed barriers, underoxidized case; (b) completely developed
barriers; (c) partially developed barriers, overoxidized case.
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the bulk of the crystallites and in the barriers), and
these carriers are much less abundant than either holes
or electrons would be in the intrinsic material.

As the material approaches case (c) of Fig. 3, the
situation is the reverse of that shown in case (a), and
most of the current will be carried by holes which can
pass under the barriers remaining in the n-type regions,
so that the conductivity will become p-type, and the
resistance will decrease again. On account of the geo-
metrical situation, however, we must expect a rather
different behavior in this case from that found in
case (a). It is clear that as p-type material is formed in
more and more of the boundary layers between crystal-
lites, it will be possible for this p-type material to join
together into continuous paths through the crystal,
which the current can traverse without having to go
through the interior of the crystallites at all. Presumably
such devious shunt paths for the current become rapidly
more common, and furnish the main mechanism for
carrying current in an overoxidized film.

We note, from Figs. 1 and 2, that while the curve for
conductivity vs 103/7 for an actual film may remain
approximately straight through a number of powers
of 10, still at very low temperatures the experimental
curves all flatten out. The explanation for this is pre-
sumably to be found in the existence of some devious
shunt paths through the crystal, of small cross-sectional
area, but giving a small conductivity varying slowly
with temperature, which is swamped by the main
conductivity through the bulk of the material at high
temperatures, but which becomes the principal form of
conductivity at low temperatures. Such shunt paths
could consist either of n-type regions in which the
barriers were less fully developed than in the bulk of
the material, or of p-type regions in which the con-
ductivity of the boundary layers was so well developed
that we had shunt paths through these boundary
layers. It is found, by analysis of the experimental
curves, that they can be well represented as a super-
position of a principal conductivity behaving according
to the barrier model of Figs. 3(a), 3(b), or 3(c), shunted
by paths with much lower barriers, whose conductance
at room temperature would be smaller than that of the
main part of the film by a factor of something like 105,
but whose conductance would dominate at low tem-
peratures. Since such shunt paths would be very
erratic things, varying from film to film, it is likely that
their existence is one of the major features leading to
the observed variation in properties from one film to
another.

We now have seen that the barrier theory can account
for the general type of behavior observed in the dark
conductivity. Let us next make these considerations
more quantitative. First we consider the case of com-
pletely developed barriers as in Fig. 3(b). We have
assumed in our qualitative discussion that the barriers
were of height 0.37 ev, independent of temperature,
so that the conductivity would contain a factor
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exp(—AE/kT), where AE has this value. It is obvious,
however, that as the temperature goes up, the material,
both # and p type, will tend to become intrinsic, the
Fermi leve] assuming at high temperature a position in
the middle of the gap, and the barriers will disappear.
Let us inquire whether this will occur in the temperature
range considered (the measurements on the films are
at room temperature and below), and whether it will
invalidate our argument leading to a straight-line curve
for logarithm of conductivity »s 103/7. To answer this
question we have calculated the way in which the
Fermi level varies with temperature for various im-
purity concentrations, and have computed curves of
conductivity vs temperature using the barrier model of
Fig. 3(b), for these cases. It is well known that as the
temperature goes up the Fermi level approaches the
intrinsic value, more rapidly with low concentration of
impurities than with high. Now, for reasons which we
shall mention shortly, it seems necessary that the
impurity concentration both in the n-type crystallites
and the p-type surface layers must be at least of the
order of magnitude of 10'® per cc. It is reasonable that
we should actually have such. numbers of impurity
centers. Thus, Petritz and Scanlon® quote impurity
concentrations in synthetic single crystals, and these
come out several times 10'S.

We now find that for impurity concentrations of 10'8
or greater, the variation of the Fermi level with tem-
perature is not enough, in the range of temperatures
used, to affect our arguments. Specifically, in Fig. 4 we
show the conductivity »s temperature for a model like
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Fi16. 4. Logarithm of conductivity »s 103/T, for the barrier
model of Fig. 3(b), assuming 108 impurity atoms/cc in both
#- and p-type material. The curves for the experimental films of
Fig. 1 are included_for comparison.
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that of Fig. 3(b), assuming 10'® impurity centers per cc
in both #- and p-type regions, and taking account of
the variation of the Fermi level with temperature. For
comparison we show the same experimental curves
which we have given in Figs. 1 and 2. It is clear from
this figure that this theoretical curve represents very
well the limiting form which the experimental curves
approach, for the films of highest resistance. Calculated
curves corresponding to impurity concentrations greater
than 10 are practically indistinguishable from that
shown in Fig. 4.

We shall next discuss the cases of incompletely de-
veloped barriers, as shown in Figs. 3(a) and (c); our
discussion will apply specifically to case (a), but that
of (c) is entirely parallel. We shall first use a simple
and approximate method of discussion, then a more
sophisticated and correct method, both of which lead
to substantially the same answers. In Fig. 5 we show
the top of the valence band and the bottom of the
conduction band as a function of position through the
barrier. We assume that #-type material with a density
of Ny donors per unit volume persists up to a dividing
line shown and that p-type material with a density of
N, acceptors per unit volume (we take the donor and
acceptor densities as being equal for convenience and
for lack of knowledge to the contrary), is present in the
barrier. In the n-type region we let E(x) be the energy
of the bottom of the conduction band, measured upward
from the Fermi level, and in the p-type region we let
E(x) be the top of the valence band, measured down-
ward from the Fermi level (so that E(x) is positive in
both cases). We assume that E(x) is measured in elec-
tron volts; that is, it is e times an electrostatic potential
in volts. We let E, be the height of the bottom of the
conduction band in the n-type region above the Fermi
level, or the distance of the top of the valence band in
the p-type region below the Fermi level, in the case of
infinitely wide regions of n-type and p-type material;
that is, in the case of the fully developed barriers of
Fig. 3(b).

Now we consider the curved parts of the curves of
E(x) as shown in Fig. 5. The curvature arises from the
volume density of positive charge in the depletion layer
in the n-type region, and of negative charge in the
depletion layer in the p-type region. For the simplified
theory which we shall first use, we assume that the
depletion is complete; that is, that the charge density,
positive or negative as the case may be, is constant,
equal to that of =Ny electronic charges per unit volume.
In such a case Poisson’s equation as applied to either
n- or p-type regions becomes

@E/dx*= N o¢*/ keo, 2)

where x is the distance measured perpendicular to the
barrier, e is the magnitude of the electronic charge,
k is the dielectric constant (assumed to be 17.9 for
PbS), and ¢=28.85X 107 farads/meter, if we use mks
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Fic. 5. Valence and conduction bands in case of Fig. 3(a),
showing notation used in text.

units. A solution of Eq. (2) is

1 Noe?
E= const-i-g

(x—const)2. @3)

We are to set up similar solutions in both #-type and
p-type regions which must join with constant value and
constant slope at the boundary between the two regions.

The boundary conditions are different in the n-type
and the p-type regions for the case we are considering.
Let X be the thickness of the p-type region. In the
p-type region the parabolic behavior of the E vs x curve
will start at the center of the region. Hence the value
of E at the edge of the p-type region will be

1 N062 X 2
E=const}+- (—) . 4)
2 ke() 2

The slope of the curve at this point must be equal to
the slope of the corresponding curve in the n-type
region, which means that the thickness of the depletion
layer in the n-type region must be X/2, equal to half
the width of the p-type region, so that the total amount
of charge in the barrier, made up of positive charge in
the n-type region, negative in the p-type region, will
be zero. Then the value of E(x) in the n-type region, at
the boundary between n-type and p-type regions, will
be Eo+(Noe®/2keq) (X/2)?. The height of the barrier,
in the p-type region, above the Fermi level, will then be

barrier height= Eo+2(Noe?/2keo) (X/2)
= Eog+ (Voe?/4keg) X2. (5

If we let No=10'8/cc, the quantity (Ve?/4kep) X2 will
equal 0.37 ev for X =382 angstroms. In other words,
for a p-type region of this thickness, and for a low tem-
perature where E, is negligible, the barrier will just
become complete, while for any smaller thickness we
have a barrier such as is shown in Fig. 3(a), of less
than the maximum height. For other values of N, the
critical thickness of the p-type region for giving a
barrier of maximum height will be proportional to Ny%.

We can now see why it was stated earlier that the
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density of impurity centers, N, cannot be much less
than 10%. For let us remember that the assumed thick-
ness of a crystallite is about 0.1 x=1000 A. With
No=10", we have just seen that the critical thickness
of the p-type region for development of complete
barriers is 382 A. In such a case the n-type region left
between two successive p-type regions will be 1000— 382
=618 A. But if the value of NV, were much less, so that
the thickness of the p-type region were much greater
than 382 A, the thickness of the #n-type region would
be correspondingly less, and it would be perfectly
possible to have values such that a complete barrier
could not build up in either the n-type or the p-type
region. In fact, the critical concentration is that for
which the thickness of the p-type region, for complete
barrier formation, is 500 A, and we see at once that this
is (382/500)%10'8=8.8X10'/cc. For impurity concen-
trations less than this value, complete barrier height
cannot be built up.

We see, then, that according to this elementary
treatment, for an impurity concentration of 10'%/cc,
the barrier height will build up proportionally to the
square of the thickness of the p-type region, to a
limiting value of 0.37 ev, which it will reach at a thick-
ness of 382 A. As the p-type region becomes thicker we
shall continue to have these barriers of maximum
height, until the thickness of the n-type region is
reduced to 382 A, after which the barrier height in the
n-type region will decrease proportionally to the square
of the thickness of the n-type region. The first situation,
where the barrier height is proportional to the thickness
of p-type region, is that shown in Fig. 3(a); the second
situation, with maximum barrier height, is that of
Fig. 3(b); the third is that of Fig. 3(c). The region of
tolerance over which the case of maximum -carrier
height exists is larger, the higher the impurity concen-
tration. In the range of concentrations which we may
well expect—a small multiple of 10'®—we see that
there is appreciable tolerance, so that films of maximum
resistance would be expected to occur in substantial
number, which agrees with the observations.

Now we shall discuss this same problem of the forma-
tion of barriers from a more sophisticated point of view.
The positive charge density in the n-type region, and
the negative density in the p-type region, are not
really those arising from =N, electronic charges per
unit volume, unless the conduction band lies so far
above the Fermi level in the n-type region that the
impurity levels are entirely empty, or the valence band
lies so far below the Fermi level in the p-type region
that the acceptor levels are entirely filled with electrons.
More generally, we can compute the positive charge
density in the n-type region from the following formula
for N, the number of positive charges per unit volume,
with a similar formula for the p-type region:

N=No—No/{exp[ (E—Ey)/kT]+1}
— (2/1) 2em*kT)}/[exp(E/RT)+1].  (6)

SLATER

In Eq. (6) the first term N, stands for the number of
donors per unit volume. The second term represents
the number of donors which contain electrons, and
hence do not contribute to the net positive charge
density; the quantity E; measures the distance of the
donor level below the bottom of the conduction band.
The third term represents the number of electrons per
unit volume in the conduction band, which therefore
must be subtracted from the number of positive charges
per unit volume. The expression (6) is such that if
E=E,, the number N is zero; that is, E,, as assumed
earlier, represents the bottom of the conduction band
(measured up from the Fermi level) in a case of an
infinite sample of material, in which the charge density
must be zero.

To obtain a rigorous solution of the problem of finding
E(x) through the barrier, we must rewrite Poisson’s
equation, Eq. (2), replacing No which appears in Eq. (2)
by N as given in Eq. (6). When we do this we note
immediately that if E=E, so that N=0, we have a
solution corresponding to constant E, the ordinary case
of an infinite sample of material. We are interested,
however, in the case of finite thicknesses of material,
corresponding to the barriers, so that we must integrate
the whole differential equation, which is a differential
equation of a complicated form for E as a function of x.
This can only be handled by numerical integration, and
the writer has carried out numerical integrations for
the necessary cases, assuming No=10'8/cc, and assum-
ing E;1=0.01 ev. We shall now discuss the general
nature of these solutions.

Since we have a second-order differential equation,
there will be two arbitrary constants. We note by
symmetry from Fig. 3 or Fig. § that E will have a
minimum at the mid-point of the n-type region, or at
the mid-point of the p-type region. Let us then measure
our coordinate x from this mid-point and choose one
of the two arbitrary constants by requiring that the
slope dE/dx be zero at this point. Then there will be a
solution corresponding to each value of E at x=0. For
E=E, the curve will be a horizontal straight line. For
larger initial E the curve will start to rise as x increases,
and by the time it has risen an amount of the order of
magnitude of k7', the function N of Eq. (6) will become
substantially equal to Vo, and the curve will be para-
bolic, of the form given in Eq. (3), with appropriate
constants. In our numerical integration it has been
convenient to carry each curve out to large enough
values of E so that this parabolic approximation is
justified, and then to evaluate the two constants as
functions of the ordinate of the curve at x=0. For
better understanding we show in Fig. 6 a family of
such curves.

We must now use one such curve for the n-type
region and another for the p-type region, subject to
two conditions: the function must be continuous, and
the slope must be continuous, at the boundary between
the two regions. These conditions can be satisfied by
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numerical methods which we shall not go into. When
we satisfy these boundary conditions we find the exact
shape of the barrier and we find the barrier height as a
function of the thickness of the p-type region, replacing
the simple value of Eq. (5). As far as the shape of the
barrier is concerned, the departure from the parabolic
form given in the elementary discussion is unimportant.
As far as the height is concerned, we exhibit some of
the exact results in Figs. 7 and 8. In Fig. 7 we show the
barrier height as a function of X for 103/T=38, as calcu-
lated by this rigorous method. For comparison we give
the parabola given by Eq. (5). We see that there is
substantial agreement between the parabola of Eq. (5)
and the rigorous curve for values of X less than the

ENERGY E(X)-E,(ARBITRARY UNITS)

DISTANCE X (ARBITRARY UNITS)

F16. 6. E(x) —E, vs x, both expressed in suitably chosen dimen-
sionless units, from Poisson’s equation derived by combining
Eqgs. (2) and (6), for a number of initial conditions.

critical value for formation of the complete barrier,
and above the critical value the barrier height stays
approximately constant; the only real difference be-
tween the exact solution and the approximation is that
in the exact case there is a smooth transition from one
case to the other.

In Fig. 8 we show the barrier heights for a number of
values of X as a function of 103/7. These variations
include all of the temperature dependences found in
Eq. (6), including the variation of the quantity Eo with
temperature, the height of the bottom of the conduction
band above the Fermi level. We see that for values of
103/T greater than 4, which includes the cases met in
practice with the photoconductive measurements, the
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F16. 7. Barrier height as a function of X, thickness of p-type
layer, for 103/T=8, 10 impurity atoms/cc. Dashed curve,
parabola and constant value given by elementary treatment.

variation of barrier height with temperature is un-
important. We thus justify the qualitative discussion
which we have given earlier: in cases of only partially
developed barriers the curve of logarithm of conduc-
tivity vs 103/T will be approximately a straight line
whose slope depends on the height of the barriers, and
the maximum such slope corresponds to completely
formed barriers, for which the slope corresponds to
0.37 ev. In this way we explain the fact that films are
observed corresponding to many different slopes, up to
a maximum value. When we actually compute curves
of conductivity for barriers of various heights we find
good agreement between them and various films in the
straight-line portion of the experimental graphs; as we
have stated earlier, the tendency to flatten out at low
temperatures, found in all experimental curves, must
be explained by devious shunt paths of low-resistance
material whose conductivity does not vary greatly
with temperature, and since this is a random situation
we cannot set up any single theoretical curve to agree
with experiment in this region.

3. MECHANISM OF PHOTOCONDUCTIVITY

In the preceding section we have seen that the
barrier theory is capable of explaining the general
features of the dark conductivity of the PbS films. Now
we inquire how photoconductivity is to be explained.
When light is absorbed anywhere in the crystal, whether
in the #- or p-type regions, an electron will be raised to
the conduction band, leaving a hole in the valence band.
Any radiation whose wavelength is shorter than that
corresponding to the gap width of 0.37 ev can cause
formation of electron-hole pairs, and it is well known
that this wavelength agrees well with the long-wave
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limit of infrared sensitivity of PbS photoconductors.
The electron so introduced into the conduction band
will now tend to fall to the lowest possible energy, or
into an n-type region, whether it originates in an n-type
or a p-type region, and the hole will in a similar way
find its way into a p-type region. The presence of extra
electrons in the #-type region, extra holes in the p-type
region, will neutralize some of the space charge pro-
ducing the barriers. Thus the barriers will be lowered,
and the conductivity will correspondingly be increased.
Let us now put these ideas in more quantitative
language.

There are two aspects to the problem, the lowering
of the barrier by the hole-electron pairs, and the calcu-
lation of the number of such pairs produced by the
irradiation. Let us consider first the lowering of the
barriers. Let us assume that we have on the average
hole-electron pairs per unit volume, produced by irradi-
ation. Now the electrons, in the n-type regions, will
tend to drift to the interface between the depletion
layer and the neutral material, and the holes in the
p-type regions will drift to the surface of the depletion
layer in that region; that is, if the barriers are incom-
pletely developed, they will be located in the center of
the p-type region. They will neutralize part of the
charge in the depletion layers, and will have the effect
of decreasing the effective thickness of those layers,
hence decreasing the barrier height; we may use our
elementary theory to find the decrease of barrier height
from Eq. (5). Let the dimension of a crystallite be D
(we shall assume it to be 0.1 u). The electrons in a
crystallite will be distributed over two interfaces be-
tween neutral regions and depletion layers. Hence the
charge per unit area on either of these interfaces will be
—mneD/2. This will neutralize volume charge whose
charge density in the depletion layer is Nee. Therefore
it will neutralize volume charge extending to a depth
nD/2N,. Now the combined thickness of the depletion
layers in #- and p-type regions, from the center of the
p-type region to the interface in the n-type region, in
the absence of irradiation, is X. Hence in the presence
of irradiation it will be reduced to X —#nD/N,, reduced
by the amount of the regions neutralized in both
depletion layers. We therefore conclude that the barrier
height in the presence of radiation will be given by

barrier height= Eo+ (Ne?/4keo) (X —nD/No)%, (7)

which follows at once from Eq. (5). -

From the barrier height, as found in Eq. (7), we can
immediately deduce the conductivity. The conductivity
will depend on barrier height through the exponential
exp| — (barrier height)/kT7], so that Ins will be pro-
portional to — (barrier height)/kT. We let o1 be the
conductivity in the presence of light [for which we use
Eq. (7)], and op be the conductivity in the dark, for
which #=0, and we let

(N082/4k€o)X2= AE(), (8)
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so that Eo4AE, is the barrier height in the dark
(ordinarily E, is small enough to disregard). Then we
find

oL AEo/2uD  #n2D?
N = o S
oD kT \No X NZX?
In Eq. (9) we see the way in which the conductivity

varies with #. If we solve the quadratic (9) for nD/N.X,
we find

#D/NoX=1—[1—(kT/AEs) In(c1/op) .  (10)

Equation (10) is particularly interesting, for it allows
us to solve for nD/NoX, the fractional decrease in the
barrier thickness produced by radiation, in terms of
known quantities. To find it, we must know AE,, which
we get from the slope of the experimental curve of
conductivity vs 10%/T (disregarding E,), and the dark
conductivity. In this latter quantity, if we are working
at low temperatures where the experimental curve
of dark conductivity vs reciprocal temperature has
flattened off, we use an extrapolated dark conductivity
corresponding to constant barrier height, or a straight-
line extrapolation; for we assume that the flattening off
is a result of shunting by devious paths which do not
contribute to the photoconductivity, and we wish to
subtract the conductivity arising from these devious
paths. When we carry through such calculations in
actual cases, we find that in the experiments to be
described, the barrier has been reduced in thickness by
some 309, by the most intense irradiation employed.

The second part of our problem is to find the way
in which », the number of electron-hole pairs per unit
volume, depends on the irradiance /. In the first place,
the number of such pairs created per unit time will be
proportional to I; let it be called al. The constant a
will be determined by the fact that some fraction of all
photons striking the film will produce pairs. The fraction
will be less than unity because some of the incident
radiation will be reflected or scattered, and some will
travel through without being absorbed. In a steady
state, the number of electron-hole pairs created per
unit time will be balanced by the number recombining
again. We must consider the possible mechanisms for
this recombination. Since an electron and hole, after
their creation, migrate in opposite directions, and come
to rest at opposite sides of a barrier, separated by several
hundred angstroms, a direct recombination is hardly
possible. We are much more likely to have recombina-
tion by an indirect process. An electron, trapped in an
n-type region, will recombine with a hole which happens
to be found in its neighborhood, or a hole, trapped in
a p-type region, will recombine with an electron which
happens to be in its neighborhood. Let us consider
these possibilities more in detail.

Suppose that we have the case of incompletely de-
veloped barriers, as shown in Fig. 3(a). Then current
will be carried largely by electrons surmounting the
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barriers in the p-type regions. These electrons can
combine with holes trapped in the p-type region. The
number of such recombinations per unit time will be
proportional to #, the number of trapped holes; and to
the number of electrons per unit volume in the p-type
region. Since these are the same electrons which are
carrying the current, the number of recombinations per
unit time will be proportional to #s. Every time an
electron recombines with a hole trapped in a p-type
region, it must leave behind a hole in the #-type region.
Hence effectively it is neutralizing one of the electrons
trapped in the #-type region. Similar considerations
will hold in the cases shown in Figs. 3(b) and 3(c).

Combining these two mechanisms, then, we must
have

an n

—=al—-,
dt T

(11

where the time constant 7 is inversely proportional to
the conductivity, so that

or=A.

(12)

Since the time constant depends on conductivity, it
really depends on %, so that Eq. (11) is more compli-
cated than it seems at first sight. We shall use Eq. (11)
in Sec. 4 to discuss transient effects, but at the moment
we are interested in the steady state. Here we have

(13)

We may now combine Egs. (10), (12), and (13), noting
that o appearing in Eq. (12) is the same as o1, appearing
in Eq. (10), and obtain

(eAD/NoX)I =0 {1—[1— (kT/AEs) In(c1/op) T}
(19)

In Eq. (14) we have an expression for the irradiance as
a function of the conductivity, and if we plot the curve
with I as abscissa, o1, as ordinate, we find the conduc-
tivity as a function of irradiance.

We are now ready to start comparison of some of
these results with experiment, though we shall have to
postpone some comparisons until later, when we discuss
the time variation more in detail. First we consider
some of the experimental results. In Fig. 9 we show the
logarithm of the conductivity of a typical film vs 103/T,
for various irradiances. In Fig. 10 we show results for
the logarithm of the time constant as a function of
103/T, and for comparison the logarithm of the con-
ductivity, in the dark and for a fixed irradiance, for
several typical films.

The first observation which we make from Fig. 10 is
that in a qualitative way the inverse proportionality
between conductivity and time constant, postulated in
Eq. (12), certainly holds. The time constant decreases
in going to higher temperature, or to higher irradiance,
in much the same way in which the conductivity in-
creases. For some films the relation given in Eq. (12)

n=alr.
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Fi16. 9. Logarithm of conductivity »s 103/T, for various
irradiances, observed for film R19X. o

seems to be almost quantitatively fulfilled, but for
others it is only approximate. The tendency is for the
measured time constant to vary considerably less than
the conductivity, both with temperature and with
irradiance. This appearance may be partly a result of
inadequacies in the experimental technique. The time
constant was very hard to measure accurately at the
low temperatures and low irradiances, because the re-
sistance of the films was so extremely high, and the
expected direction of the errors would lead to a true
time constant much longer than the measured value.
More accurate measurements, carried out in a few
cases, gave a much longer time constant for the high-
resistance cases, and more nearly reciprocal relations,
as postulated in Eq. (12), than is indicated in the results
of Fig. 10. In making this comparison, one must take
account of a correction to the measured time constant
discussed in Sec. 4; this correction was not made in
the results of Fig. 10, which represent the direct experi-
mental data.

It seems reasonable, then, as a first approximation,
to assume the correctness of Eq. (12). One point should
be noted in connection with this equation, in the case
of low temperatures, where the curve of conductivity
vs temperature flattens out. We find experimentally
that the curve of time constant flattens out in a similar
way. This would imply that the shunt-path conduc-
tivity, which we have assumed to be responsible for the
conductivity at low temperature and low irradiance,
should at the same time supply an electron concentra-
tion which would be effective in producing recombina-
tions with trapped holes in the p-type regions. This
perhaps could happen if the shunt paths were really
very minute, but distributed widely throughout the
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body of the material, consisting really of randomly
scattered regions of lower than average barriers. In such
a case electrons carrying current in the shunt paths
might be found close enough to the barriers in question
to produce recombinations with trapped holes. It must
be admitted that this view is somewhat unclear, how-
ever, and that this furnishes one of the weak points of
the theory. However, whatever may be the mechanism
of the recombination, an equation of the form of
Eq. (11) seems most likely to be true, and the same
time constant which is directly measured by the experi-
ments to be discussed in Sec. 4 should be the one
appearing in Eq. (13). In other words, by using meas-
ured time constants in Eq. (14), writing it in the form

(aD/NoX)I=(1/7){1—[1— (ET/AE,)
Xn(er/op) 12}, (15)

we should have a relation making no use of the assumed

CELL R58X

relation between time constant and conductivity, and
hence based on somewhat firmer ground.

Now let us make some comparison between our
theory of photoconductivity and experiment. In the
first place, we show in Fig. 11 a curve of conductivity
vs irradiance, for a typical case, computed from Eq. (14).
This curve, which is plotted on a logarithmic scale,
shows a somewhat less rapid variation than linear of
conductivity as a function of irradiance, continuing
without great change in slope up to a limiting irradiance
where the barriers disappear. The slope of the curve
depends on the value of 2T/AE,, but corresponds in
most cases to a dependence of oz on a power of 7
between 0.7 and 0.95. The experimental curves for
conductivity wvs irradiance mostly have this general
form, though as we have stated earlier, they can vary
much more erratically than the theory would suggest,
in some cases even being more rapid than linear.
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In this connection, we may note that if we use
Eqg. (15) instead of the more specialized form [Eq. (14)],
we can ask how the conductivity would vary with
irradiance if the time constant were not inversely pro-
portional to the conductivity. As an extreme case, if 71,
were independent of conductivity or irradiance, Eq. (15)
would lead to a very strong dependence of conductivity
on irradiance. For small irradiances, where we can
expand the square root in Eq. (15) in power series, we
should find

(O’L/O'D)=eXp(2(ZDTLAEoI/NoXkT), (16)

an exponential dependence on 7, if 71, were independent
of I. We may therefore plausibly suppose that the
observed strong variation in occasional films arises
from a time constant which varies somewhat less rapidly
with conductivity than Eq. (12) would demand. The
fact that most of the observed curves show a variation
which is less rapid than linear, however, and qualita-
tively similar to that of Fig. 11, would indicate that
our assumed inverse relationship between time con-
stant and conductivity is actually well justified.

If we assume the correctness of Eq. (12) and assume
furthermore that the constant A4 is independent of
temperature (which is not exactly true, as we shall see
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F16. 11. Logarithm of conductivity s logarithm of irradiance,
for a typical case, computed by Eq. (14). The curve stops abruptly
as indicated, at the point where the barriers are reduced to zero.

later), then Eq. (14) would give us a complete frame-
work for calculating the conductivity as a function of
irradiance at any temperature. To a first approximation,
this simple assumption works surprisingly well. Thus,
in Fig. 12, we show calculated curves for conductivity
as a function of reciprocal temperature, for various
irradiances, for the same film whose conductivity was
plotted in Fig. 9, compared with the observed points.
In making this calculation, we have taken for op an
assumed value corresponding to a straight-line extrapo-
lation of the conductivity »s 10®/T curve, and then
have added the conductivity of the shunt paths to the
calculated ¢. This seems to be the most reasonable way
to correct for these shunt paths. We have furthermore
chosen a single value of the quantity (e4D/NyX),
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F16. 12. Logarithm of conductivity »s 10%/7, for various
irradiances, for film R19X, calculated on assumption that 4 is
independent of temperature. Experimental points shown by
crosses.

regarded as a disposable parameter, to fit the curves
most accurately. It is obvious that we have in this
way an explanation of the general form of the observed
curves.

We can improve the agreement by taking account of
the fact that Eq. (12) with 4 independent of tempera-
ture, does not agree very well with experiment. In the
case of the film which we are using as an example, we
do not have good data for the dependence of time
constant on irradiance, but we do have good informa-
tion on its dependence on temperature at one fixed
irradiance. In Fig. 13 we show the values of o7z
observed as a function of temperature (making the
corrections to be discussed in Sec. 4), for an irradiance
of about 1X10™* w/cm? We see that this quantity
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F16. 13. Quantity ozr,=A (plotted logarithmically) as function
of 103/T, for film R19X, at irradiance of 1X10* w/cm?. Crosses
show experimental points; curve is best estimate of experimental
value deduced from the observed points.
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Fi16. 14. Logarithm of conductivity »s 103/T, for various
irradiances, for film R19X, calculated on assumption that 4
varies with temperature as given by smoothed curve of Fig. 13.
Experimental points shown by crosses.

varies by over a factor of ten from low to high tem-
perature. If we use a value A(7T) determined from
Fig. 13, but still assume that Eq. (12) holds for each
temperature, we find calculated curves for conductivity
vs 103/T at different irradiances as shown in Fig. 14.
It is clear that this has improved the agreement be-
tween theory and experiment, as compared with Fig..12.

It seems, then, that our explanation is capable of
describing the general nature of the dependence of
conductivity on irradiance with satisfactory accuracy.
The film which we have used as an illustration is a
fairly standard one, and similar calculations on other
films give comparable results. We shall now proceed in
the next section to discuss further details of the meas-
urement of the time constant and then the numerical
values of the various constants entering into the
calculations.

4. TRANSIENT EFFECTS AND THE MEASUREMENT
OF TIME CONSTANT

In Eq. (11) we have the equation for transient effects.
This equation is more complicated than it seems,
because of the dependence of the time constant on the
conductivity. Thus if we excited the film with a high
irradiance, and then suddenly turned off the illumina-
tion, we should initially have a high value of #, and a
large conductivity, with a consequent short time con-
stant. We should expect initially a rapid decay, but
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then as the conductivity became smaller, the time con-
stant would increase, and the later part of the decay
would be much slower. Such behavior has been shown
in experimental curves of the decay from a high initial
excitation. As a result of this effect, the direct measure-
ment of time constant is more complicated than would
appear at first sight.

Two experimental methods have been used for deter-
mining the time constant. One, of which very little use
was made, is based on the experiment described in the
preceding paragraph. Most of the measurements, how-
ever, were made by superposing a constant irradiance,
and an additional square-wave-modulated irradiance,
of such an amount that the conductivity increased by
no more than five percent of the constant value. When
this additional square-wave pulse stops, the conduc-
tivity decays from the steady-state value characteristic
of the added irradiance, to that characteristic of the
steady irradiance. This decay is very approximately
exponential, and 7 is closely related to the time con-
stant of the exponential decay. We shall now prove this
fact, and discuss the method.

Let o1 be the conductivity characteristic of the
steady irradiance, and let #; be the associated value
of n, related to it by Eq. (9) or (10). Let 7 be the
value of 7 connected with this value #;. Now we
consider the decay indicated by Eq. (11), when we
start at #=0 with a value of # somewhat greater than »y,
and let it decay down to ny subject to the irradiance
connected with the subscript L. From Eq. (13), we have

nr=alrr. )
Then we can rewrite Eq. (11) in the form
d(n—mnr) n nr
din—ny) (—.__~), (18)
dat T TL

Since we are allowing I to vary by only a few percent
between the time when the square-wave pulse is on
and the steady irradiance, we may assume that » will
vary from »z, by only a few percent, and hence that
will vary from 71 by only a few percent. Hence it is
allowable to expand 7 about 71 as a power series in
n—nr. We have

r=7+(dr/dn)L(n—nr)+---.
We substitute this expression in Eq. (18) and find

d(n—nz,)_ (n——nz,)[' dlnr
dt T TL l_l B (d lnn) L]. (20)

From Eq. (20) we see that n—ny will decay loga-
rithmically, and that the time constant observed in the
modulation experiment, which we shall call 7mo4, is

d Int -1
Tmod = TLI:I_ ( ) ] )
dlnn/

(19)

(21)
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where 71, is the fundamental time constant of Eq. (11),
in the presence of light. The derivative of In7 with
respect to Inz is to be computed at the irradiance
being used. In order to calculate the factor in Eq. (21),
we shall assume that the time constant varies inversely
as the conductivity, as in Eq. (12), and we shall assume
that the conductivity is given in terms of # by the
linear term of Eq. (9), disregarding the quadratic term,
which is ordinarily small in the cases met in practice.
Then we find that

(@ln7)/(dInn)=—In(o/op), (22)
so that Eq. (21) becomes
TL="Tmoa 1+In(cr/op)]. (23)

From Eq. (23) we see that 7z, the time constant
appearing in Eq. (11), is greater than that measured in
the modulation experiment, by a factor which goes
from unity at small irradiance, to something of the
order of 6 or 7 at the highest irradiances used. This
correction factor was not used in the experimental
graphs shown in Fig. 10, but it was used in the values of
o171 plotted in Fig. 13.

In the discussion of this modulation method of
measuring time constant, it was assumed that the
amplitude of the square-wave modulation was small
enough so as to change the resistance of the sample by
only a few percent. In the case of the high-resistance
films, however, it was not possible to get measurements
with such small modulations, and in some cases the
change of conductivity produced by the modulation
was very much larger than this value. This produced
errors in the resulting values of time constant, which
we have mentioned earlier, and which made the meas-
urement of time constants of high-resistance films of
very doubtful validity. .

The second method of measuring time constant is a
direct measurement of the decay of conductivity, as
has been mentioned earlier. By a large steady irradiance,
the conductivity is built up to perhaps several hundred
times the dark conductivity. The irradiance is then
removed, and the decay of the conductivity is observed.
This should follow Eq. (11), in which I is set equal to
zero. This allows us to find the time constant directly,
if we assume as before that the conductivity and # are
related by the linear term of Eq. (9). We then find

dlnn 1 dlnln(e/op)

dt T dt

(24)

In other words, we need only plot Inln(s/op) as a
function of time, find the slope of this curve, and
determine the time constant directly from it. This type
of measurement has been carried out for only a few
films, and while the results of it are in general agree-
ment with the modulation method, it has not been
used for detailed determination of time constants.
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5. NUMERICAL AGREEMENT OF THEORY
AND EXPERIMENT

In the preceding sections, we have seen that we
have a general agreement between the barrier theory
and experiment, though there are detailed points of
disagreement. We have not, however, considered the
values of the numerical constants involved, to see if
they agree with expectations. In the present section
we shall carry out such an investigation and shall find
that the theory seems numerically reasonable. There
are two constants whose reasonableness we shall con-
sider: a of Eq. (11) and 4 of Eq. (12). We consider 4
first. To compute it, let us make the argument leading
to Egs. (11) and (12) more precise. Consider a trapped
hole in a p-type region. There will be electrons sur-
mounting the barrier, which can combine with it. The
probability that an electron combine with it can be
written as the recombination cross section, times the
drift velocity of an electron, times the number of
electrons per unit volume at the top of the barrier.
This probability of recombination is what we have
written as ¢/A4. On the other hand, the conductivity
equals the number of electrons per unit volume at the
top of the barrier, times eu. The drift velocity is
(RT/2zm*)%. Hence we have

eu/ A =c(RT/2rm*)}, (25)

where ¢ is the recombination cross section.

In Fig. 13 we plotted values of o171, or of 4, as a
function of temperature, for a typical film. We can
then use Eq. (25), together with the assumed mobilities
of Table I, to compute the recombination cross section
as a function of temperature, for this particular case.
The results are shown in Table II. We see that these
values vary somewhat with temperature, being smaller
at high temperatures. No explanation is offered for
this, but many fairly complicated mechanisms could
be postulated which would lead to such results. The
essential result, however, is the order of magnitude of
the cross sections. Recombination cross sections have
been observed all the way from a maximum of about
10~ cm? to much smaller values, as is pointed out by
Rose? Thus the values which we deduce from our
model fall well within the expected range. Similar

TasLe II. Recombination cross section of trapped hole as
function of temperature, film R19X.

Recombination
cross section

103/T (cm?)
4 3.8X10718
5 1.7X1071
6 6.5X10718
7 2.1X10™
8 3.8X101
9 4.5X107
10 4.8X10~+
1 4.2X107
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calculations on other films lead to cross sections in the
same general range of values.

Next let us consider the constant ¢. This occurs in
the statement that the number of electron-hole pairs
created per second is af, where I is the irradiance. Let
us assume that a fraction « of all photons falling on the
sample produce electron-hole pairs. If we take the
average wavelength of the photons to be 2 u (which is
approximately the location of the maximum energy
density in the spectrum of the light source), then the
energy of a photon is about 1.0X 107 joule. An irradi-
ance of 1 w/cm? will then correspond to about 10%
photons per sec per cm?. The average thickness of the
films is about 0.2 u. If we assume that a fraction « of the
photons falling on a square centimeter per second is
absorbed in this film, we shall find that the number of
photons absorbed per second per cubic centimeter is
5X10%q, for an irradiance of 1 w/cm?. This then gives
us an estimate of a.

To compare with experiment, it was found that the
constant value of (¢D/NoX), used in computing Fig. 14
from Eq. (14), was 5.3X10* cm?/w-sec. We are assuming
that D=0.1 . For the product N,X, we can use Eq. (5),

J. C. SLATER

in which E, can be neglected in this case, giving a
relation between Ny, X, and the barrier height AE,,
which was 0.285 ev in the case considered. These rela-
tions lead to

NoX=2(EeoNoAEy/é?). (26)

If we assume Ny=10'8/cc, we then find that ¢=1.76
X10%, from which «=0.035; if we assume that
No¢=10Y/cc, a=0.11. In other words, for reasonable
choices of the impurity concentration, we find values
of e, the fraction of impinging photons which produce
electron-hole pairs, of a few percent, which certainly
seems plausible, when we consider that part of the
incident radiation will be of too long wavelength to be
absorbed, and much of the rest of it will be reflected or
scattered, or will pass through the film (since it is not
thick enough to be perfectly opaque). Our estimate of a,
then, as of 4, seems to lie in an entirely reasonable
range of values, completing our discussion of the agree-
ment of the barrier theory with experiment, and show-
ing that it is able to give a reasonable account of the
main features of the observed photoconductivity.



