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Let
f(x) =mesz/sinwa, (A4)

and note that

%r 7 eminef(a)in= (;1,):' (A5)

DISCRETE TO CONTINUOUS SPECTRA

1571

This means that

PHYSICAL REVIEW

VOLUME 103,

flx)= Z (—_1~)—e"w for —nr<z<m, (A.6)
and also

E il (A
NUMBER 5§ SEPTEMBER 1, 1956

Nonlinear Spinor Field*

R. FINKELSTEIN, C. FRONSDAL, AND P. Kaust
University of California, Los Angeles, California

(Received April 2, 1956)

A classical spinor field is defined by a variational principle on a Lagrangian with quadratic Dirac and
quartic Fermi terms. Localized (particle-like) solutions are found within a class of comparison functions
which make the angular momentum stationary for a given charge. It is found that the existence of eigen-
solutions depends in a radical way on the parameters of the Lagrangian, but that the observable properties
of those solutions which do exist depend little on these parameters.

INTRODUCTION

EW knowledge of the elementary particles is
currently recorded by simply adding new terms
to the Lagrangian of the total field. Although there is
no doubt that this procedure is only provisional,
attempts to make inferences about the intrinsic struc-
ture of the total field have, except for some efforts to
guess new symmetries,! been unrelated to experiment.
Nevertheless these theories? have attracted wide in-
terest, and in any case the problem remains. By con-
sidering a very simple model, we shall attempt to
present some results on one of the well-known questions
which these theories raise, namely: can all the ele-
mentary particles be represented as eigenstates of a
single underlying field?

The different fundamental theories appearing in the
literature have in common the feature (a) that the
equations of motion are wonlinear partial differential
equations. They may be classified by (b) the group of
the theory, e.g., the Lorentz group, or some wider
group, like that of general relativity, or the generalized
theory of gravitation.? They may be further classified
by (c) their relation to quantum theory: most are
quantized in the conventional Hamiltonian way. On
the other hand, as is well known, Einstein expected
that it would not be necessary to supplement the com-
plete classical field equations with quantum postulates.
The recent literature contains several papers in which
similar and other unconventional views of the quantum
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theory are discussed.®~7 The model to be discussed
here will be characterized by (a) nonlinear equations
of motion and (b) Lorentz rather than general co-
variance. We do not discuss point (c); however, the
following analysis will be entirely classical.

Dirac has rather recently proposed a new classical
theory of the electron.® Schrodinger has shown how
this theory may be described as a Klein-Gordon-
Schrédinger field coupled to a Maxwell field in the
usual way, although with a particular choice of gauge.?
It had been pointed out earlier that there is a class of
classical field theories which may be arrived at in this
same way—by coupling different representations of the
Lorentz group through Lorentz-invariant interactions—
i.e., simply by interpreting as classical and unitary
precisely the total fields ordinarily considered only in
terms of quantum field theory.!® As a consequence of
Schrodinger’s remark, Dirac’s new field may be related
to this class.

Another example belonging to this same class may
be arrived at by coupling the Maxwell field to the
spinor field; this procedure leads to the differential
equations of quantum electrodynamics, except that
now the amplitudes are regarded as unquantized. Then,
by eliminating the photon field, one obtains!®-12
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where Dy is the causal Green’s function of the Maxwell
field. If the boson field has a finite mass, and different
tensor character, Dy is replaced by Ar and v, by the
appropriate matrix.

Ignoring the derivation of this equation, one may
regard it as the condition fixing a spinor field which is
both nonlocal and nonlinear; the range of the non-
localization is evidently the Compton wavelength of
the associated boson, and vanishes in the limit of
infinitely heavy mass. Whenever a spinor field and a
boson field are coupled, it is possible to eliminate either
the one or the other. If the spinor field is eliminated,
the resulting equations of motion, which contain boson
amplitudes only, may be characterized as having the
“unitary field form.” On the other hand, if the boson
fields are eliminated the resulting equations may be
referred to as having the ‘“‘action-at-a-distance” form,
since only the matter variables, the spinor amplitudes,
now appear.*® It is now possible in principle to quantize
either form, i.e., the quantization may be carried
through affer the elimination of either of the coupled
fields.

DIRAC-FERMI FIELD

Passing now to the limit of infinitely heavy boson,
one obtains a differential equation in which the non-
linear term is a beta-type interaction

YuO+if+ g 2[‘;’)’;&0]’)’14‘// =0.

An equation of this type has already been studied from
both the classical and quantum viewpoints.!*1% In this
paper we shall continue the investigation of the
Lagrangian studied in A. This Lagrangian (which may
be referred to as the Dirac-Fermi case) is known to
have regular and quadratically integrable (particle-
like) solutions. If the charge or spin of such a solution
is assigned, the rest mass has a discrete spectrum;
these masses are discrete for the same reason as the
allowed masses of the hydrogen atom, although the
eigenproblem is not of the Schriodinger type but is non-
linear.
Let the Lagrangian density be

L=D+~F, 1
where D is the “classical” Dirac part,
D= —3[{moy— by ]—uiy, (1a)

in which ¢y has the dimensions of (charge?/volume);
and F is the most general combination of Fermi-type

18 The equations studied in this paper are nonlinear in the
spinor amplitudes, and thus correspond, according to the distinc-
tion just made, to an action-at-a-distance representation. We
hope to clarify this point of view more fully elsewhere. However,
in this paper we shall adhere to the more conventional interpreta-
tion and language and shall regard these equations as describing
nonlinear spinor fields.

1 Finkelstein, LeLevier, and Ruderman, Phys. Rev. 83, 326
(1951). This paper will be referred to here as A.

15 W. Heisenberg, Z. Naturforsch. 9a, 292 (1954).
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invariants:
5

F=3% c(IT%) (IT,Y).

o=1

(1b)

We denote these invariants by S, V, T, 4, P as in the
theory of beta decay. Since the four spinors are identi-
cal, the following identities hold:

S—T+P=0,
V—A4=0, 2)
S—A4—P=0.

[To prove these identities, we recall that these forms
are solutions of the equation,

F(a,b,c,d)=—F(a,d,c,b),

where @, b, ¢, d may be any four spinors.’®] The result
of combining (1b) and (2) is

F=aS+bP, 3)
a=cg+cv+crtca, (3a)
b=cp—cy+cr—ca. (3b)

Since the most general form of F is simply a linear
combination of scalar and pseudoscalar,!” one is led to
attempt a survey of the entire class of theories charac-
terized by (1). Unfortunately this does not prove
possible. The class of solutions which it has been
possible to obtain is described in the next paragraph.

SPECIAL SOLUTIONS

One asks for solutions of the variational equation

3L (W,0)=0, (a)

within a class (@) of comparison functions, ¥, with
the following properties: (a) quadratic integrability,
(b) harmonic time dependence, and (c) the angular
dependence :

Fo* an_%""_%

_ | FQ* _ ij_;”“*'%
Y= iGRs* | where Qf= Viymd |

iGQE dY jymth

Functions of this particular form lead to time inde-
pendent densities. They also have the property of
minimizing the angular momentum for an assigned
value of the charge. The functions Q+ are eigenfunctions
of the operator

k=B[—ie(rXVv)+1].

16 See, for example, R. Finkelstein and P. Kaus, Phys. Rev. 92,
1316 (1953). _ _

7 Note that (Y¥)? and Z5(Yo,u¥)? (Rosenfeld-Mgller com-
bination) are the same: a=1, =0 for both. The remarks in A
about Eq. (6) were based on an error in the reduction of (5b)
and make no sense. However, it will appear that the equations
actually investigated there, (16a) and (16b), are correct [see
Egs. (5a) and (5b)].
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Thus
kQE= = (j+3)Q%

When a ¢ belonging to @ is substituted in the
Lagrangian density and the angular dependence is
integrated out, the variational problem reduces to the
determination of the best radial functions F(r) and
G(r). The radial Lagrangian may be written as the
sum of two parts

D= f {(GF'—FG'— 2krFG—w(F*+G?)
+u(GP—FY)}dr,

- f (261 (B) (GP— F?)'— 4y (B) G2 F*}r°dr, @

and the corresponding differential equations obtained
by making independent variations of F and G are

G+ (k+1)r'G+ (utw)F

+2vF[aci(G*— F?)+42bc,G*]=0, (5a)
P4 (1— ByrF+ (u—w)G
+2vGLacy(G*— F?)— 2bc,F*]=0.  (5b)

Here

27 T
a(k)= f f l Y —1/¥171| 4 sinfdfd o,
0 0

27 T
c2(R)= f f | V511" ¢ cos?0 sinfdbd o.
o Yo

If one attempts to satisfy conditions (A) over an
unrestricted class of functions, then one is led to a set
of partial differential equations—say (P); but if the
comparison functions are limited to @, then it is only
necessary to deal with total differential equations. In
general, functions with the special time and angle de-
pendence of @ will not satisfy (P); however, in the
case b=0, (cptcr=cv+ca) functions belonging to @
do satisfy the partial differential equations rigorously.
The constant ¢ appearing in (5) will now be set equal
to unity, without loss of generality.

EIGENSOLUTIONS WITH MINIMUM SPIN

In Eq. (5) i, v, and b are constants which characterize
the original Lagrangian, while k2, which takes on the
values =1, 2, - - -, fixes the total angular momentum.
In a given theory then, the Egs. (5) depend on the
discrete parameter & and the continuous one, w. Here
only the solutions with minimum spin, for which
|k|=1, are to be considered. For k=1, Egs. (5)
become

d
é-{- (1+8)g+ (g2+31f)g=0,
(6)
dg 2
—g+(1=B)f~ (F+HiNg) =0,
dx «

1573

where
=—2(1+30),
X=u,
B=—w/u,
f(@)= (v/2zp)*F (r),
g(x)= (v/2mu)}G(r).

We now look for eigensolutions, defined to be those
solutions of (6) which are finite at the origin and
quadratically integrable. Let f(0) and g(0) be values
of f and g at the origin. Any solution is completely
specified by (f(0), g(0), 8); and an eigensolution, since
it must be finite at the origin, is completely specified
by (f(0), 0, B). We recall from the discussion in (A) the
following fact: given B, only particular values of f(0)
lead to eigensolutions; or given f(0), only particular
values of 8 are allowed. There is thus a one-parameter
family of eigensolutions, and this single parameter is
fixed as soon as either the angular momentum or the
charge integral is specified.

MASS, CHARGE, AND SPIN

The charge-current density is e(¥y,4) as usual, where
e is a coupling constant. The eigenfield of a particle
with charge e then satisfies the condition

f YHpdx=e/e=g", %)

where ¢ has the dimensions of a square of a charge,
and equals %c in the usual theory. Any field satisfying
(7) carries the spin

190 1
fu,b*(-————{—-a,)nﬁdx:qz/Zc
1 d¢p 2

=h/2 if ¢*=hc. (8)

A condition like (7) or (8) is needed to pass from a
continuous to a discrete spectrum, and represents an
essential difference between the present nonlinear situa-
tion and the usual linear one, in which the spectrum is
independent of the normalization. In the present ex-
ample conditions (7) and (8) are equivalent; usually
they are not, and in the case of neutral particles only
the angular momentum normalization could be used.

In general there may be several solutions corre-
sponding to the same charge and spin; and when there
are, these may be expected to have different mass
integrals:

Me=— f Tudx. ©)

For fields, like those of @, with vanishing momentum,
this integral expresses the rest mass, and for the given
Lagrangian (1) the mass is

Mc*=pg*(B+1c/1q), (10)



1574

where

To= [ (Prghutas, (10a)
0

Io= f (fi4-g*H\f2gD)adx. (10b)

In this notation the nonlinear coupling constant, v, is
v="2r(Io/ug?). (11)

From these equations it follows for a given Lagrangian
(fixed v, A, and p) and a given spin or charge
(assigned ¢), that I is fixed [Eq. (11)]. As a conse-
quence, eigensolutions of (6) must be found only for a
preassigned value of the integral (10a). That is possible
only for particular values of 8, and therefore of M.

ANALYSIS IN PHASE PLANE?®

The equations of motion (6) may be written in the
following form:

af o0H
—_——=—— (12a)
dx og
dg O0H 2
=y, (12b)
dx df «

where
H=3{(14+8)g*— (1-8) f*+3(f*+g*+Af*gD)}.
It follows that

(12¢)

dH

dx

2 0H 2 df

g . (13)
x g «xdx

If g remains bounded, as it does for an eigensolution,
then as x becomes infinite, the dissipative term vanishes,
and the motion becomes “conservative.” The asymptotic
motion in the finite part of the plane is therefore de-
scribed by the Hamiltonian equations

—_—=—— (14a)
dx g

dg OH

—_—=— (14b)
dx df

The equilibrium or singular points of the motion are
defined by

dg O0H
—=—=f[f—1+/+i)g"]=0,  (15a)
dx df
af oH

e [ A]=0,  (15b)
dx dg

18 This paragraph is a simplification and extension of the
analysis of A. Some of the results given here are also contained
in the thesis of R. LeLevier, University of California, Los Angeles,
California, 1952 (unpublished).
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with the following solutions:

(@) f=g=0,
(b) f=0, g=—(1+8),
(c) =0, fP=1-8,
(d) g+f=—01+8), N+f=1-6. (16)
In the neighborhood of an equilibrium point, we have
AH =3[ H;;(Af)*+2H 1y (Af) (A)+Hoo(Ag)*],  (17)

where the nature of the level lines is determined by the
discriminant

D=[H ;Hy,— (H,)*] (182)
= (1+B8+3g0°+3Nfo?) (B—1+3fo’+3Ago)

-'-)\2fozg02. (18b)

At the four singular points (a), (b), (c), and (d),
D,=p—1, (19a)
Dy=—-2(1+p)[B—1—32(1+8)], (19b)
D.=2(1-B)[B+1+3(1-B)], (19¢)
Dy=4L(1+3\)*—p2(1— 3NN —117 (19d)

The equations of motion in the neighborhood of these

points are
W) ( f)
H;J \Ag

The characteristic values of [|H|| are 4= (—D)? so that
the singularities are either centers or saddle points; and

)G o))

dx*\ Ag - 0 D/ \Ag '
A necessary condition for the existence of an eigen-
solution is that Af and Ag approach zero exponentially
as « becomes infinite. That is, by (20b), D <0, or the
origin must be a saddle point. Therefore, by (19a)
|8] <1. Hence the solutions of (b) are never real, and
those of (c) are always real. By direct calculation, one

finds that the real solutions of (d) lie only in the shaded
region of Fig. 1 where the curved boundary is

A(B)=—2(1+8)/(1—R).
The signs of the discriminants are also shown, i.e.,

A—A9D,>0,
(A—2N")D;<0.

Af =("‘Hfa

— (20a)
dx Ag Hf/

(20b)

21

(22)
We designate the different areas of the figure as follows:

right of shaded area, (I)

right shaded area, (ITm)
left shaded area, (I11)
left of shaded area.  (IV)
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In the unshaded region, the only singularities besides
(a) are'at (c) and these are centers or saddle points, as
indicated. In (III) there are four d-saddle points and
two ¢ centers. In (II) there are four d centers and two
c-saddle points. In addition the origin is always a saddle
point. Hence in the interval —2 <A <2 the number of
centers always exceeds the number of saddle points by
one. This is an illustration of the fact that the Poincaré
index of a closed path is 41.%

The complete classification of the singular points of
the conservative motion is shown in Fig. 1. To discuss
the actual (nonconservative) solutions of (12), we need
to consider (13). In particular, it is useful to study the
curve dH/dx=0, or

gdH/dg=0. (23)

Equation (23) describes (in addition to the f axis)
a hyperbola dividing the phase plane into two regions,
in each of which the sign of dH/dx is definite. It is
important to know under what conditions dH/dx=0
intersects H=0; direct calculation leads to the following
conditions for this intersection:

A>—2(148%)/(1—2) =", (242)
N <2:A>—=2(1—8)/(1+8), (24b)
A|>2:0<=2(1—B8)/(1+B). (24¢)

It is not possible to satisfy these conditions in ITI5 or IV.

All information is now summarized in Figs. 2(I)-
2(IV). These figures are all symmetric in both f and g,
but only Fig. 2(I) is shown completed. The figures
show the paths passing through the saddle points
(the separatrices) and the hyperbola (23).

Examination of IIIs and IV reveals that there is no
possibility of connecting a point on the f axis with the
origin by a solution curve, i.e., there are no eigensolutions
in regions 111b and IV. In addition, one may show in
IIIa that there exists no eigensolution with an initial f to
the right of line d, i.e., the condition there is

f<{1-p+[(1A-B)*+21},
where % is the value of H at point d, namely,
h=[2-+N(2—N)B¥A2—4T L
CASE k= —1

(25a)

(25b)

According to Eq. (5), we now have
af 2 oH (f*.g)
+-f=—
dx g
dg  OH(f¢?)
s of

8 According to (12¢) if f and g>1, H=2L(f4+g*+Nf?g?). This
line, which is a path, is closed if |A| <2. Hence, if —2<A<2, it is
possible to find a path which encloses all singularities. The index
of this path is the number of centers minus the number of saddle
points.

’

(26)
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1.0

De>0
8]

¢ I

9

L, .

FiG. 1. Singular points (c) and (d) as functions of A and 8.
These points are defined in Eq. (16). D <0 (D>0) indicates saddle
point (center). The origin (a) is not shown and is always chosen
to be a saddle point. The curve M**(8) is defined by Eq. (24).

We next make the substitution f—g and g—f. Then
dg 2 OH(g.p)

i @ af ’
@7)

af oH(gf)

dx ag .

These equations are of precisely the form (12) except
that f and g are interchanged in H. All the preceding
analysis may now be applied. Figure 1 remains valid
and Fig. 2 need only be rotated through /2. The line
H'=0 will, however, be different. In addition to the f
axis, it consists of

202 AP=1-8.

¥
[ o
(3
e
3
) \

1, S-STATE

AN
/

—
~

= € . d
W

I, S-STATE

B, 8STATE IV,8-STATE

Fi1G. 2. Phase portraits. The various cases are defined in Fig. 1.
Thus IIIb means that the parameters (A,8) lie in the domain ITIb
of Fig. 1. All cases correspond to £=--1 except for that labeled
p state, for which k= —1.
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In the previous case, k=1, the line #'=0 did not
exist for positive A, but now it is seen to be a closed
curve. When A is negative, H'=0 has approximately
the same relation to H=0 for the k=1 and k=—1
cases; but for k=—1 it always passes through the
points (c) and (d). As before, there are no eigen-
solutions in the parameter regions ITI6 and IV. Again,
in ITla the eigensolution must start to the left of line d.
Typical solutions are illustrated in Fig. 2 (I, P state).

ASYMPTOTIC SOLUTIONS

We shall finally give the exact solution of the
asymptotic nonlinear equations in the special case
A= —2. Then the differential equations are

f'=—Q+B)g+(f*—g)sg, (28a)
¢=—0=-B)f+(f*—g)f, (28b)
and
1d
~—(f*—g%)=—2Bfg. (28¢)
2dx

We introduce the polar variables (J,6) such that

f=J% coshd, (29a)
g=J%sinhf. (29b)
Then
fi=gi=J

2fg=TJ ’sinh20.

J is the scalar invariant, and 20 has the significance of
a Lorentz angle since tanh@=g/f. Equation (28c)
becomes

2dJ/dx= —J sinh26. (30)
The “energy’ integral in the new variables is
H=1{(14B)J sinh?— (1—B)J cosh¥+-3J2}. (31a)
This may be solved for cosh:
21
coshf=——[2H+J—3%J7] (31b)
8J
After substitution in (30), we find
y=—- ’ [(aH4-2T—T%2—p2T* 3T,  (32)
fo?

The inversion of this elliptic integral is given in the
appendix.

NUMERICAL RESULTS

In (A) the case A=—2 was investigated: it was
found that for a given value of the coupling constant,
v, there exists only a small number of eigenfields—in
general qualitative agreement with the experimental
fact that there are only a few elementary particles with
spin 7%/2. The mass ratio between the lightest and the
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heaviest turned out to be of the order of 3 rather than
10%; but on the other hand some preliminary numerical
results in the neighborhood of A= —2 suggested that
this ratio was greater near A=0 (more pseudoscalar).
The reason for extending the numerical work was in the
first place to decide whether the mass ratio does become
large for a particular choice of A, and more generally to
accumulate a certain amount of empirical information
about equations of this general type.

The following method was found useful in analyzing
the results.?® A solution will cross the g=0 axis several
times. Let the crossings be fi, fa- - fa---, and let the
one which is closest to the origin, be fmin. When
fmin=0, the solution is an eigensolution. The fn;, are
plotted against the starting values fo. The zeroes of
that graph correspond to the eigensolutions. Figure 3
gives such a graph for A=—1 and 8=0.1, 0.5 and 0.9.
Values of fo as high as 1000 have been tried. On the
basis of Fig. 3 it was decided that no solutions exist
for A=—1 when 8=0.1 or 0.5, while solutions do exist
for 3=0.9. A similar analysis was performed for other

F16. 3. Plot of fo ¥ fmin for A=—1.

M values to decide which A and 8 combinations lead to
eigensolutions and which are “forbidden.”

The results are summarized in Tables I and IT and in
Fig. 4. In this figure, a solid circle indicates a solution
and a cross means that the corresponding point was
tested but that no solution was found. BC is an approxi-
mate boundary drawn through the gates which are
shown in the figure. The “elliptic” interval (|A|<2)
has been covered for £=--1. In Table IT some results
for k= —1 are also shown.

In addition, the solutions have the following prop-
erties:

(a) When there is a particle-like solution at all, its
radius is always of the order of unity (between 0.5 and
3.0) and the field intensity at the origin also does not
vary much (fe=21). However, the maximum field in-
tensity (fmax) may be much larger than f, (when

=—1.998 and $=0.1, for example, there is a solution

2 These results were obtained with the UCLA high-speed
digital computer (SWAC).
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for which fmax=30). This has the result that the charge
may be concentrated on a shell near fr.x. For example,
at A=—2, the radius of this shell is approximately
unity.

(b) The mass depends on A and 8 but very little on
the number of nodes.

(c) As N is increased from —2 towards the right
(by adding more pseudoscalar), the interval (Bmin, 1.0).
into which all the solutions are crowded, contracts
As a result, one finds that masses at A=--2 are nearly
equal (since they depend mainly on ). It is conjectured
that when X is slightly larger than 42, the masses are
still closer.

(d) At the boundary between allowed and forbidden
regions, a qualitatively new feature was noticed; this is
illustrated by the bracketed solutions in the table. On
the basis of results reported in (A), it was believed that

TaBLE I. S state, fmax(\, 8, number of nodes). The numbers in
this table represent the maximum value of f. None means that no
solution was found for f;<1000. Several numbers in bracket
indicate families of 0-node solutions.

A B 0-node 1-node 2-node
0.9 1.05 1.57 2.3
-2 0.5 1.85 4.00 7.5
0.1 3.60 11.0 16.8
0.9 1.05 1.57 2.3
—1.9996 0.5 1.85 4.0 7.5
0.1 5.0 12.0 24.0
0.9 1.05 1.57 2.3
—1.998 0.5 1.85 4.0 7.5
0.1 [8,16,22,24,27,30---] none none
0.9 [1.15,4.0, 5.0] none none
-1 0.5 none none none
0.1 none none none
0.9 [1.37,3.25] none none
0 0.5 none none none ¥
0.1 none none none

there was never more than one solution with # nodes
for given A and B. According to the table, however,
there may be many nodeless solutions corresponding to
a single choice of these parameters, and it is further
conjectured that there may also be many solutions with
n nodes. Such sets also appear for example in the
familiar linear Schrodinger eigenproblem of the hydro-
gen atom, where the number of nodes depends on
n—1—1.

(e) At no \ greater than —2 are there large mass
ratios. The ratios become largest at A=—2 where
functions belonging to @ satisfy the partial differential
equations (P) based on (A) exactly. The results,
illustrated in Fig. 5, are at A=—2 very close to those
found before.

In Fig. 5, the p solutions are also shown. The de-
generacy between s3 and p; is here removed by the non-
linear term. As we saw in the phase analysis, the s and
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TasLE II. P state, fmax(\, 8, number of nodes).
The numbers in parentheses are radii.

A B 0-node 1-node 2-node
0.9 0.53 (3.25) 1.37 (2.25) 2.50 (2.00)
0.775 1.03 (2.90) 2.50 (2.25) 4.48 (2.00)
-2 0.65 1.52 (3.00) 3.63 (2.35) 6.50 (2.00)
0.5 2.0 4.5 8.50
0.1 overflow overflow overflow
—1.5 0.9 0.73 spirals spirals
0.75 spirals spirals spirals
—1.35 0.9 1.0 spirals spirals
—1.0 0.9 spirals spirals spirals

p solutions are not at all alike. However, it turns out
that their masses are not very different.

The region ITle of Fig. 1 has not been explored? and
larger mass ratios have therefore not been altogether
excluded. However, if this region conforms to the
pattern of Fig. 5 (of course it may not), then large
mass ratios seem to correspond to large values of the
coupling constant, if they appear at all. This, according
to Eq. (11), implies large I, and according to the
empirical results (Table I) corresponds to small 8.22
But according to Fig. 1 there is very little room for
such solutions in region IIla.

DISCUSSION

According to Fig. 4 we have a rather complete picture,
except for the region IIle in which, however, it is
possible that there are no solutions at all. Measured
by the spread in mass, the results are negative. How-
ever, the whole analysis is severely restricted by the
initial limitation of the comparison functions to the

: : * C

8 o =

(- x

A | . x o

2
e ' 2
-2 A
-4
=6
<8

F16. 4. Summary of SWAC results. Solid circle indicates a
solution. Cross means that corresponding point was tested but
that no solution was found.

2L A quite different code would have been required for this
region.

§2 In region III, as in region I, small 8 values can be reached
only in the neighborhood of A= —2, as indicated by the curve
AB in Fig. 4. In region I small 8 is a necessary condition for large
mass ratios, since according to Eq. (10), B8 is the lower limit of
the mass for A\> —2. However, in region III this is not the case,
because the nonlinear contribution to the mass, ¢, is no longer
positive definite. Therefore small masses are theoretically possible
in III even with 8 values near unity.
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Fi6. 5. The mass curves for the A= —2 solutions as function of
the coupling constant. The continuous (dashed) lines refer to the
s(p) solutions.

class @. It is perhaps worth repeating that the functions
belonging to @ do not satisfy the partial differential
equations P except when A=—2. It has not been
possible to get away from this initial restriction. We are
even further from knowing the effect of a nonlocality
in the nonlinear interaction. Therefore, although the
results presented here represent a considerable increase
in empirical (numerical) information over the results
of (4), they must still be regarded as fragmentary.

The most striking results are (a) the existence of a
small number of discrete masses and (b) a radical
dependence of the theory on the nature of the inter-
action; this second point is brought out most clearly
in the discontinuous changes in the appearance of the
phase portraits. An unpredictable incorrect feature is
the result that the allowed masses all have the same
order of magnitude. Since mass density depends on the
fourth power of the field intensity, ratios of maximum
field intensities of the order of 40 might appear to be
sufficient to produce mass ratios of the order of 1600 for
particles of the same charge (with given /S (f*4-g*)dx);
although such intensity ratios do appear, the structure
of the solution is always such that the mass never
becomes very large. Thus large mass ratios are qualita-
tively possible, but apparently are not realized for the
postulated Lagrangian. However, as we have said, the
results on which these remarks are based, are quite
incomplete. The main deterrent to investigations of the
type being considered is the apparent difficulty of con-
necting with quantum mechanical descriptions of the
elementary particles. A particle theory such as we have
been considering raises statistical problems which have
been much hinted at but not really understood and
which may or may not correspond to quantum mechani-
cal uncertainties. Without going into these problems,
we wish to suggest a tentative connection between the
type of eigensolution found here and the form factors
of nonlocal quantum field theories.?

2 R. Finkelstein, Nuovo cimento 1, 1113 (1955).

FINKELSTEIN, FRONSDAL, AND KAUS

Finally it may be worth mentioning the possible
relevance of our results to quantum field theories of
the more usual type. In the work of Heisenberg,!®
referred to earlier, the initial g-number equations lead
to c-number equations of a type very similar to those
considered here.
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APPENDIX

The relation between x and J :
1
x= _E f [4H+27—TJ%2—p2 4T
1
= —‘2‘ f 51_552_’5&7

may be expressed in terms of a Jacobian elliptic func-
tion.* To do this, we must choose the bilinear forms S,
and S; in such a manner that the roots, if they are all
real, do not interlace. This is accomplished by setting

Si=("—a)(J'—b),
So= (J'+a) (J'+b),
o= {1+4H+p},
b={1+4H—B}},

J=J-1.

We next look for linear combinations of S; and S that
are perfect squares:

Sl—->\Sz= (1"")\) (J'-—a)"’= (1—7\).7’2
— (a+8)J (14N +ab(1—2).

This problem has for solution the 2 values A; and A; of A
that satisfy

4(1—N)%eb= (a+b)*(14N,)%

We note that AA;=1, and that they are both negative.
We choose A\1—X2:>0. For a, we find

a1= (db)%, Q2= — ((Zb)%.

24 E, T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, Cambridge, 1935), fourth edition, p. 514.
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Solving for S} and s, we find

S1=A:[J'— (ab) '~ Bi[ '+ (ab) T,
Sy=—Aa[J'— (ab)¥ P+ BoL J'+ (ab)i ]2

Using the relation AA;=1, we have

A1=Bz= (1—)\2)/()\1—)\2)>0,
A2=B1= (1"‘)\1)/()\1—)\2)>0.
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Now if we take
t={As/AJ}[J' — (ab)¥]/[J'+ (ab)t],
we find
w=[5/44(ab)}] f [(1—F) (1— )T,
h=Ay/ 45,

or

t=sn(x£44s(ad)is, k);  T=(ab)}(1-+tkY)/ (1—thi)+1.
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The “nonclassical’”’ complex Lorentz transformation, recently introduced as a mathematical convenience
by Reulos, is related to the unique factoring of any 4X4 orthogonal transformation. This factoring also
shows, in 4X4 form, the well known possibility of introducing a 2X2 complex spin space, in which uni-
modular transformations are isomorphic to the proper future-preserving Lorentz group.

EULOS has proposed a new transformation as
convenient for calculations in special relativity.!
We may write its matrix in Minkowski space as

P =Py Py —Py
| Ps Py —P, —P,
P=1_p, P P -P. W

P P, P3 Py
where
P4 P2+ P+ Pi=1. @)

Another such transformation, of opposite chirality,
also exists:

68 &8
_ 3 4 1 2
0= —Q: =01 Q« Qs )
Q01 —Q: —0Qs Q04
where
Q2402402+ 02=1. 4)

These two matrices are each orthogonal by inspection;
they commute; they are unique in form (up to changes
of sign of row or column); all P-type matrices form a
group under matrix multiplication, and similarly for
all Q type. Their multiplication rules are those of
quaternions: for the Q type, however, the order of the
quaternion factors must be reversed. Thus if we define

1 René Reulos, Phys. Rev. 102, 535 (1956).

the unimodular matrices

0- (Q4—iQa —Qz+iQ1),
Q101 QutiQs )
Py+iP; Py+1iP;
P= (—-P2+iP1 P4—iP3) ’

the multiplication rules of the 4X4 orthogonal matrices
can now be written in 2)X2 form:

QII=QIQ, PII=PPI. (6)

Now the remarkable fact is that any proper orthog-
onal transformation in Euclidean 4-space can be
uniquely factored into a product of these two types:

A=QP. ()
Finally, if to the 4-vector (x1,%s,%3,%4) We associate a
2X 2 matrix
x3+ix4 X1— 1%
x=( , , ) ®)
x1+1xy  —x3t1xy

it is immediately found that the determinant of x is
the square of the length of x, and that the orthogonal
transformation

x¥'=Ax 9)
can also be written in 2)X2 matrix form:

x'=QxP. (10)



