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conditions and related defects could affect the energy
levels of the magnetic system of an appreciable fraction
of the substance. If, as a first approximation, one wishes
to assume that a magnetically dilute system has the
same magnetic properties under the same effective field,
it will be necessary to apply the appropriate filling
and demagnetization factors. ' A check on the combined
factor can be obtained by an investigation of the
magnetic properties of both macro- and microscopic
forms in the temperature range in which they can be
kept in thermal contact with liquid helium. Magnetic-
ally dilute systems with minimal cooperative eGects
would seem most likely to avoid possible effects of
particle size on the magnetic properties. The investiga-
tion of this subject is an interesting problem in itself.

There is another point which seems most dificult of
all. One must know at some time before adiabatic
demagnetization that the known, temperature is uniform
throughout the magnetized sample. We see no alterna-
tive to allowing it to stand for a very long time with
just enough helium gas to bring equilibrium eventually.
Also this should not be at a very low initial temperature
or the amount of adsorption will spoil the experiment.
It will be very diKcult to decide when equilibrium has
been reached, since the only kind of magnetic suscepti-

'H. B. G. Casimir, Magnetism and Very I-oe Ternperutlres
(Cambridge University Press, Cambridge, 1940), pp. 9-12.

bility which can be measured in the field is the adiabatic
difi'erential susceptibility, (clI/c)H). , and this is very
insensitive to temperature under the necessary experi-
mental conditions. A sensitive carbon thermometer
used only to indicate equilibrium just before demagnet-
ization is one possibility. Another possible method of
determining the time required for equilibrium would be
a study at zero field so that the full sensitivity of a
magnetic thermometer would be available.

If the measurements are con6ned to the region above
1'K, the problem becomes somewhat simpler. The
obvious method would seem to be the determination
of initial susceptibility as a function of temperature
while the sample is in thermal contact with helium and
the later introduction of heat to the isolated sample
by magnetic relaxation. There is„however, another
problem which arises at temperatures much above
1'K, namely the heat capacity of the container which
would have some contact with outer particles. A single
crystal can be suspended without a container. It would
appear that the best that could be done with a powder
is to enclose it in an extremely thin blown glass bubble
which could be suspended and left open to the space
within its enclosing vessel. This would avoid the
necessity of strength to support pressure changes.
We believe that glass is superior to plastic for this
purpose.
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The buildup of current in the transient Townsend discharge has been calculated fully, taking the positive-
ion and photon mechanisms at the cathode into account. The two cases of continuous and instantaneous
electron supply have been treated. The calculated results are useful for the explanation of the buildup of
current during the formative time lag of sparks under a sudden application of overvoltage, and for the
transient state of a Townsend discharge in the case of undervoltage application,

I. INTRODUCTION

'HE growth of current during the formative time
of spark breakdown before the development of

space charge eGects has been studied by several
authors. ' ' Recently Bandeis carried out experiments
and a theoretical analysis of the current buildup, but
his solution is approximately accurate only for times
longer than the positive-ion transit time, and not for
shorter times. Following Handel, Auere made a further

' R. Schade, Z. Physik 104, 487 (1937).
~ W. Bartholomeyczyk, Z. Physik 116, 355 {1940).
3A. von Engel and M. Steenbeck, Elektrzsche Gasentladungen

(Verlag Julius Springer, Berlin, 1934), Vol. 2, p. 178.
4 Dutton, Haydon, Jones, and Davidson, Brit. J. Appl. Phys.

4, 170 {1953).
5 H. W. Bandel, Phys. Rev. 95, 1117 {1954).
' P. L. Auer, Phys. Rev. 98, 320 (1955).

analysis of this subject; his analysis is also limited to
the special case of y„action alone, and it seems to be
much too complicated for numerical computation.

In the present paper, a theoretical treatment of the
same problem is carried out, based upon the funda-
mental equations of continuity for the electron and
positive-ion streams in a parallel plane gap, from a
mathematically more rigorous standpoint than those
of the previous investigations. ~ Our analysis shows that
the current-time characteristics cannot be given by a
single form, but require diferent forms appropriate to
the following three time ranges: (a) times shorter than
the electron transit time (t ); (b) times longer than the

r More recently P. M. Davidson (Phys Rev. 9.9, 1072 (1955)g
has discussed pbbs prggcm from another standpoint.
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The boundary conditions at the cathode and at the
anode or an avalanche head are

N (O,t) =No+y;N+(O, t)+y~ (t), (G.3)
N+(x;, t) =0, (G.4)

where the symbols have the following meanings:
N (x,t) and N+(x, t) are the numbers of electrons and
positive ions passing through x at time t per cm' sec,
respectively, and shall be called the "electron stream"
and the "positive ion stream, " respectively. N„(t) is
the number of chances of ionization by electron colli-
sion in the whole gap, and is assumed to be proportional
to the number of photons impinging on the cathode
when their absorption in gas may be neglected.

f
Nv(t) = nN (x,t)Cx (G.S)

Eo is the number of photoelectrons per cm' sec emitted
by external agents, e.g., ultraviolet irradiation. v and
v+ are the drift velocities of the electrons and positive
ions, respectively. 8 is the resultant velocity. 0. is the
first Townsend coefBcient. y; and y„are the second
Townsend coeS.cients representing the action of posi-
tive ions and photons at the cathode, respectively, in
the same way as in Handel's definition. ' p=y;+yv is

We will take y; action and y„action into consideration for the
secondary mechanism, which seem to be necessary and sufBcient
to explain the experimental results on spark time lags by Schade,
Fisher and his collaborators, Handel and Mori (Proc. Fac, Kng.
Keiogijuku Univ. 4, 101 (1953)j.

electron transit time but shorter than the resultant
transit time (t=t +t+, where t+ is the positive-ion
transit time), and (c) times longer than the resultant
transit time.

The calculations are carried out for the two cases
of externally generated cathode current: (i) a con-
stant photoelectron release (Schade, ' Jones and col-
laborators, Bandel, ' Auer'); (ii) an instantaneous
photoelectron release at the initial time (Steenbeck,
Bartholomeyczyk').

II. GENERAL CONSIDERATION

We consider the system of a uniform 6eld gap with
the cathode at @=0and the anode at @=I, and with the
distribution of charges independent of y and 2. Let a
constant voltage V be suddenly applied to the gap at
the time origin t=0. Since the applied field E=O for
t &0, there are few charges in the gap because of dif-
fusion, notwithstanding a steady external irradiation.
Then. the fundamental equations which show the con-
ditions of continuity for charges at any time t and at
any point x in the gap are

1 BE BE
+nN, (G.1)

'v Bt BS

the generalized second Townsend coefBcient. x~ is the
maximum distance swept by the electrons that leave
the cathode at t=0:

fvt
j

for e t++l. (G6)

x; is the maximum allowable distance where the posi-
tive ions to reach x at time t are produced':

(
8(t+x/v~)

g —' for 8 (t+x/v~) )~l. (G.&)

The constants of integration P s, vs, and vs') and the
limits of summation (k) can be determined by the
boundary conditions as shown in the following.

First, substituting (G.9) into (G.4), we can deter-
mine pl,

' in terms of ) I, and s I, , it has diferent values
corresponding to the two forms of x; as follows:

(1) For v(t+x/v+) &1 or t& t x/v+, —

N+(x;, t)

(
No Q( ———vs (

e--'+g vg, 'expotiv t/8) =0.
s ( $s j s

Therefore

(G.10)

~p'=0 for all of k.

(2) For 8(t+x/v+) ~ l or t~ t x/v+, —

N+(x;, t)

(G.11)

n
=No+ ~

——vs ~ee-"+vs'exp(Xsl/v ) e"&'=0

Therefore

In these equations,

(nvi'=
]

—ee" [vs.)
(G.12)

s=n )I s/v &
ps= n—A /8. s

9 The initial conditions,

(.,0) 0 0(*~t it +(.,0) =0, 05.~t

are implicitly expressed by Eqs. (G.3)—(G.7).

(G.13)

Solving Eq. (G.1) by separation of variables and
superposition, we get the following expression for X:

N (x,t) =No g vs exp[(n —Xs/v )x$e"". (G.8)

Substituting this in Eq. (G.2), we obtain the expression
for E+.

( n
N+(x, t)=No+

~

— »
~
e~L(n —),/v )xg

s IL n —X /8s

+vg,
'

exp(Xi, x/v+) e"". (G.9)
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Therefore we must determine the unknown constants
xp's and vp's separately for ranges (a), (b), and (c).

Case (a).—Range:

O~t&t or 0&v t~l.

Consequently,

N+(x, t)

No+I ——vp Iep-&*e»' t& t x/—o+

We add the suffix u to the characteristic constants
Xp and the coefficients vp, etc. , as X,p, v, p, etc. From the

t boundary condition (G.3),
n

No QI —l 2
I { e—o-"+eo"exp(Ape/o+))e»,j

t ~ t x/op—. ( lr

p v „~xgpt 1+~.J pI v I pigpen'l ~ &@., ")
Using the values thus obtained for X and X+, we can
express the current densities as follows":

+~. I & v-2 I-"-'—PI v., Io&

) 2 &y.„j (a.1)er~ N. (t)J (t)=- N (x,t)dx= Jp
l&o Ep One of the X,p must be zero because Eq. (a.1) holds

(G.15) identically for any values of t(&t ). We call it X,o,
then

e p~
y+(t) =- N+(x, t)dx,

l~0

~(t) =~-(t)+~+(t).
&.o=O', 4—.o=4.o=o. (a.2)

For ),A,
's with other values of k, collecting the coeK-

cients of e""' in Eq. (a.1) givesHere Jo= eT& is the externally generated cathode cur-
rentdensity; Jp =Jp/nt;J (t) and J+(t) are thecurrent
densities at time t due to the motion of all the elec-
trons and positive ions in the gap, respectively; and
J(t) is the total current density. Also from Eq. (G.S),

X,22 —n{(1+yv)v + (1+y,)v)X,2

+l22(1+y;+y„)v V=O. (a.3)

The ), &'s are the roots of the above quadratic equation,
which has the same form irrespective of k. Hence only
two values are to be determined as ) ~'s; we call these
'A, ~ and ),2, where

N„(t)
(n

ae t

I

n

I
(ep- '—1)e»',

~ Ey, ")

vpI e 0(),g(X 2. (a.4)
Consequently we have only to take into account three

+~I „~I » t~t (G16) terms (k=0, 1, 2) in the expressions for N, N+, etc.
) ' With the aid of X,a(k=0, 1, 2) determined as above, the

coefficients v 2(k=0, 1, 2) can be determined from the
following simultaneous equations:t~t .
Constant term of Eq. (a.1):

At the cathode,

N (O, t)=No Z vpe" '.

( n
Np+I ——vp Ie»',

e "-' term of Eq. (a.1):
v,o= 1—y;v 0

—yyvac,

v~2+ vol+ ve2 0& (8.5)—
4'—al 4-a2

A 0,'

vap+ vol+ va2

4a1 4'a2

(G.18) Fq. (G.10):Np(O, t) = &

n
N, PI —., I(op" 1)e»', —

)
Thus N„(t) has different forms for the ranges t&t and
t)t, while N+(O, t) has different forms for t(t and
t& t. Hence the boundary conditions are represented by
three different equations corresponding to the following
three time ranges:

(a) O~t(t,
(b) t ~t(t,
(c) t(t.

"These current densities represent the current intensities in
the external circuit divided by the electrode area.

In this manner, we have obtained all of the necessary
constants. Using these values of X,& and v, &, the quan-
tities referring to charge and current are listed as
follows:

2

iU (x,t) Q v,pep- "*e"&'

=~ k-=0

&0

x&e t
(a.6)

.0)

2 (
N+(x, t) Q I

— v, p Iep-o"*e»", x(o t
)

x)v t.

(a.7)

.0,
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J (f) P q x, (f)
v.b (e~t=

Jp b-o E ttt b ) 1Vg

~+(&)

Joa k ttt ab4ta—b ) (a.9)
1V (O, f )

Pb gXbj'gE — P ghtsJgf

Qp k=p k=p
(b.1')

made by setting the continuity of the electron stream
(a g) 1V at f=t "at the cathode" instead of "in the whole

gap. "

g($) =y —

f ebatt —ebatt}

()t, 2
—)t t)t

Eq. (b.i'): vbo+ vbte"bt'-+ vbpe"btt-= vr,
Case (ft).—Range:

t ~t~t or St~l&e t. Constant term of Eq. (b.2):
Pbp= 1 Q,—vbp+ fv(e 1)—vbpt (b.7)Let the characteristic constants and coefficients be

marked with suffix b in this time range, as )», vb~, etc.
To determine the unknown quantities ) b~ and p», we
use the initial condition from Eq. (a.6) and the bound-
ary condition from Eq. (G.3) with the aid of Eqs.
(G.16), (G.17), and (G.19) to obtain the following:

E (x,t)
P (vbbe"»t )et-»-*=P (v,be"abt )ee-"b-, (b.1)

Eq. (G.10):

where

vbp+ Pot+ vb2 0t-
tt'bl 4b2

vt =1V (0 L)/1VO.
' (b.g)

Using the coeKcients v» determined from the above
equations, we get the expressions" for the charge
streams and currents:Eo

and u (x,f)
Vbbeb»act»t

s-o
(b.9)t' n

eb»t 1+~. p ~
P ~eb»t

~ &ebb e
vbb ~ed '"*e"bbt

b=p ( tttbb )
x&v+(t —f), (b.10A)

(n
+y Q~ vbb ~(et »' 1)e"»'— (b 2)

X+(Jt,f) (n
~be

E t1tbb

Since Eq. (b.2) is identical to Eq. (a.1) with respect to
t, one of the )» must be zero; it is called ) bp.

)tbo=0,' 4 bo=Ao=-n (b 3)
For the other X», comparing e"'-terms in both sides
of Eq. (b.2) gives

Ãp

X f e~bb*+—ebbbt exp()tbbx/v+) }e"»',

x& v+(t t); (b.101l)—

Then the simultaneous equations for the v» are as
(a 10) follows:

1 expLnl(1 —) bb/nv ))—1
1=—V. +VP—

1—)ebb/nv 1 )bb/nv—

This equation has two real roots

Xb2,

and an ininite number of complex roots

Xbb=)ebb'+ebb", k=3, 4, 5, ~ . .
They are in the relation

nV &Xb2&O,V&Xgg&) b3'&) b4'& . . -

(b.4)

(b 5)

&0 &0
)I.bt~ =0 for 1+y; yv(e ' 1)~ =0.—(b.6)—'.&0 .&0

1' (O,f), X (x,f) and other quantities are infinit series, "
but the predominant terms for current buildup are
those involving the real roots Xb~ and ) b~. See Appendix.
So we may take the three terms involving ) bp, )» and
) b2 into account for our approximate solution. More-
over, in the foHowing, another approximation will be

» If the initial charge distribution tV (x,o) be a function of x,
f(x), then also the 4b must be of infinite number and the solu-
tfon N (x,t) must be an infinite series.

J (t) 2
P n „,~(e~»t 1)e»bt=-

Jo b~ jt,ttt bb )
J+(f) ' t'

vbb ) I 1+~b ep»t (ehbbt-
Jpa M~ E tt' bbtttbb ) —0 j bb )

N, (f)
(b.11)

1Vp

'V+——$ bbea' (b.12)
Xbj,

gal

J(t) =Jp
1+p, p (eal 1)

+~o-Z I )
Xbb $1 V~

X —+ I + Itttbbep-»' e&bbt

nv k tr )tbb)

Sy——tt bbea' (b.13)
~bk

'~ Since Bandel, Auer, and even Davidson7 in his latest paper
treated the integral equation for E (O,t), the approximate solu-
tion shown here is what they have been looking for as an exact
solution.
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Case (c).—Range:

t~ t or /~ Ht.

Let the constants of integration be characterized with
the suKx c in this time range, as X,l, and v.l„etc. ; these
constants can be determined as in the preceding range
by virtue of the initial and boundary conditions as
follows.

N (x,t)
p pv, b exp(X, bt))ebb-'b

=g pvbb exp(lt, bbt) )eo-", (c.1)

(n
p v eeb"~ =t1+y; gl v b l(e&~' —1)e"~t~

b b &yb j

(eo-ett 1)ebett-
cl

QJ+(t)
=v.—p{nle ' (e '——1)}+

~pa 4'-cl cl
Vcr

N, (t)
(c.10)

Ep

'V+

X 1+—(hatt
et ett —ttt e&ett) ~ e&ett (c.11,)

N+(x, t) Q
= V o(eat eac) V

&0 tltel

XLexp{nl+llel(t —t+x/v+) }
—exp{nx+lI.,l(t —x/v )}), (c.9)

=v.o(e'-1)

yp, Zl v„ l(e~ '-l)e""' . (c.2)
b (y,„)

This is an identity with respect to t. Hence one of the
),~ must be zero; we call it X,p.

ll.o=0; 4-co= ett.o=n

Moreover, for X,~ with other values of k,

expLnl (1—ll, b/nv) j—1
1—7

1 X.b/n—v

(c.3)

Eq. (c.1'): v,p+ v, l exp(x. lt) = t ll,

constant term of Eq. (c.2):
v.o= 1+y;(e '—1)v,o+yv(e»t —1)v,p,

where

(c.6)

vll =N—(O,t)/No (c.7)
Vflth v p and v i determined, the solutions are sum-
marized as follows:

N (x,t) =v.o+v, l exp{nx+X,l(t—x/v )},
Sp

(c.8)

e~Lnl(1 —X.b/nv )j—1
Yy (c.4)

1 /

This equation has one real root ),i and an infinite
number of complex roots.

&0 &0
ll, le ——0 for 1—(y;+yv) (e ' —1)e =0. (c.5).&0 .&0

For the approximate solution, the following condi-
tion may be substituted. for Eq. (c.1) as in the range (b).

N (O,t) : '
Q v.b exp(X,bt) =P vbb exp(llbbt). (c.1')

gp

Then the simultaneous equations for the coefficients
v, ~ are

J(t) = Jo— +Joa
1-(v+&,)("-1)

X,l (1 v+i
x —+l -+—l@.,e~"'

c v &n lj.,l)

Vcl

'V+
epelt 1, eb lt e(C 12)

where
N—(Ott)/Np vbl +Itbt+vboe (C 1)

'Yn

ttb ——' —+ Lnle ' —(ea' —i)i '

0V n5
(C.2)

pb eb»t

( t ttbo
vl+ttbl — e"»t t

l

i (c-.3—)iI
1.2. Case of 1—(y~+yv)(e '—1)=0 (application of

static breakdown voltage). —
N (O,t)/No= vlr+tt (t—t),

J(t) p nl —1 t+i
»i+eel t+ t I-

l
e '

Jo & n'lo 2 tI

(c.4)

+u. , (C.S)
0,'P

III. SOLUTIONS FOR CRITICAL CASES
AND SPECIAL CASES

1. Critical Cases

Let us consider two critical cases in which the mag-
nitude of the applied Geld is critical according as
1+y;—y„(ea'—1)=0 or 1—(y;+y„)(ea' 1)=0—; for
these cases, A~i or ),i becomes zero, and therefore the
results in the general consideration must be somewhat
modihed.

1.1 Case of 1+y; yv(e '—1)=0—.—The solutions for
this case are derived from Eqs. (b.9)-(b.13) by taking
the limit 1+y;—y„(e '—1) -+ 0. For example,
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N (O, t)
No

where Xg,~ is the root of the equation

expI nt(1 —
)N, b,&/nv )3—1

Vu
1—)tb r/nv

(S.3)

A=0 % 2.2. Casein zvhich y=y;; y„=o.—
2.2.1. (a-b)-rarbge: 0&t&t.—

h, =-1%
b, =-10%

X (O,t)
{1+y;expI nv(1+y~)t$). (S.4)

1+v'
0 0.2 OA 0.6 0.8 1.0—/t {for Vr -mechanism)—/I [For'I& -mechanism)

Fzo. 1. Cathode electron stream 1' (O,t) vs time in electron
transit time for y„action and in resultant transit time for p;
action.

2.2.2. (c)-rarsge: t&t.—

1—v'(e"—1) 1+v'-
evsal

ry, (e»l 1)

where

)(exp@.z(t —t)1, (S.5)

where A,,~ is the root of the equation
('ya Vv )t.= I

—+ IL te"—(e"—»&
Ena nv &

With the aid of Eq. (c.5), Eqs. (c.12) and (C.S) give
the well-known formula which is derived for a steady-
state condition as follows:

expLnt (1—)I,„/nv) )—1
vt

1—)t,r/nv

0.&0

N, (o,t)
0.08

(S.6)

Joe '/1 —y(e»' —1), )I,»t &0, 1—7(e»' —1))0

)I..t&0, 1—y(e '—1)&0.

0.08

0.04

cV (O,t)
{1+7 expLnv-(1+7 )tl) (S 1)"

1+Vv

2.1.2. (b—c)-rarbge: t &t.—
X (O,t)

Xo

2. Special Cases

The solutions (a.6)—(a.10), (b.9)—(b.13), and (c.8)—
(c.12) are those which Handel and others would want
to derive. From these solutions the current-time char-
acteristics can be calculated. Since the general case
containing y; and y„ is much complicated for numerical
computation, the two special cases in which y=v„and
y=y; will be dealt with.

2.1. Casein which y=y„; y;=0.—
2.1.1. (a)-range: 0&t&L.—

0.0 2

0.1 2

0.1 0
N+(O, t)

008

$06

0.04.

0.0&

o.4 0.6 O, S t.o

b, =+]
0

Opr

X expXb, t(t—t ), (S.2)'4
(e»l 1)

0.2 O.4 0.6 0.8 ~.0

ft
"This is the same as Kq. (3.8) in Auer's paper.

(b)

This equation is substantially the same as Zq. (3.14) in Fzo. 2. Cathode ion stream X+(O,t) vs time in electron transit
Auer's paper. time (a) for yv action; (b) for y; action.
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IV. SOLUTIONS FOR THE CASE OF INSTANTANEOUS
ELECTRON SUPPLY

The solutions in the preceding chapters are derived
under the application of a step-function-like impulse
voltage to a uniform Geld gap with a cathode photo-
current externally supplied; obviously, they can also be
the solutions for the case of continuous voltage but an
external supply of a step-function-like cathode photo-
current. Therefore, the solution for the case of an
instantaneous cathode electron supply Np' (per cm')
at t= 0 can be obtained by superposing two solutions for

Np(per cm' sec) for t~ 0,

)0
N &o,t)

No

l0

—Np(per cm' sec) for t~ tp,

and taking its limit

lim (Nptp) =N0'
to-+0

NO-+ to

With the index 0, as in ~I, , we distinguish the quantities
for an instantaneous electron supply (N00) from those
for a continuous electron supply (Np) with which we
have been concerned hitherto.

For the present problem, the fundamental equations
(G.1), (G.2) and the boundary conditions (G.3), (G.4)
hold (except for Np). So the solutions for this case

3 ~

N (o, t)
~a

l0

10
ft)

10

(SBC)

(a)

1

Et)

2) IO

N&( t.)
No,

4~4

l
10

Q=-a%

-10%
P,2 0.4 0.8 0.8

t (sec)
(b)

FIG. 5. Cathode electron stream fit (O, t) vs time in the entire time
range (a) for yv action; (b) for y; action.

have the same form as (G.S) and (G.14), as follows:

FIG. 3. Electron current density J (t), or total number of
ionization chances per unit time Fv(t), vs time in electron transit
time. The values are nearly equal for the three cases: &=»,
y=y;, and 7=0.

4
1 ~10

gO

Q-0 r.

0(Ã, t) =N00 P v,pep "*e""'
It

(
N 0 Q ~

v„p ~00-sxexst

)

N+0(x, t)=. N00 P~ —v,'
~)

st& v+(t t)—
(T.2)

(I.3)

Sx lo

- 10%
0.2 0.4 0.6 0.8 1.0

FIG. 4. Ion current density J+(t) vs time in electron .transit
time. The values of J+(t) are nearly equal for the three cases:
y=», y=vs) and y=o.

Xf et "+e&"'exp(Xs—x/v+) )e""

st~ v+(t —t).

However, there may be not any constant term corre-
sponding to 0=0, because the boundary condition at
the cathode has no constant term. Each of the XI, must
be equal to that for a continuous electron supply for
all values of k. The determination of the constants of
integration v~' is dificult in the same manner as in the
previous sections. For this determination, it is advisable
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IO
so Therefore

Valz: =~a@&ak)

Hence we can get the expressions for S+,J,J+, etc.
2. (b)-rassge. —The coeflicients are derived from the

relations:

)0J (t)
J'o~ e

Io

4
lp

where

2

v „Oebbbt v 0

b 1

Vbk

=0,
zr 1 @be

vzo=N '(O, t )/No'

(I.6)

3
$0

2
10

The second line of Eq. (I.6) corresponds to Eq. (G.10).
Then

2

o(0 t) —N 0 p v „oexbbt

IO

[&1
I

)0 10 )0 )0
t (3e c)

(a)

The other quantities are derived similarly.
3. (c)-rassge.—For the determination of v.bo, we have

where
v.zo exp() .zt) = vzz',

vzzo=N (O, t)/No'.

(I.9)

(I.10)

Using this, we have

N (O,t) =No'v z'e""'=No vzz' exp@„z(t—t)j. (I.11)

(4)
5

~ooi f 0

3
10

2
10

)0
ft]

I

IO f0

(b)

ltj
I

)0 l 0 10
= t(seC)

Fzo. 6. Electron current density 1 (t) or number of ionization
chances E„(t) vs time in the entire time range (a) for yv action;
{b) for y; action.

to superpose the results for continuous +No for t~0
and —Xo for t~to and to take the limit as mentioned
above. The solutions thus obtained are summarized
separately for three time ranges.

1. (a)-rassge. —

l0
~~ ~~

6 P
l

g LO 10

-8
jo

&0

Z Z 3
10

Q

z z
-5

10

0.Q 0.4 0.8 0.9 I.0

l &or 'Vv szeehanisml-

4 /
f for VI -mechanism)

6, =+I %
0 %

/O-v0
Fzo. 7. Cathode electron stream le (O,t) vs time in electron

=Neo g()to&vo&)ee ~bae&bz. (I.4) transit time for yv action and in resultant transit time for y;
k action. Instantaneous electron supply.
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where
Qs= eXos, Qoa Qo/al. 0/

In particular, for the case in which 1—y(eat —1)=0, all
of the quantities relating to charge and current are
constant in this time range; that is, a steady state has
been reached just at t = t. From Kq. (I.12),

0 &0 "&0
j(m)= Qevzz'e ' )z„» =0 for 1—y(e '—1)~ =0. (II)

fx) ',)0 ,&0

V. NUMERICAL ILLUSTRATIONS

As an illustrative example, we treat the following case.
Gas: air. Pressure: p= 760 mm Hg. Gap length: /= 1

cm. Static breakdown voltage": V,=3j. kv.

10

10

10

10

10

10
0 0.2 0.4 0.6 0.8 1.0

gt

g, (0, t)
N, +

X„=N,'(O, O &

= N,'o(P'

Fzo. 9. Electron current density J (t) ss time in electron
transit time. Instantaeous electron supply. The values of J (t)
are nearly equal for the three cases: p= p~, p=y;, and y =0.

The ionization coefFicients are

0

6

N,'(O, t)
No+

to

10

10

'!0

0.2 0.4 0.6 l|.8 1.lj

(a)

6 ~+ 1 %

0
&=-1 /

2 =1.048X10 4 (cm mm Hg/v),

8=27.38 (v/cm mm Hg);

these are the same as obtained by Bandel. Also

a,=14.3 for V= V, (6=0),
—(east 1)—z —e-ast —6X 10-t

The drift velocities are

v =1.26X10r (cm/sec) for 6=0,
v+=6X10' (cm/sec) for 6=0,
v=5.97X104 (cm/sec) for 6=0,

With these data, E (O,t), 1V+(O,t), and 1V„(t) or J (t)
and I+(t) are plotted as functions of f for several values
of the percent overvoltage 6 in Fig. 1—Fig. 10.

VI. CONCLUSION

la

0 0.2 0.4 0,6 0.8 1.0

(b)

FzG. 8. Cathode ion stream E+(O,t) vs time in electron transit
time. Instantaneous electron supply. (a) For y„action; (b) for
p; action.

In the present paper, the transient Townsend dis-
charge current or current buildup in the formative
time of spark breakdown has been calculated, taking
two secondary cathode mechanisms p; and p„ into
account, through the whole range of time, in more
precise and practical forin than by previous investiga-
tors. The solutions obtained are exact for the time range
t&t in the general case containing y; and y~, and for
the time range t&t in the special case containing y;

'e V, is taken from Standard Handbook for Efeetreeal Engeneers, fouled by repeated sparking. Using Bandel's experimental data,
edited by A. E. Knowlton {McGraw-Hill Book Company, Inc. , the author intends to calculate the current buildup, space-charge
New York, 1949), eighth edition, being the value for a cathode formation, etc.
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From Eq. (A.i),

J+($ )
J:- 104-

h, '= + 1 'Jo

0%
Q = - I % and

(yol)e & ' exp(As" cotAg, ") sinAs"/Ag, "——1, (A.3)

As'= (1+y)nl —(As" cotAs"). (A.4)

10

f0

A&" can be determined graphically from Eq. (A.3),
A&' being known from Eq. (A.4) with A&" already deter-
mined. Table I shows such values of h.~ and AI,

" for

10 TABLE 1. Complex roots of Eq. (A.1).

io
0 0,2 0.4 0.6 0.8 1.0

/f

Fto. 10. Ion current density J+(t) ss time in electron transit
time. Instantaneous electron supply. The values of J+(t) are
nearly equal for the three cases: p=p„, p=p;, and &=0.

only; but they are approximately accurate for other
time ranges.
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—1
0

+1

0
+1
—1

0
+1

—1
0

+1
—1

0
+1
—1

0
+1

—1.09—0.162
0.787

1131—0.377
0.577

—1.53—0.600
0.352

—1.66—0.737
0.112

—1.78—0.857
0.092

1 94—1.017—0.063

—2.0/—1.147—0.198

2~+,'~XO.2752
2~+ g'71-X0.2764
2m+ j'm X0.2775

4r+ $s.X0.4677
4.+-, X0.4682
4n.+ps X0.4696

67i-+ ~x7i-X0.5871
671-+~pm'X0. 5884
6 +-,' XO.5897

8m+ ~sr X0.6667
87i-+ ~71-X0.6677
8m+ ~71-X0.6686

1071-+~271 X0.7212
10'-+ s7i-X0.7222
10'-+~~X0.7232

12s+ss X0.7600
1271-+~~7f-X0.7609
12~+~71-X0.7618

1&+-,'71-X0.7894
1&+y7i-X0.7902
14n.+ z71 XO 7910

where

As =As'+iAs"

exp(nl As) 1— —
(ynl)

A
(A.1)

(Xs'& )+i(4"f ) for the ys mechanism,
(A.2)

(&s'&)+i() s"t) for the y; mechansim.

APPENDIX

We shall discuss the character of the complete solu-
tion referred to in Chapter II. The general case con-
taining y; and y„ is too complicated to be treated; so
we shall consider the cases of y„alone and y; alone in
the following. In such cases, the characteristic con-
stants Xs ()j,ss or X.s) can be determined from the single

equation,

0
+1

—2.19
1.322—0.313

16m.+~7i.XO 8124
16r+-,'~XO.8131
167'+271'X0.8138

jV=1—8."From these calculations, it can be said that
every real part of the complex root AI,

' is algebraically
smaller than the corresponding real root A.~ and the
terms e~" of real X~ become predominant in the series
of E or J for large values of t. Consequently the 6nal
value of J could be reduced to the correct formula (I)
or (II).

The neglect of complex roots give S+ and J+ a small
discontinuity at t=t for the p„mechanism and at
t= t for the y; mechanism. The author will discuss this
subject more extensively in the future.

' The suKx k' is the ordinal number for complex roots.


