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The stationary states of a system bound in a spherical box and additionally subjected to a perturbation of
finite range are studied in the limit as the box radius becomes infinite. The transition from formal discrete-
spectrum theory to formal scattering theory is carried out explicitly by two diGerent methods. It is shown
quite generally (i.e., even when the total Hamiltonian is not separable) that the levei shift produced by the
perturbation is proportional to the corresponding scattering phase shift.

I. INTRODUCTION

N attempt has recently been made by Reifman and
Newton, in collaboration with the author, ' to

justify a procedure of Brueckner' which attempts to
deal with nuclear many-body bound-state problems in
the language of scattering theory, by imagining that
the nuclear radius is sufFiciently large so that the sta-
tionary two-body states are quasi-continuous. In par-
ticular, the attempt was made to justify Brueckner's
use of the principal-value Green's function and the
tangent of the phase shift in his self-consistent calcula-
tion of nuclear binding energies.

Two facts affecting this work have subsequently
become apparent. First, it is unlikely that the nuclear
problem can actually be attacked strictly from a
scattering-theoretical point of view. The reason for
this, which was not fully appreciated at the beginning,
is as follows': Owing to the Fermi statistics and the
degenerate nature of the nuclear system, intermediate-
state summations occurring in calculations of the level-
shift contributions from individual two-body encounters
must be extended only over regions well removed from
the energy shell. This has the result that although the
two-body level-shift operator for the nuclear system is
then identical with a certain two-body "reactance"
operator, as Brueckner and Levinson have shown, 4 the
latter operator has nothing in common with the re-
actance operator for free scattering. Only for systems of
low density or at temperatures suKciently high so that
particle statistics may be ignored can the scattering-
theoretical viewpoint be profitably retained.

Secondly, the formal arguments of reference 1, which
are now seen to be of interest only in the low-density
case, are actually in error, as has been pointed out by
Fukuda and Newton. ' These authors show in special

cases that the level shift produced on a quasi-continuous
state by a perturbation of 6nite range becomes, in the
limit as boundary walls recede to in6nity, proportional
simply to the corresponding phase shift, not to its
tangent.

It is curious that this result, which seems to have
been known more or less privately for some time by
various individuals, has not previously achieved the
dignity of a special statement in the literature. f In the
case of a spherically symmetric potential it can be very
readily inferred simply by using a spherical boundary
of radius R and then examining the asymptotic be-
havior as E.—+ ~ of stationary state wave functions of
given angular momentum which vanish on the bound-
ary. It is the purpose of the present paper to provide a
correct formal proof in the general case.

II. SUMMARY OF SCATTERING THEORY

The S matrix has the well-known form'

Ss.= (ios,Sps.)
=bs.—2sri5(Es —E.)Rs, (E,+i0), (1)

where the q are orthonormalized eigenvectors of the
unperturbed Hamiltonian Hp (with spectrum E ) and
the operator R(E) is given by

R(E)=HtL1+'Gp(E)R(E)]=Htt 1—Gp(E)Hr], (2)

Gp(E)=(E—Hp) ', (3)

H~ being the perturbation which produces the scatter-
ing. The operator Gp(E) is variously known as the un-

perturbed "resolvent" or Green's function. The re-
solvent G(E) of the total Hamiltonian

H=Hp+Ht

*Work supported by the Institute of Field Physics.
Reifman, DeWitt, Newton, Phys. Rev. 101, 877 (1956).' K. A. Brueckner, Phys, Rev. 97, 1353 (1955); see also refer-

ences cited in this work.' K. A. Brueckner (private communication).
'K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344

(1955);Appendix B.'¹Fukuda and R. G. Newton, Phys. Rev. 103, 1558 (1956),
preceding paper. Although Brueckner was therefore wrong in
using the tangent of the phase shift, this, because of the now
recognized inapplicability of the scattering picture in his problem,
does not mean that his calculations can be corrected simply by
replacing the tangents by the phase shifts themselves.
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may be expressed in the forms

G(E) = (E—H) '=Go(E)+Go(E)R(E)Go(E) (5a)

=Gp(E) L1+HtG(E) ). (5b)

With use of the formal identity

Gp(E&i0) = (P(E—Hp) 'Wsrib(E —Hp), E real, (6)

t See however reference 7.
6 See, for example, B. A. Lippmann and J. Schwinger, Phys.

Rev. 79, 469 (1950).
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where the symbol (P denotes the "principal value" when
appearing in a summation (integration), Eq. (2) may
be split up in the form

[1 —Hr(P(E H—p) ']R(E+i0)
=Hr(1 —pri5(E —Hp) R(E+i0)]. (7)

Removal of the factor on the left and multiplication by
a delta function in energy gives the Heitler integral
equation

2prb (Ep—E,)Rp, (E,+i0)
=Ep, rri Q—.Zpg(E, —E,)R„(E,+i0), (8)

where

Ep ——2pr5(Ep —E )
X(pp HrL1 —~P(E.—Hp) 'Hr] 'p.) (9)

0(E' E')dE—=5@»@~.

III. THE SEPARABLE CASE AND THE
FREDHOLM DETERMINANT'

(16)

In the most familiar cases (e.g. , spherical symmetry),
the perturbation H~ is itself diagonal in the labels X'.
The total Hamiltonian is then said to be separable, for
it can be written in the form

Use of the normalization condition (14) implies that
matrix elements like (ques-q", Hrps q) are of order
(dE"dE')'. Intermediate-state summations in per-
turbation formulas therefore have the general form
Pz f(E')dE' and become ordinary integrations in the
limit R—+~, dE'—+0. When dealing with discrete sum-
mations involving the delta function, one may employ
the formal identity

E is the reactance operator. Its relation to the scatter-
ing operator S follows from Eqs. (1) and (8):

where
2x' (Hex'+ H 1x') 1 (17)

1—-,'ix
1+-',iE

(10)
Hpx =Qz qz v)E'(qzx, (18)

Hrv ZE"E' pE"v) (pE"1'yHr pE'v) (pE'1'y (19)

E=—2 tanb,

where 8 is the "phase shift" operator. The unitarity of
S follows from the obvious Hermitian character of E.

A unitary matrix can (in principle) be diagonalized
by a unitary transformation. The 5 matrix is already
diagonal in energy. Therefore it will be convenient to
make the transformation of basis

pa ~ pE x y Ho+E x + pE (»)
where X' denotes the remaining labels necessary to
complete the diagonalization process

(ys"q, Sqs q)=exp[2i5q (E')]Is s 5q q. (13)

Attention should be called to the fact that the nor-
malization condition,

(14)

on the eigenvectors of Ho actually requires us to place
the system in a box which is 6nite, however large. This
means we are already, in effect, working with a quasi-
continuous spectrum. In the case of spherical symmetry,
in which ) ' represents the ordinary angular momentum
quantum numbers 1, m, the appropriate box shape is
obviously spherical. It is almost as obvious (see Ap-
pendix) that this is also the appropriate shape in the
general case (e.g. , tensor forces or nonspherical po-
tentials), at least when the box is suKciently large and
the perturbation H~ has 6nite range. If we denote the
radius of the box by R then the level separation in the
quasi-continuous spectrum near 8' is given by

dE'= Wv'/R,

where e' is the scattering velocity corresponding to
energy E'.

and all work can be carried out within a single subspace
corresponding to a 6xed value of X'. We shall drop the
prime on the X to indicate that the equations to follow
are independent of the choice of subspace. The notation
will otherwise be obvious.

We introduce the Fredholm determinant

D~(E) =de4(1 —Gp), (E)Hn]
=detgL1 —HryGpy(E)]. (20)

The question of how to define such a determinant in
the presence of a continuous spectrum is usually an-
swered by generalizing from the case of finite matrices
via the identity

~

A
~

= exp(tr logA), and expanding the
logarithm, thereby reducing the problem to one of
evaluating traces and checking certain convergence
conditions on the operator Gpq(E)Hrq. However, since
we are here working with a quasi-continuous spectrum,
we may (ignoring convergence questions) write formally

Dg(E) = detgt (E—Hpg)
—'(E—Hx)]

=g~ (E E') '(E E' AE—'g), (21—)—
where AE'q is the shift in the unperturbed level E' due
to the perturbation H~), .

Two facts about the level shifts will be important for
future reference. First, AZ'~ —+0 as dE'—+0, except in
the case of the true bound states, which are in eBect
peeled off the bottom of the set of (quasi) continuum
states and whose level shifts remain finite in the limit.
Secondly, the unperturbed level separation dZ', when
suKciently small, is also electively the level separation

7 The method of this section is based on material contained in
a paper by J. Schwinger (Phys. Rev. 94, 1362 (1954)g which
treats the special case of a Dirac electron in an impressed time-
independent electromagnetic 6eld. The line of reasoning, how-
ever, has been somewhat altered so as to avoid explicit use of
the coordinate representation.
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in the pertlrbed spectrum (the true bound levels again
excluded). Thus, if the zero point of energy be taken
(as usual) at the bottom of the quasi-continuum, the
spectral distribution along any small portion of the
positive real axis in the complex E plane has an in-
variant form similar to that pictured in Fig. 1. The
circles in the figure indicate the unperturbed spectrum
and the crosses the perturbed spectrum. The pictured
level shift hE q corresponds to a situation in which the
perturbed level in each case has shifted down past three
unperturbed levels.

The level shifts may be related to the phase shifts
by means of the identity

Dq(E+i 0)*/D q(E+i0) = expL2ib&, (E)], E real, (22)

the proof of which is fairly straightforward. One writes

Di, (E+iO)*/Di, (E+iO)
=

de tx (L1—Gpy (E—sO) Hip] $1—Gpx (E+s0)Hip]
= det&, (1+itGs'x (E+iO) —Go&, (E—iO) ]

)&Hi),L1—Gg, (E+t'0)Htx] ')
= ~bz"rr. 27rib(E E"—)Riz"g (—E+iO) ~, (23)

where use has been made of (2) and (6). The final
determinant has nonvanishing elements only along the
principal diagonal and along the row E"=E.Compari-
son of Eqs. (1), (13) and (23) therefore leads immedi-
ately to (22), with bx(E) =m. for E&0.

From Eq. (22) it follows that

Im logD&, (E+i0)= —bq(E), E real. (24)

Next observe from Eq. (21) that

lim Dx (E)= lim Dq(E) = 1,

and hence

lim bx(E) = lim bq(E) =0. (26)
gazoo HI~

Now if we let E increase from —~ along the negative
real axis, the phase shift bx(E) remains zero until we
reach the first true bound level (if any), which is a
zero of Dx(E). At this point, the instruction "E+i0"
tells us that we must pass around the zero in the clock-

wise sense in the upper half-plane thereby adding —m

to the phase of Di(E), or ir to bx(E). Continuing in this
manner we add w to bi(E) each time we pass a bound
level until we reach the origin, where we have'

8), (0) =E),w, (2't)

(Im logDx(E') )A„———(1—x)m- —z(v+1)m
= rr (AE'x/dE'),

and hence
1

AE'g = ——bx (E')dE'.

(29)

(30)

Xz being the number of true bound states with quantum
numbers X.

As we pass onto the positive real axis, the situation
changes completely. At first sight. one might be led to
think that the phase shift undergoes rapid oscillations,
increasing by x each time we pass one of the zeros
E'+DE'x, and decreasing by n. each time we pass a
pole E'. However, we must remember that the instruc-
tion "E+i0"is to be taken in the sense "lim, s(E+ie)"
where ~ is a small positive quantity. In order that the
use of e give the correct causal description of the scatter-
ing process (i.e., be able to make the distinction be-
tween retarded and advanced waves), the limit e—+0
must be accompanied by (or preceded by) a swelling of
the spherical box of such a nature that

dE'/e~0,

so that summations over intermediate states Le.g. ,
in the expansion of Rq(E)] become, in the limit of
infinite box, integrations over contours which pass
definitely to one side or the other of poles introduced
by the Green's function Gsi, (E). Correspondingly, in
the determination of b&, (E) the function Dx(E) must be
viewed from a point far enough above the real axis so
that the rapid oscillations in phase will be smoothed
out to some average value.

It is shown in the Appendix that the smoothed-out
value is just equal to the average value along the real
axis. Suppose AE'x= —(N+ x)dE', where N is an integer
and 0&@(1.Then referring to Fig. 1, one sees that
Im logD&(E) is equal to —m between points 1 and 2

and to —(m+1)s between points 2 and 3. The average
value is evidently

fh
w n

HEI

FIG. i. Spectral distribution along a small portion of the
positive real axis. Circles indicate the unperturbed spectrum and
crosses the perturbed spectrum.

This, for the separable case, is the result announced in
the introduction. It is worth pointing out that its
derivation depends only on the assumption, pictured

Equation (22) is originally due to R. Jost and A. Pais, Phys.
Rev. 82, 840 (1951). (See especially Eqs. (32) and (43) of their
paper. j In drawing inferences from this formula, however, one
should be cautioned that Jost and Pais work in the complex
k-plane, k being the wave number and related quadratically to E,
whereas Kq. (22} here has meaning only for real E. It is especially
important to remember this when E is negative.

' Strictly speaking we should write Bx(—0) = Ebs to distinguish
this value from the limit hy(+0) as 8 approaches the origin along
the positive real axis. Bz(E) will be continuous at the origin only
if lim@ ~~sRi@~@ (E'+f0)=0, and the latter condition can be
verified only by a quite separate investigation. This condition is
known to be valid in the three-dimensional spherical case Lexcept
when the lower-most continuum state is "just barely" bound, in
which case S&,(+0)= (X&,+x)s. Lsee R. Jost, Helv. Phys. Acta
20, 256 (1947)j, although it does not generally hold in two-or
one-dimensional problems.
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f(E",Z")dE" f(E",X")dE"
Qll) tl

~"wz' E'+DE'~ E"— E'+DE'); E"—

in Fig. 1, of Gne-grained spectral invariance. Conversely, summations of the form
one may argue from the known smooth behavior of
phase shifts to the validity of the spectral invariance
assumption.

Pg' ZXrggrkr)(ggrkr

Then, making use of Eq. (Sb), we write

(31)

Pg»G(E)P gr

(E E) [Pg—rggrrgr+PgrrHyPgrG(E)Pgr

+Pg"Hg(1 Pg )G—(E)pg.]
= (E E ) [Pgrggrrgr+Pgrrg(E)pgrG(E)pgr]& (32)

where

IV. THE GENERAL CASE

For the general case we shall use an alternative
method of procedure based directly on ordinary discrete-
spectrum perturbation theory We introduce the pro-
jection operators

dE'
P),"f(E',X"). (39)

AE'),

If dE' (and hence also the hE'z. ) is suKciently small,
an p))dE', AE'z may be found such that f(E",X") and
dE" are essentially constant in the range E'—e&E"
&E'+ p. The first sum on the right of Eq. (39) is then
conveniently separated into two parts, one including
only those terms for which t E" E'i & p,

—and the other
the remaining terms. (Here we again envisage an
eventual limiting procedure e—+0, dE'—4 such that
dE'/p 4.) Th—e latter part contributes an amount
which is essentially the same as that given by a prin-
cipal value integration, namely

Pg»Z(E)pgr
=Pg"Hxpg+Pg Hx(1 Pgr)Go(E—)&(E)pg. (33a)

~f(Elf yl/)dE/I

err J Ef El/
(40)

=Pg"Hg[1 (1—Pg)Gp—(E)Hg] 'Pg.

Setting E"=E' in Eq. (32), we get

Pgl
Pg G(E)Pg =

E E' Pg X(—E)pg—

while the former part contributes an amount which
reflects the asymmetry of position of the level E'+ AE'z
with respect to the unperturbed levels, and which may
be computed with the help of the appendix, Eq. (A.7),

(34) namely

dE'
which will lead us to a familiar expression for the level
shifts.

First, however, one must observe that Eqs. (1) and
(13) imply

lim (ppg. g.)R(E)qg g)=0 for X"WX', (35)
z~a'+io

Ef(E'0") 2
AE'), —ndE'

, Z "f(Ehi) (41)
tan(prhE'), ./dE')

One may therefore infer

and hence [see Eq. (Sa)j
(1 Pg )Go(E'+A—E');) ~ +

lim (ppg. ~-,G(E) ppg ), )=0 for X"WX'. (36) E'—IIO
E~a'+io

+ — p(E' Ho). (42)—
tan(prhE'g /dE') hE'g

In virtue of the essential continuity of orthogonality
properties when the spherical box is suKciently large,
Eq. (36) may equally well be written in the form

Brueckner's assumption' ' that (1 Pg.)Gp(E'+ DE'q. )~—

(P(E' —Hp) ' is therefore seen to be incorrect for low-

density problems in which the scattering picture is valid.
Using Eqs. (33a) and (42), we may write

lim (gag ~-,G(E) pg. q.)=0 for X"gX', (37)
z z'+am '

dE'-
=H, |1+which is the basic formula of discrete spectrum theory.

In order to connect this formula with scattering
theory it is necessary to determine what form the
operator (1 Pg )Gp(E'+2E'&;) —takes in the limit
dE'—4. Now this operator leads to intermediate-state

tan(prhE'), /dE') AE'), .

Xb(E' Ho)Z(E'+DE'x ) P—g., (43)

valid for dE finite though small. This, combined with
Eq. (34) and the observation that the perturbed spec- p 1
trum is given by the poles of G(E), then yields i

1—H, a — IZ(E'+~E', )Pg
E E'—Ho&

(q g'v', &(E+&Ex') q'g') ') ~E ) '4"x' (3g)
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where

27rb (E" E—') (&/&z ), ,Z (E'+/& E'), )yz ), )

7r dE
(&/&z" x"&+'Pz'v)+

tan(prhE'), /dE') AE'g

Xgzs&&g&l& (&t&z&tg&I It &/&z&&&gsz&)$ (E —E )

(23); i.e., they have nonvanishing elements along the
principal diagonal and along the rows E"=E. The
oG-diagonal blocks, however, have nonvanishing ele-
ments only along the rows E"=E except, owing to Eq.
(35), that these rows have zeros in the columns E'=E.
The off-diagonal blocks therefore contribute nothing to
the determinant, and we have

X (fez" ~ -,&(E'+&E'), ) ppz y ). (44)

Taking the diagonal element of this equation, and
using Eqs. (11), (16), and (38), we get

D(E+i0)*
=expI 2i Q bg (E)j.

D(E+i0)

which leads, with Eq. (4/) &
to's

(49)

2pr = —2 tan8q (E')
dE' Q AE'), = ——Q bg (E')dE'. (50)

dE' /&E'g
I

tan(prhE'), ./dE') hE'), dE' I

V. THE PERTURBED STATE VECTORS

AE'y tanbg. (E')
= —2'

dE' tan(whE'g /dE')

which leads immediately to the completely general
result

For the sake of completeness and of further demon-
strating the internal consistency of the arguments

(45) presented here, we include a final section on the
construction of the stationary perturbed-state vectors.

In discrete-spectrum theory, the perturbed state
vectors may be de6ned by"

1
hE'), = ——8), (E')dE'. (46)

Zz. ),.i&Pz.g

lim (E E' /& E'g.—)G(E—) &/&z. q.. (51)
+~Qf +gg/) I

Appeal may also be made in the general case to the
Fredholm determinant. Here, since the Hamiltonian is
not necessarily separable, we must work with the total
determinant'0

D(E) =detI 1—Gp(E)Ht)

= fJ (E E') '(E E' A—E'), ). (4—7)—

Here one simply observes that the operator acting on
q ~ ), on the right is a projection operator on the
eigenstate of II corresponding to the eigenvalue
E'+/& E&q .'4 Zz q is a normalization factor representing
the probability of finding yz. z. in &&tz.z . From Eq. (37),
one infers that

(
l~

0'z z"4'z x ) =Zz x 'ox x . (52)
In actuality the total determinant is divergent (except
in one-dimensional problems). We may, however, work
with it purely formally. "Proceeding as in Eq. (23), one
obtains

D(E+i0)*/D (E+i0)
= I&z„z,&)...),,—2wy(E —E")Ez-g-z., (E+io) I. (4S)

Here the determinant is conveniently arranged in
blocks according to the labels A'. The diagonal blocks
have exactly the same form as the determinant of Eq.

' Since the labels X' are determined in the general case solely
by asymptotic requirements, they are not well defined for the
true bound states unless appeal is made to an adiabatic switching
procedure. The diagonalizing vectors cpz z will vary continuously
as the perturbation is switched oA. Thus the labels X' will have a
physical significance which is a continuously varying function
(constant in the separable case) of both energy and perturbation
strength, and each true bound state may be assigned a unique set
of labels X' at the moment it passes over into the continuum, Such
an assignment is implied in Eq. (47).

u One may instead work with the function D'(E)=D(E)
XexpgtrGp(E)P&j from which the divergent asymptotic high-
energy contributions to D(E) are removed. D'(E) is convergent
in most cases of interest.

Using Eq. (32), one may rewrite (51) in the forms

Zz~'*&Pz), = lim (E—E' DE'g.)Gp(E)—
Z B'+aP9, '

XL1+~(E)zz,G(E))f z,
=Zz) Gp(E'+&E'~)

's Kqs. (47) and (50) together yield a canonical form for the
Fredholm determinant:

»(&,&
= && (&

—x&—ZEz 1 s), (E')
) I E E&

where the Eg are the levels of the true bound states."B.S. DeWitt, Phys. Rev. 100, 905 (1955).
'4 The notation is slightly confusing. QJ, p~ corresponds to the

eigenvalue E'+~'ys, not 8'.

X&(E +~E ~ ) v&z ),' (53)

In passing to the second form, one observes that the
limiting procedure in the 6rst form picks out only the
pole of G(E) corresponding to Pz q and that the residue
at this pole is Zz z . One finally uses Eqs. (33b) and
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(38) to write with
Zzli, 1*=sin8y~(E )/S'il (E ) ~ 1. (60)

=Zz v'*$1+(1 I—'z )Go(E'+&E');)&(E'+AE'i )jq z ).

=Zz i,.fL1—(1—I'z )Go(E'+&E'i )&ij 'v z ~,' (54)

In continuum theory, on the other hand, the per-
turbed state vectors are defined by

lim (E E)G—(E)pzly~
z~a'~io

= (1+G e(E &i0)R(E &i0)]qrz~i~ (55b)

The result expressed by Eq. (59) is quite consistent
with the definition of the S matrix,

(&pzlsilr 5 pziyr) —(Pzlsill Pz ir l). (61)

In conclusion, the author is happy to acknowledge a
stimulating correspondence with Professor R. G.
Newton and Professor K. A. Brueckner.

APPENDIX

= L1—Gp(E'&i0)Hi] pz~yl. (55c) Comments On the Use of Box Shapes Other
than Spherical

%hen the perturbation H~ has 6nite range, this defini-
tion can be shown" to lead to normalized vectors
Pz z +. The difference between Eqs. (51) and (55a) is
significant. In Eq. (51) the variable E is allowed to
approach the pole of G(E) while dE' is still finite,
whereas in Eq. (55a), owing to the requirement
dE'/e~0, the spectrum is first allowed to become
continuous so that the approach is no longer to a pole
but to a branch line along the positive real axis, from
above or below. In the limit dE' 4, how—ever, fz i and
Pz i, + must differ only by phase factors. We now
confirm this.

First rewrite Eq. (42) in the form

)Go(E'yAE', ) ~Go(E'+sO)

1
Wi 6(E' —IIp), (56)

tanbg. (E') 5), (E')

and then combine Eqs. (54) and (55c) to get

fz ), +=Zz i 'L1 —Gp(E'&i0)IIij '

X[1—(1—I'z )Go(E+&E i )IIifitz y

=Zz v * fz v+ir wi
italy (E') bi, (E')

=Zz'i' '4'z'v

1—4 (E') — ~i 4z ), +, (5'/)
tan8), .(E') 8i.(E')

in which use has been made of the relation

It is helpful to realize that the physical process which a bound
system undergoes is one of mul]ip/e scattering. The discrete sta-
tionary states of the system are those in which the waves produced
by repeated scatterings reinforce one another.

The author's attention has been called'5 to the fact that the
level shift operator Z(E) for plane waves is not identical with
that for spherical waves, as may be easily shown by expanding
one type of wave in terms of the other. This confusing point has
its explanation in the fact that the appropriate boundary for a
plane-wave eigenbasis is a rectangular box, and the bound state
problem then corresponds to the problem of scattering by an
in6nite lattice formed by endless reQections of this box.

In order to describe single scattering only, within the rectangular
framework, the scattering process must be allowed to last no
longer than L/v, where L is the length of the box and s is the
scattering velocity. This means that the energy shell within which
one works has a thickness of order Av/L. But the individual level
shifts in the plane-wave case are of order 1/Is, and therefore the
energy shell for single scattering is not suKciently refined to sort
out the various degeneracy-removals and permit a diagonalization
of the S matrix for the whole lattice.

Only the spherical box (with spherical waves) is suitable for
establishing a connection between single scattering processes and
discrete-spectrum theory, for only then are the individual level
shifts of the same order as the energy shell thickness. This is
because multiple scattering inside a sphere is redundant. Spherical
waves yield essentially complete scattering information after
their 6rst transit from the spherical boundary to the scattering
region and back again, and repeated reflections contribute nothing
new. The spherical waves which diagonalize the S matrix can be
determined from the results of the erst "bounce. "

The Smoothed-Out Value for S~(E')
H AE'i = —(g+x)dE', where I is an integer and 0 Cx(1, then,

for arbitrary p,

S),(E')= lim {Nx+ Z CCOt '(ta —f)dE'/e
dzl/~ 7S

cot i(m+x —f)dE'/ 51, e—(A.l)
the limit being actually independent of g and hence smooth. To
evaluate the limit, make use of the identity

cot-'x —cot-'y =tan '$(y —x)/(1+xy) g,
~(E' E")(v z"i-,II' z —i )

=Zz i, *'fi(E" E') (pz i", Z (E'+—hE'v) pz i )
Zz'X'*(AE v/dE )fiz"z'4"i'

= —Zz ), 4. '8),.(E')8z-z. b),"i.. (58)

Equation (57) is readily solved, giving

and write

Si,(E') = lim (ex+ Z tan i
az&l~ m--~

X {(~E'/.)/(1+(~ f) (~+x f)—(dE'/. )sg}—)
=am+xJ (1+y'). 'dy= (a+x)n.
= —x(AE'i, /dE'). (A.3)

fz v+=expg~i4 (E)jfz v, (59) "K. A. Brueckner (private communication).
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and note that
f(x) = xe' I/ isnxa,

( 1)o
e '"*f(x)dx=2' —~ a—n

Evaluation of an Infinite Series

(A.4)

(A.5)

This means that
1)n

f&x) = Z e'"~ for —x(x(x
-oo 8—n

and also
1 1=sU(x)+f( x)—j=

-to Q —n tan((ra)

(A.6)

(A.7)
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A classical spinor Geld is defined by a variational principle on a Lagrangian with quadratic Dirac and
quartic Fermi terms. Localized (particle-like) solutions are found within a class of comparison functions
which make the angular momentum stationary for a given charge. It is found that the existence of eigen-
solutions depends in a radical way on the parameters of the Lagrangian, but that the observable properties
of those solutions which do exist depend little on these parameters.

INTRODUCTION

't'EW knowledge of the elementary particles is
currently recorded by simply adding new terms

to the Lagrangian of the total field. Although there is
no doubt that this procedure is only provisional,
attempts to make inferences about the intrinsic struc-
ture of the total Geld have, except for some eGorts to
guess new symmetries, ' been unrelated to experiment.
Nevertheless these theories' have attracted wide in-
terest, and in any case the problem remains. By con-
sidering a very simple model, we shall attempt to
present some results on one of the well-known questions
which these theories raise, namely: can all the ele-

mentary particles be represented as eigenstates of a
single underlying Geld 7

The diGerent fundamental theories appearing in the
literature have in common the feature (a) that the
equations of motion are noejt'incur partial diGerential
equations. They may be classified by (b) the group of
the theory, e.g., the Lorentz group, or some wider

group, like that of general relativity, or the generalized
theory of gravitation. ' They may be further classified

by (c) their relation to quantum theory: most are
quantized in the conventional Hamiltonian way. On
the other hand, as is well known, Einstein expected
that it would not be necessary to supplement the com-
plete classical Geld equations with quantum postulates.
The recent literature contains several papers in which
similar and other unconventional views of the quantum

*This work was supported in part by the National Science
Foundation.

t Now at RCA Laboratories, Princeton, New Jersey.' M. Gell-Mann and A. Pais in Proceedirtgs of the Fifth Artrtstal
Rochester Conference on High-Energy Physics (Interscience Pub-
lishers, Inc. , New York, 1955), p. 131.' A. Einstein, Revs. Modern Phys. 20, 35 (1948).

theory are discussed. '—~ The model to be discussed
here will be characterized by (a) nonlinear equations
of motion and (b) Lorentz rather than general co-
variance. We do not discuss point (c); however, the
following analysis will be entirely classical.

Dirac has rather recently proposed a new classical
theory of the electron. ' Schrodinger has shown how
this theory may be described as a Klein-Gordon-
Schrodinger Geld coupled to a Maxwell Geld in the
usual way, although with a particular choice of gauge. '
It had been pointed out earlier that there is a class of
classical Geld theories which may be arrived at in this
same way —by coupling different representations of the
Lorentz group through Lorentz-invariant interactions-
i.e., simply by interpreting as classical and unitary
precisely the total fields ordinarily considered only in
terms of quantum Geld theory. "As a consequence of
Schrodinger's remark, Dirac's new field may be related
to this class.

Another example belonging to this same class may
be arrived at by coupling the Maxwell field to the
spinor Geld; this procedure leads to the differential
equations of quantum electrodynamics, except that
now the amplitudes are regarded as unquantized. Then,
by eliminating -the photon field, one obtains'~"

q„cl„P+giP+e' dsx'Lit (x')y„P(x')g

XDs (x' —x)y„P(x) =0,
' L. De Broglie, Nuovo cimento 1, 37 (1955).
4 D. Bohm, Phys. Rev. 84, 166, 180 (1952).' T. Takabayasi, Progr. Theoret. Phys. (Japan) 9, 187 (1953).
e D. Bohm and J. P. Vigier, Phys. Rev. 96, 208 (1954).
~ F. A. Kaempffer, Can. J. Phys. 32, 259 (1954).
s P. A. M. Dirac, Proc. Roy. Soc. (London) A209, 291 (1951).' E. Schrodinger, Nature 169, 538 (1952).
Io R. Finkelstein, Phys. Rev. 75, 1079 (1949).

1 S. P. Lloyd, Phys. Rev. 7?, 757(A) (1950)."F.A. Kaempffer, Phys. Rev. 99, 1614 (1955).


