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Energy Level Shifts in a Large Enclosure~
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(Received May 11, 19S6)

It is proved that for a particle enclosed in a large box, a potential shifts the energy levels by an amount
which, as the volume v of the enclosure tends to innnity in a suitable manner, becomes proportional to
E&8(E)v &, where 8 is the corresponding phase shift. Application of this result to the many-particle problem
ls discussed.

I. INTRODUCTION

' "N some quantum mechanical stationary-state prob-
~ ~ lems of great complexity, it is a very useful approxi-
mation to replace the part of the discrete spectrum
which becomes continuous when the boundary recedes
to infinity, by that continuum. In this fashion, scat-
tering information may be used in certain bound-state
problems, or else the simpler scattering formalism may
be used to solve them. One needs for this purpose an
understanding of the manner in which one formalism
goes over into the other; more specifically, how quanti-
ties of one formalism are continuously connected with
those of the other. Two such quantities of greatest
physical interest are, in one case, the shift in the energy
levels caused by a force, and, in the other, the scattering
phase shift.

The purpose of this paper is to investigate the
behavior of shifts in the energy levels of a particle in a
box, due to the introduction of a potential, as the
enclosure becomes infinitely large. In contrast to first
appearances, it will turn out that these shifts tend to
zero generally not as v ', where ~ is the volume of the
box, but that many diGerent limiting processes can be
chosen which lead to different rates of decrease of AE.
The limiting process of greatest physical interest yields
a decrease as v &.

The second result of the investigation is that, with
the choice of the limiting process of greatest applica-
bility, the quantity that emerges from the energy shift
of infinite volume is the phase shift itself, and not its
tangent. ' In the course of the proof of this result, the
one first mentioned also emerges. It was, however,
found instructive to investigate the first separately.

In Sec. II we show that with an appropriately chosen
way of letting the volume tend to infinity, the energy
shift tends to zero as e &. In Sec. III we discuss the
eGect of this result on a recent paper' which purported
to show that the large-volume limit of the relevant
bound-state integral equation is that of the E matrix.

*This work was supported in part by the National Science
Foundation.

f On leave of absence from the Tokyo University of Education.
'These points were also mentioned in a somewhat different

connection in a letter by N. Fukuda, Progr. Theoret. Phys.
(Japan) (to be published). Pq' Reifman, DeWitt, and Newton, Phys. Rev. 101, 877 (1956).

II. DERIVATION OF d E~v &

We consider a single particle confined to the interior
of a box. Each energy level Eo„allowed in the absence
of forces other than the walls, will be shifted to a new
value E„=Ep„+DE(Ep„)in the presence of a potential.
Being interested in only those levels E„which do not
remain a part of the discrete spectrum as the box
becomes infinitely large, we are going to investigate the
question: How fast does hE tend to zero as the walls
of the enclosure recede to infinity?

The Schrodinger equation in the absence of forces is

(Hp —Ep„)it p„——0,

and the boundary condition demands that Pp„be zero
on the walls of the box.' In the presence of the potential
V, the Schrodinger equation becomes

(Hp+V E)f =0, — (2)

while the boundary condition remains unchanged.
Taking the inner product of (2) with fp„on the left

and using (1), we obtain

By virtue of the boundary condition obeyed by both
its„and p„, the right-hand side of (3) vanishes and we
get the well-known result

The purpose of the rederivation was but to recall that
(4) depends on the fact that both tip„and P„satisfy
the boundary condition.

3 Any other boundary condition, e.g., that the normal derivative
of the wave function vanish, or a mixed one, or a periodic one,
would serve as well. We are adopting the one mentioned merely
for the sake of definiteness.

In Sec. IV we prove that for a central potential

limv&AE(E) = —2Ek 'bt(E).

This equation is then generalized to the inclusion of a
tensor force.

In Sec. V, finally, we discuss the applicability of the
result of Sec. IV to cases of physical interest, such as
many-body interactions and, specifically, the "coherent
model" of the nucleus.
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Rko =a„', j((a„')=0,

from which Eo„ is obtained as

Ep = (k'/2m)k „p'= (k/2m) (a„'/R)'.

(6)

Let us assume that the potential V is sufficiently
well behaved so that its first and second absolute
moments exist:

«rl V(~) I
&" « "IV(r) I

&~
"o Jo

Then the "perturbed'" wave function corresponding
to (5) is

f„(r)= (k„r)—'q ~(k„,r) V&(8, p), (7)

where q ~ is a regular radial wave function' that satisfies
the same boundary condition at the origin as does
kr '( kr):z(

limLpp&(k, r)/kr j&(kr))= 1.

Consequently, in the coordinate representation

(6 4)=
~B

«r'j((kp~)(k„r) '
4p

X 9 ~(k.,r) &&*(e,qp) &~(e, p)
R

=ck ' «rj t,(kp„r) y&(k„,r).
~!p

The numbers kp„and l being freely selected first and
R=Rp subsequently chosen so that Roko„= a„' for some
e, we now let R take on increasing values of the sequence

R;=a~; /kp„, &R;&R;+t& . (9)

By k„we mean that perturbed level which goes over
continuously into kp„ if the potential vanishes while R
is fixed. ' Then

k~ko„, as R~~.
The asymptotic behavior of (8) for large R is now

simple to establish. Since kr j&(kr) and &p&(k,r) both are

4Kxcept in the case of accidental degeneracy, which would
depend on the potential and on R. We may safely disregard this
possibility.

~ Although we are not going to use perturbation theory, we
shall conveniently employ its language.

s See R. Jost, Helv. Phys. Acta 20, 256 (1947);also N. Levinson,
Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 25, No. 9
(1949).

%e now consider the case of a central potential and
choose the enclosure to be spherical, of radius R.
Because the potential is spherically symmetric, both
Eo and E are associated with a single' angular mo-
mentum f T.here are, then, 2l+1 linearly independent
unnormalized free wave functions of the form

6-(r) =i ~(kp-r) V~(() p), (5)

where j& is a spherical Bessel function, and I'& is a
surface harmonic. They satisfy the boundary condition
by virtue of the equations

lim (Pp„,VP ) =ckp ', «r ji(kp~r) ipse(kp. p') V(r)
g-+ao

is finite and generally diferent from zero. It follows
that in general

lim EE(Ep )RQO,

or AE R '. The numerical value of the limit in (10)
will be obtained in Sec. IV.

The sequence (9) of box sizes is, of course, not the
only one possible. Its peculiarity is that there is always
a level of the same angular momentum l at k=kp„.
One could, alternatively, take a sequence R so that
the next level, regardless of the angular momentum,
always comes to lie on ko„and no levels are left out.
Since, however, R is a subsequence of R, either
lim(R, AE)=lim(R, AE), for else that limit does not
exist at all.

One could, nevertheless, choose a diR'erent subse-
quence of R,', in which l-+ po and lim(RAE) =0. There
exists in this manner, indeed, a wide variety of choices
with correspondingly diferent rates of decrease of hK
None of these seem to us to be of any particular
physical interest.

The same result as (10) is obtained in the 6rst
approximation for a weak potential. Then (4) becomes

~E(A.,A ) = (A, Vlt'p )

If ltp„ is normalized to unity, then this is, of course,
simply the first term in the perturbation expansion

V &VI
AE(Ep„)= V„„+Q — +

1'& Eo —Eoa
(4b)

The approach from (4) serves as a reminder that leap,
that is, the states between which the matrix elements
V A,

. are taken, must satisfy the boundary condition.
In the case of a spherical boundary, they must therefore
be of the form (5) and hence carry a normalization
factor which vanishes as R & for large R.

It is instructive to consider also the situation in
which the boundary has the form of a cube rather than
a sphere. The unperturbed wave functions are then

~ See N. Levinson reference 6; also, R. G. Newton and R. Jost,
Nuovo cimento 1, 590 (1955).

asymptotic to sine waves, the right-hand side goes to
infinity as R. Regardless of the detailed approach of
k to kp, we need only avail ourselves of the bounded-
ness' of both kr j&(kr) and p&(k,r) as a function of r and
k on the real line to see that

I (A-,lt-) I &»,
where A is a constant depending on kp„, l, and the
potential.

The right-hand side of (4) is bounded and, if leap„

and 1(„are not normalized, it will usually not tend to
zero as R tends to infinity. The quantity
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plane waves, whose normalization factors are, of course,
e-&. There is, however, a degeneracy; and it is a well-

known result of degenerate perturbation theory that
(4a), or (4b), is applicable only if fo„are the "proper
linear combinations" for which V has no oG-diagonal
matrix elements coupling state of equal energy. Simple
plane waves are not such proper linear combinations.

If the plane-wave solutions that satisfy the boundary
condition are

exp(ik &~&.r), o=1 g k &~»=2ygE /iP

where X is the degeneracy, then the proper unperturbed
wave functions for the perturbation theory are of the
form

fo„&'&(r) = P a &" '& exp(ik„& & r),

so that

(dr)$0„&"*(r)V(r)$0„&»(r)=0, iW j.
J

de6ned; it becomes well de6ned only by choice of a
limiting process. In the event the box is a cube, the
preferred choice is not obvious, as it is in the spherical
case.

Since with our choice of limiting process the degener-

acy X increases as v& for large e, the number of terms
in the first sum on the right-hand side of (11) increases
as e: and that in the second, as e'~'. In general, almost
all of the numbers a &" ') will be different from zero
(see Appendix A) and since we mean them to be
entirely unnormalized, dependent only on the direction
k„&~&, they will not tend to zero as v-+~. The total
increase of both terms on the right-hand side of (11) is
therefore as n'". (Hence, if Po„&'& is to be normalized,
the normalization factor vanishes as e '~' for large v;
s & of that dependence is more naturally associated
directly with the a (" '). There remains then, as in the
spherical case, an "outside" factor of &&

"'.)
The right-hand side of (4a), on the other hand, is

Now, the normalization integral
=+~a &" '&~' (dr)V(r)+ P a &""&as&""&~

cube a&P

=g ~

a~&"'& (' ~ (dr)+ P a &~ oas&" "*
~ cube

(dr) exp/i(k„&' —k„«&).r). (11)
J cu~e

The integral in the erst term on the right-hand side is

e, while that in the second increases as v& for large e.
We must examine how large the degeneracy X is.

Since the number of states per unit length in k space
increases as L, if L is the side length of the cube, the
number of states per unit area, in some appropriate
sense, goes up as L'. Hence as L increases, the maximum
number of states on a spherical surface in k space will

increase as L. That is to say, there will certainly exist
an unbounded monotonic sequence L; and a constant c
so that, whenever L=L;, S~& cL2. That is the kind of
sequence we shall choose. ' lt is proved in the first
appendix that this corresponds to a choice similar to
that of keeping t' constant in the spherical case.

It must be recognized, however, that other choices
are possible. In particular, it may be possible to pick
such a sequence L; that there never is any degeneracy
at all when L=L;. In that case, of course, nondegenerate
perturbation theory is applicable and AE v '. Conse-

quently we note that, by itself, the question of how

rapidly hE tends to zero for a large enclosure is ill

It is also relevant to count the number of states in a fixed
spherical shell whose thickness decreases as I, ', rather than the
exact degeneracy. That takes into account also those states which
approach the given level more rapidly than I ' and therefore
cross the perturbed level. The number of these states too increases
as J2.

(dr) V(r) expLi(k„& ' —k„&&') .r).

Here the first term increases as v&, the second as e'~'.

It follows that hE vanishes for large volumes as
n'~~'~'=e &, as for a spherical box.

III. EFFECT OF LLE~v & ON A BOUNDARY
CONDITION

In the past it has been a common misapprehension
that generally dZ~v ', a result obtained very simply
from (4a) by inserting for Po„a plane wave. The latest
victims of this error were the authors (among them
one of the present authors, R.G.N.) of a recent note'
which purported to demonstrate the limiting process
from the bound-state situation to that of scattering.

In reference 2 the integral equation satisned by an
operator Eg was considered such that

(12)

It was then shown that as R—+00 according to a process
such as (9), the integral equation satisfied by E&,(EO„)
goes over into that for the E matrix, containing the
Cauchy principal value of the integral. For the energy
shift, however, one requires Rb(E„):

AE= (Pp„,R&,(E )Pp„), (13)
9 In the case of a parallelepiped boundary, there may be much

less degeneracy. As in the case of the cube, however, levels
coalesce in groups more rapidly than v &, vrhile the spacing between
different groups decreases as v &. Ordinary perturbation theory is
therefore again inapplicable because many levels, whosenumber
increases as v&, cross the perturbed one. One handles that situation
most easily by considering each such group as one degenerate
level, in which case the reasoning is the same as in the case of
the cube.
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with appropriate normalization. Now since both
E„—Ep„and Ep ~~—Ep ~ tend to zero as R ', the
shifted level E„will not, in the limit, be symmetric
between Ep „~ and Ep „+~, as is Ep„. Hence it follows
by the same argument which leads to E in the case of
R&(Ep„), that the limiting integral equation for R&(E„)
contains a boundary condition different from that
expressed by the principal value.

The precise nature of the correct boundary condition
for Ro(E„) depends both on the potential and on the
energy, because the asymmetry of E„between Ep
and Ep „+~ does. Since, as we shall see below, the latter
is a function of the phase shift, knowledge of the
boundary condition presupposes knowledge of the
solution. " A rather complicated self-consistency re-
quirement is thereby introduced.

IV. CONNECTION WITH THE PHASE SHIFT

The next question is that of the actual value of
lim(RAE) as R +op. We—obtain this quantity as
follows": Let the energy level E„=(h'/2 r)tt„k' be
associated with the angular momentum /. Then the
unnormalized wave functions are of the form (7), where

qt(k, r) ~ ft(k, r) —(—1)' exp[2ibt(k)]ft( —k,r). (14)

or
lim hE (E)R= —(2E/k) bt (E). (20)

St(k) in (21) is the S matrix for angular momenta l
and /+2. It can be written

St(k) = W-'(k)s(k) W(k), (23)

The above procedure can readily be generalized to
the case in which the potential includes that of a tensor
and spin-orbit force. In that event we consider (2)&2)-
matrix radial wave functions of the kind used by
Newton "

The unnormalized radial bound-state wave function
is of the form MCt(k„,r), where M is a matrix and

Ct(k„,r) =Ft(k„,r) —(—1)'St(k„)Ft(—k„,r), (21)

if the bound state is one of a mixture of angular mo-
menta i and l+2 He.re Ft(k, r) is a (2X2)-matrix
solution of the coupled radial Schrodinger equations
for angular momenta l and 3+2 which satisfies the
boundary condition

(1 Oq
lim exp[i(kr —-', ~l) jFt(k,r) =! !. (22)
~tO &0 —1)

Here ft (k,r) is a solution of the lth angular momentum
radial Schrodinger equation that satisfies the boundary
condition' and

(exp[2ib (k)j
s(k) =!

0

0

exp[2ibp(k) g)

lim exp[i(kr —-', wl)7ft(k, r) =1. (15)

The function exp(2i5t) is the lth eigenvalue of the
S matrix, b~ being the phase shift due to the potential U.

The number k„ is obtained by solving the equation

q t(k.,R) =0

(cose(k) —sine(k) )
!W(k) =!

(sine(k) cose(k) )
The values k„are obtained by setting

detC t(k,R) =0.

(25)

(26)

or

(—1)'ft(k„,R)/ft( —k„,R) =exp[2ilt (k„)j. (16)
This equation determines not only k„but also a
Hermitian projection P(k„) such that

The corresponding equation in the absence of a
potential is

(—1)tfot(kos, R)/fot( kos, R) = 1. (17)

In order to associate the level k„with a specific unper-
turbed level kp„, we divide (16) by (17) and then let R
increase to infinity via (9).We obtain, by the boundary
condition (15),

lim exp[—2i(k —kp )R)=exp[2i5t(kp )j, (18)

and

where either

St(k) = I

P(ko.)C ot (ko.,R)'=0, (28)

P(k„)C t(k„,R) =0. (27)

This projection is a measure of the mixture of angular
momenta in the bound state with binding energy
E„=(k'/2rts) k„'.

In the absence of a potential, we have

and hence
lim (k„—kp„)R= —bt (kp„), (19)

or

(1 Oq
P(ko )=Po—= !

&0 0)
'

' For the correct boundary condition, see B. S. DeWitt,
Phys. Rev. 103, 1565 (1956), following paper. See also, K. M.
Watson and W. B. Riesenfeld (to be published).

"An argument similar to the one used here appears in the
work of E. Beth and G. E. Uhlenbeck, Physica 3, 727 (1936);
4, 915 (1937);L. Gropper, Phys. Rev. 50, 963 (1936);see also D.
ter Haar, E/ements of Statistical 3fechunics (Rinehart Publishing
Company, New York, 1954), p. 196. The use made of it there,
however, and its purpose were somewhat di6'erent.

]0 Oy
P(kp„) = I—Pp—= !

EO 1)

In the erst instance, the "unperturbed" bound state is
one of angular momentum i, in the second, of /+2. It

"R.G. Newton, Phys. Rev. 100, 412 (1955).
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and

lim U(k„) =W(kp„), (31)

—3.(ko.), if P (kp.)=Po,
lim (k„—kp„)R= (32)—3p(kp„), if P(ko„)=1—Po.

We therefore again obtain an equation of the form
(19), with the first eigen phase shift appearing if the
level was shifted from one of angular momentum t,
and with the second eigen phase shift if it was shifted
from one of angular momentum l+2. (These two
alternatives have, of course, nothing to do with the
question of which of the two angular momenta pre-
dominates, in any sense, in the bound state. )

V. DISCUSSION AND APPLICATION

The question arises, under what conditions it is a
good approximation to replace hE by —2Ek 'hi(E)R —',
or equivalently, the bound-state equation containing a
sum over discrete states, by an integral equation with
the appropriate boundary condition. Since (19) was
obtained by replacing, at the boundary, the spherical
Bessel functions by their asymptotic values, the
criterion of validity is that

kR&&t—=kR, (33)

Classically speaking, this means that we are excluding
a situation in which the particle spends all of its time
in a shell extending from R to an inner radius R~
comparable with E.. Only those particles will fail to
"see" the boundary which spend a much larger amount
of time near the center than in any equal volume
relatively close to the periphery. "

must then be possible to write

P(k„)= U '(k—„)P(kp„)U(k„), (29)

where U is unitary and detU=+1. This expresses
merely the requirement that the bound state at k„be
continuously connected with the unperturbed state at
ko„. If that were not so, the energy shift AE would not
be a well de6ned quantity.

We now multiply (27) by U(k„) on the left, by
Fi '(—k„,R)W '(k„) on the right, and use (21), (23),
and (28). The result is

P(ko.)&i(—ko,R)&i '(ko. ,R)
XU(k„)Fi(k„,R)Pi '(—k„,R)W '(k„)

=P(kp„) U(k )W '(k„)s(k„). (30)

At this point, R is allowed to increase to in6nity via
(9). Because of (22), we obtain.

P(kp ) U(kp„)W '(kp ) lim expL —2i(k„—kp„)Rj
=P(kp ) U(kp )W '(kp„)s(kp„).

It follows from this that

In many problems of physical interest, the situation
is not that of a single particle with a 6xed central
potential, but that of two particles with an interaction.
Now, since neglect of the boundary restricts us to
particles "near the center" (in the above sense) anyway,
for these particles the problem of "interaction plus
walls" should be approximately replaceable by that of
"fixed potential plus wall. " In other words, if both
particles tend to be near the center of a well, then the
two individual wells they see are not very different and
hence are approximately replaceable by one well for
the center-of-mass coordinates and one well for the
relative coordinates. In that case the results of this
paper are applicable.

We now wish to apply our results to a problem of
many particles with short-range interactions. The first
simplification to be introduced is the replacement of
the complicated potential that an individual particle
sees, by an average constant one, depending on its
energy. To the extent to which we neglect interactions
involving more than two bodies, we can take for this
potential the sum of the energy shifts experienced by
the particle due to its interaction with all other particles,
one at a time

V(k) =Q AE. (34)

If the number of particles is proportional to the volume,
then the number E(k,l

t ki) must increase linearly with
R in order for

P X(k,1~k,)

to increase as R, since 3l increases linearly with t.
Consequently, V(ki) becomes independent of R.

We may apply (35) to the case of a nucleus, and
compare the result with Brueckner's. It is shown in
the second appendix that if we neglect surface eGects,
then

where
E(k,loki) =4s 'R(21+1)g(k,ki),

g(k, ki) =1+@(k,ki),

(36)

(37)

The calculation of V(k) by (34) is now a matter of
solving a number of two-body problems. One must,
then, take two particles at a time and calculate the
energy shift caused by the interaction between them.
The sum of these energy shifts is

V(k,)=g ~E,(k)X(k,t
~
k,),

k, l

where E(kt
~
ki) is the average number of particles with

relative momentum k and relative angular momentum
t when "colliding" with particle No. 1, which has
momentum ki. When the enclosure is large, we use (20):

V(k,)=- t'dk2Ek- P3,(k)X(k, teak, )R-. (3S)

'3This last formulation must be taken with a grain of salt,
because it alone might lead one to suppose that only a relatively
thin shell is excluded, (R—E~)/8&&1. But that is a much weaker
restriction than (33).

k p' —kg' —4k'
ir(k, ki) =lesser of 1, (38)
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where"

V(kr) =—gy 2
&

-'{ai,+a~)

zM&0
f t(k) g(k, kt) k'dk, (39)

(40)

The function g(k, kr) is the (unnormalized) probability
for encountering the relative momentum k if the
momentum of particle No. 1 is k~. It is the same as the
function E(k', k) used by Brueckner. "Use of (36) in
(35) then leads to

principle. ' In a high-density fermion system, the use of
an ordinary "free" scattering phase shift is of course
unjustified. On the other hand, if the exclusion principle
is to be taken into account in some approximate manner
by suitably modifying the phase shifts used, then 5 no
longer has the significance of a phase shift and it
becomes a matter merely of notation whether the
quantities used are called tanb or 5. The modi6cations
due to the full use of the exclusion principle are at
present unknown.

whereupon (39) becomes

V(kt) =—2iss p$&sr+kr&

f(k) g(k, kr) k'dk.
xM~p

(41)

Equation (41) is now in precisely the same form as
Brueckner's. "The only difference is the occurrence of
8&(k) in (40), compared to Brueckner's use of tan5~(k). "

The self-consistent approach used in the recent
formulation of the "coherent model'"' of the nucleus
and described in terms of energy shifts in reference 2,
is equally applicable to (39). In that case, 5& would be
calculated in the presence of V(k).

The use of (20) for a many-particle system has been
subjected to a check in statistical mechanics, "where it
can be applied to the calculation of the second virial
coeKcient. The result agrees with that of Beth and
Uhlenbeck. " The use of Brueckner's result does not
lead to a similar agreement.

As far as the applicability of (41) to nuclear physics
is concerned, a word of caution is necessary. While we
believe that the arguments of this paper tend to render
Brueckner's use of tan8 (and, equivalently, of the
principal value in his integral equation), in a situation
where both his and our approaches are applicable,
extremely dubious, there is another eGect which neither
his nor our result fully take into account: the exclusion

"K.A. Brueckner, Phys. Rev. 96, 508 (1954), Eq. (22). This
equation, however, contains an error. The factor multiplying the
square bracket should be (ko/kk') instead of (ko/k). Brueckner's
k is our k~, and his k' is our k. Neglect of surface terms means
setting k0=0. Then Brueckner's (22) reduces to our (37).

's The fact that in (39) we have used (20) even in the case of
large relative angular momenta l is of no importance, because
then 8& is small anyhow. In practice one will use only the first
terms of (39).

"Reference 14, Eq. (21). The minus sign is there incorporated
in f(k). There is a factor of k'2 missing in the integrand of (21).

'~3rueckner, Levinson, and Mahmoud, Phys. Rev. 95, 217
(1954), Eq. (30)."K. A. Brueckner, Phys. Rev. 97, 1353 (1955);K. A. Brueckner
and C. A. Levinson, Phys. Rev. 97, j.344 (1955); R. J. Eden and
C. N. Francis, Phys. Rev. 97, 1366 (1955); Brueckner, Eden,
and Francis, Phys. Rev. 98, 1445 (1955); 99, 76 (1955); 100, 891
(1955)."We are indebted to Professor K. M. Watson, who carried out
this check. '

If spin and isotopic spin are taken into account, then
fr(k) must be replaced by
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APPENDIX A

We want to show here that the number of non-
vanishing coefficients u (" ') in the proper linear combi-
nations of plane waves for perturbation theory increases
as v&.

We can write

Ps &" (r) = P a '" "exp(ik„& 'r)
a=1

= P b$~&" "g$(k r)F &"(r).
L, m

As the volume increases to infinity, the functions
j&(k„r)V& (r) satisfy the boundary condition better and
better. Since, moreover, V&, &

~ is diagonal, each fs„,
if the limiting process is properly chosen, will for large
v approach a multiple of a single

47rj&(k„r) V&(r) =i ' &EQs exp(ik„r) Y'&(k),

where I'g is some surface harmonic.
For large v, by standard arguments,

and hence

P a.&" '& exp(ik„& & r)~

=c dQsF)(k„) exp(ik„r)

Comparison shows that for large v

a &" '&~ V&(k„)

2' We gratefully acknowledge an interesting discussion on thiz
point wi&h Professor K, A, Brueqknqr,
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for some l. The 6xed number of zeros of the right hand
side can make only a limited number of a 's vanish.
Hence the number of nonzero u 's must still increase
as L'.

The argument presented shows the connection be-
tween the large degeneracy and the limiting process
with constant l used in a spherical box. A sequence of
box sizes which keeps the growth of degeneracy to less
than L' corresponds to one in the spherical case in
which l is allowed to increase to infinity.

APPENDIX B

We now want to calculate the number of particles
which exhibit relative momentum k and relative
angular momentum l when colliding with particle No. 1:

CV(kl~kylymy)= P 1V(ktm~kylymy)

dk2 p P(klm~ kqlqmqk2l2m2)37(k2l2m2), (8.4)
m J i2m2

in to which we substitute (8.1). But

./(2~)'=R'/6~', if k,'&k„
(8.5)

if k2'& k p,0,
P(ktm

~
kglgmgk24m2)

if surface terms are neglected. Use of (8.2), (8.3), and
(8.5) in (8.4) leads to

(dk') (dk, ') (dk, ')P(klm
~

lr')P(ir'
~
k, 'k2')

&(kiI kt, m)

The probability that if particles number 1 and 2
~

dk2Z P(4 ~k24m2)&(kAm2)=&(4')
have momenta and angular momenta k~, l~, m~, and
k~, 12, m2, the relative momentum and angular mo-
mentum measured are k, l, m, is given by

XP(ka'~k, l,m,)P(k, '~k, 4m2), (8.1)

in a self-explanatory notation.
The probability P(klm~k') is readily obtained from

the well-known expansion

e'"'=47r Q i'F
& (k)*V& (r) j&(kr).

The normalized wave functions are

0'()= '*", A-()=(lk&) 'I'"()j(k),
for kR))E, if we average the oscillating normalization
integral of Pqq over k. It follows that

P(klm~ k') =6m (O'R) 8(k —k')
t
I'( (lr')

~
. (8.2)

f=2~—'E(2t+1) (dk, ') (dk, ')k
—'k '

~ [ki' —2k'i (Az

X 8(k k') b(—kg kg')
i

—Ftg"~(kg')
i
', (8.6)

since
P (k'

~

kg'k, ') = h (k' —-', k, '+-', k, ').

The integral in (8.6) is evaluated by rotating the k'

coordinate system so that its s axis coincides with k&,
over which we integrate later. The double integral is
then seen to be zero for k) ~ (k~+k~), and for
k &-', (kg+k p),

dQa~
~

F&~ (k~') ~' dp d costt=2vr(1+p),

Apart from a normalization factor, P(k'~klm) is
equal to P(klm~ k'). From the requirement that k p' —kg' —4k'

@=lesser of
4kkg

one obtains

P(k'~kim) =k'-2S(k —k')
~

I"P(k') ~2. (8.3)

Consequently,

1V(kl
~

k&l&m&) =4m 'R(2l+1) (1+p), (8.7)

which is independent of I& and m& and equal to S(kl
~
k&).


