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Nuclear Many-Body Problem*

H. A. Bzrmzt
Cavendish Laboratory, Cambridge, England

(Received March 12, 1956)

A self-contained and largely new description is given of
Brueckner's method for studying the nucleus as a system of
strongly interacting particles. The aim is to develop a method
which is applicable to a nucleus of 6nite size and to present the
theory in sufhcient detail that there are no ambiguities of inter-
pretation and the nature of the approximations required for
actual computation is clear.

It is shown how to construct a model of the nucleus in which
each nucleon moves in a self-consistent potential matrix of the
form (r'~ U~ r) (Sec. II). The potential is obtained by calculating
the reaction matrix for two nucleons in the nucleus from scat-
tering theory. Some complications arise in the definition of the
energy levels of excited nucleons (Sec. III). The actual wave
function is obtained from the model wave function by an operator
which takes into account multiple scattering of the nucleons by
each other (Sec. IV).

The method of Brueckner is a vast improvement over the
normal Hartree-Fock method since, in calculating the self-
consistent potential acting on an individual particle in the model,
account is already taken of the correlations between pairs of
nucleons which arise from the strong internucleon forces (Sec. V).
Although the actual wave function is denvable from a wave
function which corresponds essentially to the shell model, the
probability of finding a large nucleus of mass number A "actually"
in its shell model state is small (of order e ~", where a is a con-

stant) (Sec. VI). The influence of spin is investigated (Sec. VIII).
In the case of an inhnite nucleus, an integral equation is obtained
for the reaction matrix, just as in the theory of Brueckner and
Levinson (Sec. IX).

The exclusion principle must be applied in intermediate states
in solving the integral equation for the reaction matrix. This
makes an enormous di6erence for the solution. When the exclusion
principle is used, the scattering matrix is very nearly given by the
Born approximation, for any well-behaved potential (Sec. X).
Numerical results are given for the case when nucleons interact
only in S states, an assumption which leads to saturation without
a repulsive core. The agreement with observation is fair to poor,
owing to the poor assumption for the interaction (Sec. XI).
Brueckner's result that three-particle clusters give a small con-
tribution to the energy is confirmed, although the numerical value
is many times his result; the calculation is then extended to the
case of a repulsive core (Sec. XII). The dependence of the
binding energy on the mass number A is investigated for satu-
rating and nonsaturating interactions (Sec. XIII). Terms of
relative order 1/A are calculated, and it is shown that these terms
are much smaller than Brueckner and Levinson found, making
the method also applicable to relatively small nuclei (Sec. XIV).
Some aspects of the problem of the 6nite nucleus are discussed,
including that of degeneracy (Sec. XVI).

I. INTRODUCTION

~~EARLY everybody in nuclear physics has mar-
velled at the success of the shell model. We shall

use the expression "shell model" in its most general
sense, namely as a scheme in which each nucleon is
given its individual quantum state, and the nucleus as
a whole is described by a "con6guration, " i.e., by a set
of quantum numbers for the individual nucleons. For
instance, the collective model would be included in this
definition of the shell model, the only differences being
that the potential in which the individual nucleons
move is not spherically symmetric but ellipsoidal, and
that the emphasis is on different phenomena.

The shell model, defined in this wider sense, has had
many triumphs in explaining the positions and proper-
ties of states of the nucleus. ' In addition, Feshbach,
Porter, and Weisskopf2 have shown that the funda-

mental concept of quantum states of individual nucleons
continues to have good meaning even for free neutrons
of moderate energy interacting with the nucleus.

While the success of the model has thus been beyond
question for many years, a theoretical basis for it has
been lacking. Indeed, it is well established that the
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forces between two nucleons are of short range, and of
very great strength, and possess exchange character
and probably repulsive cores. It has been very dificult
to see how such forces could lead to any over-all poten-
tial and thus to well-defined states for the individual
nucleons.

In view of this paradox, it has often been suggested
to abandon the idea of interaction of nucleons in pairs
inside the nucleus, and to assume instead that nucleons in
large aggregates act "collectively" by creating an over-
all, smoothly varying potential. In par ticular, it has been
suggested' 4 that there be a general "meson potential"
in the nucleus, with high meson density and relatively
little variation of the potential from point to point.
Such an assumption is again very difficult to reconcile
with known facts about mesons: From the analysis' of
the scattering of mesons of moderate energy (a few
hundred Mev), it follows that the coupling of mesons
with nucleons is rather weak at distances of the order
of A/pc=1. 4&&10 " cm. Indeed, the coupling at these
distances is essentially proportional to the pseudovec/or
coupling constant f', which, accordin. g to the analysis'
of meson scattering, has a value of only about 0.08.
The pseudoscalar coupling constant g'= (23ff/p)'=14
becomes important only for phenomena which involve
a transfer of momentum of the order of Mc, and hence
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at distances of the order of the proton Compton wave-

length A/Mc. Only at such very small distances from a
nucleon will the meson density become high. It is
difficult to see how this should lead to a meson potential
smooth in space inside the nucleus, or how nonlinear
terms in the meson 6eld could be important at an
average position in the nucleus —of course, they will be

very important in the immediate neighborhood of each
nucleon. Thus one is automatically led back to the
same difficulties which occur w'hen two-body forces
between the nucleons are assumed.

But even apart from the specidc idea of the meson

potential, there are strong arguments to show that the
two-body forces continue to exist inside a complex
nucleus and are not replaced by a general smooth
potential. ' These arguments have recently been sum-

marized by Brueckner, Eden, and Francis. ' The point
is that there is abundant evidence that the nuclear
wave function contains very strong components of high
momentum which manifest themselves in such processes
as the capture of ~ mesons and the photoelectric eGect
caused by high-energy ()100 Mev) y rays. In both
these cases, a large amount of energy without much
momentum is given to the nucleus. In order for a
nucleon to absorb this energy, and at the same time to
conserve momentum, the nucleon must have had a
large momentum before it absorbed the m meson or the

p ray; i.e., the wave function of the nucleus in its
normal state must contain components corresponding
to large momenta of an individual nucleon. Another
process in which these components manifest them-
selves is the "pickup process" in which an incoming
proton of high speed picks up a neutron from inside the
nucleus to form a deuteron: in order to be "picked up, "
the neutron must have had a large momentum in the
nucleus. Perhaps the best way of measuring the
momentum distribution in the nucleus is to study the
energy distribution of protons scattered "quasi-elas-
tically" by a nucleon in the nucleus; this again shows

large components at high momentum. All these proc-
esses show that the "potential" is Quctuating violently
from point to point in the nucleus, which is com-
patible with the assumption that two-body forces con-
tinue to act inside the nucleus without much modi-

6cation.
Similar difhculties exist in understanding the success

of the "cloudy crystal ball" model. It is true that Lane
and Wandel' could explain that the imaginary part of
the potential between nucleon and nucleus is very
small, but only by essentially a,ssurn. ing the validity of
the shell model. On the other hand, Lane, Thomas, and
Wigner, ' using orthodox methods of quantum mechanics
and some seemingly plausible assumptions, obtained
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values for this imaginary part which were about 20
times too large. This large result had always been
assumed correct before the war, leading to the hypoth-
esis of a "black" nucleus.

Brueckner has developed a powerful mathematical
method which for the first time promises to resolve this
paradox. In a series of papers with his collaborators, he
finds that one can calculate the nuclear energy levels
using a self-consistent field method, even though the
forces are of short range. Furthermore, the nuclear
wave function retains the strong high-momentum
components which are indicated by experiment.

The general method has been developed by Brueckner
and Levinson, "on the basis of the theory of multiple
scattering of Watson. " The theory was evaluated for
a square-well interaction between nucleons by Brueck-
ner"; one of his main results was that the nucleons
appear to have ali effective mass of only about one-half
their actual mass; this point will be discussed in Secs.
X and XI. Brueckner's calculation" essentially replaced
two earlier papers" in which a more special assumption
was made about the interaction between two nucleons,
namely that it was the particular potential derived from
meson theory by Brueckner and Watson. "The newer
approach, "in which the nuclear interaction is required
only to be in accord with the known facts on two-
nucleon scattering and is otherwise left arbitrary, is
more satisfactory than the older one," in which the
problem of deriving two-body nuclear interactions from
meson theory gets mixed up with the entirely separate
problem of deriving nuclear structure from a given
two-body interaction.

In a further paper, "Brueckner finds that for a very
large nucleus, the corrections to the self-consistent field
approximation are exceedingly small, of the order of
1 part in 1000 of the energy. These corrections arise
only from intermediate states in which three (or more)
particles are successively excited. In the same paper,
Brueckner develops a greatly improved scheme for
perturbation theory, the "linked cluster expansion. "
Other corrections" are of relative order 1/A, where A

is the number of particles in the nucleus (see also
Sec. XIV). Further papers have been concerned with
applications" of the theory and with a diR'erent pre-
sentation of the method. "

In spite of its apparent great accomplishments, the
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theory of Brueckner et al. has not been readily accepted
by nuclear physicists. This is in large measure the
result of the very formal nature of the central proof of
the theory (reference 10, Sec. II). In addition, the
definitions of the various concepts used in the theory
are not always clear. Two important concepts in the
theory are the wave functions of the individual particles,
an.d the potential V, "diagonal" in these states (refer-
ence 10, Sec. V). The paper by Brueckner and Levinson
defines rather clearly how the potential is to be obtained
from the wave functions, but not how the wave
functions can be constructed from the potential V,.
Apparently, BL assume tacitly" that the nucleon wave
functions are plane waves, but in this case, the method
is only applicable to an infinite nucleus. For a finite
nucleus, no prescription is given for obtaining the wave
functions.

It is the purpose of the present paper to show that
the theory of Brueckner gives indeed the foundation
of the shell model. It will be shown in Sec. II that a
self-consistent scheme caN be developed for a /vite
nucleus which permits determination not only of its
energy levels, but also of the wave functions of the
nucleons and of the whole nucleus. This extension, like
the original BL scheme, already includes in the self-
consistent field all two-particle correlations, which the
Hartree method would include in the "configuration
interaction" (Sec. V). Essentially, the Hartree method
replaces the action of all other particles on a given one
by an average potential, while the Brueckner method
treats the interaction of any two particles exactly, and
only replaces the action of any further particles on the
interacting pair by an average. Brueckner's method
would even give an improvement over the Hartree
method for the electrons in an gtom, and will undoubt-
edly be very important for the theory of electrons in
solids.

In order to satisfy all requirements, the self-con-
sistent potential acting on a nucleon in a finite nucleus
must be taken to be a potential matrix, (r' V~ r), or
transformed to momentum space, (k'

~
V k). The

Hartree method which uses a potential V(r), and the
original BL method for an infinite nucleus which gives
a potential V(k) depending on momentum only, are
then special limits of our self-consistent potential.

An actual solution of the problem is attempted only
for an in6nite nucleus. In this case, the choice of wave
functions is obvious, namely plane waves. Then the
problem reduces to the determination of the reaction
matrix of scattering theory for a given set of nucleon
wave functions. This requires the solution of an integral
equation in momentum space (Sec. IX). From the
derivation of this equation, it is clear that the inter-
mediate states must satisfy the exclusion principle; this
fact was realized by Brueckner, but was not taken into

"This assumption is only mentioned once in their paper, and
this as late as Sec. VI.

account in his actual solution. In fact, the exclusion
principle is found to have a decisive inhuence on the
solution (Sec. X). Fortunately, the exclusion principle
makes the integral equation easie~ to solve, by virtue
of the rather large radius of the Fermi sphere of
occupied states in momentum space. If the potential is
well-behaved, in particular if it does not contain a
repulsive core, the scattering matrix turns out to be
essentially equal to the matrix of the interaction poten-
tial between two nucleons. This result, which would
not be true without the exclusion principle, means,
most surprisingly, that the theory reduces nearly to
the Born approximation. The error in the Born approxi-
mation is only about 5%%uo.

This result is closely connected with the rapid con-
vergence of the theory itself. Brueckner" already
realized that the correction terms due to three-particle
clusters (and higher order perturbations) are small
only by virtue of the Pauli principle. Our own recal-
culation of the three-particle cluster correction gives a
result about 20 times larger than Brueckner's (Sec.
XII) but still small enough to guarantee rapid con-
vergence of the theory, vis. , about 1%of the main term
in the interaction. The successive approximations are
then (1) the Born approximation, (2) the correction
arising from the solution of the two-particle scattering
equation which is about 5% of the first approximation,
(3) the three-particle cluster term which is about 1%
of the first order. Thus the successive approximations
converge by about equal steps, which is very plausible.
(In Brueckner's original theory, the second approxima-
tion was about equal to the erst and the third only
about 0.1 percent of it, which seemed rather miracu-
lous. ) Indeed, once the importance of the Pauli prin-
ciple is realized, it would seem possible —for a well-
behaved nuclear interaction —to solve the entire nuclear
problem by a suitably arranged perturbation theory.

This is not possible, of course, if the interaction
between nucleons contains a repulsive core. In this
case, the Born approximation would give an infinite
result, and the reaction matrix is in no way similar to
the Born approximation. To include the Pauli principle
in this case, a di6erent treatment is required; this will
be discussed in a future paper by Bethe and Goldstone.
The exclusion principle can be shown to act like an
increase of the effective radius of the core.

In order to obtain a feeling about the orders of mag-
nitude, a special model is calculated in Sec. XI. Since
the results on repulsive-core potentials are not yet
available, a diGerent potential was postulated which
would give nuclear saturation in a simple way. Inter-
action was assumed to exist only in s states, as
Brueckner" did in his evaluation. The results are fair
to poor; in particular, the equilibrium density comes
out about 30 times too high. This is not too surprising
in view of the arbitrary nature of the potential assumed.

Indeed, we consider it premature to attempt to
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obtain quantitative results from the Brueckner method
until the method itself is fully established, including a
treatment of a repulsive core plus an attractive poten-
tial together with the Pauli principle. Once the method
is established, there will still remain the question of
the proper two-nucleon potential to be used. It is not
at all likely that all potentials which give the same
nucleon-nucleon scattering at low energy, will also
give the same nuclear binding energies; in fact, the
example of the repulsive core shows that this cannot
be generally the case. It will be very interesting to see
whether we can learn additional facts about the nucleon-
nucleon interaction from a study of complex nuclei.

In any case, confidence in the Brueckner method
cannot be based on numerical agreement (or lack of
agreement) between the results derived from it and
experiment. Such agreement will show whether the
assumptions made about nuclear forces are acceptable
or not. The method must rest entirely on mathematical
proof and internal consistency.

Some contributions are made in this paper towards
the mathematical development. In Sec. III, the steps
required to obtain the reaction matrix are discussed
explicitly. Certain complications appear; in particular,
it is not possible to assign a unique energy to a nucleon
in an excited state. Fortunately, these problems are of
no practical importance for well-behaved potentials. In
Sec. IV, the model operator connecting the actual wave
function with the model wave function, is written down.
In Sec. VII, the definitions are discussed which are
necessary to make the theory applicable to finite nuclei.
In Sec. VIII, the inQuence of nucleon spin and charge,
and their behavior in intermediate states, are treated
in detail.

Brueckner and Levinson" have shown that there are
certain correction terms in the theory which are of
order 1/A. . In Sec. XIV it is shown that these are
numerically about 100 times smaller than BL found,
i.e., they are of the order of 1/A times the three-particle
cluster corrections of Sec. XII. Matrix elements, which
correspond to the excitation of one nucleon rather than
two, and which would vanish for an infinite nucleus,
likewise give contributions of order 1/A or less (Sec.
XV).

Brueckner" has obtained the somewhat surprising
result that the energy of any large system should be
proportional to the number of particles, A. It is pointed
out that this holds only if the density is kept fixed. The
actual energy is obtained by varying the density until
the energy is a minimum; then only saturating forces
give an energy proportional to 2 for the system; for
nonsaturating systems for which the density varies
with A, the energy per particle also varies (Sec. XIII).

The problems for finite nuclei are discussed i' Sec.
XVI. They are essentially two, vis. (a) the behavior of
the self-consistent potential near the surface of the
nucleus and (b) the degeneracy of many configurations.

(1/2M)V'P„(r)+E„P„(r)= ~' d'r'(r'~ V~ r)P„(r'). (2.3)

The f„form a complete set, and can easily be shown to
be orthogonal:

)"P„*(r)P„(r)d'r=0, if E„&E„. (2.4)

For reasonable assumptions about the potential, i.e. ,
essentially a well of a certain radius, there will be
discrete states (the states of the shell model) for E„(0,
and continuum states for E„&0.

Configuration interaction should be taken into account
only between degenerate configurations. The theory has
enough Qexibility to permit a definition of "degeneracy"
which is convenient for calculation. Generally, the
theory justifies in all essential respects the practice
of current shell model calculations.

The reader who is interested in results but not in
complicated theoretical developments, is advised to
read Sec. II, then Kq. (3.1) and the explanation of the
symbols in it but not the rest of Sec. III, then Secs.
IX—XII and XVI. The other sections may be left out
without essential loss of continuity. A knowledge of the
papers by Brueckner and collaborators'~" is not
required.

II. DEFINITION OF SELF-CONSISTENT FIELD

We consider a finite (but large) nucleus. We shall
assume a potential V in which each individual nucleon
moves, then calculate the wave functions of the nucleons
in this potential, and then construct the potential V
again from the wave functions. The resulting potential
should of course be equal to the starting potential —this
is the condition of self-consistency.

The potential V must be assumed to be a potential
matrix,

("II'lr), (2.1)

rather than a simple potential such as is assumed in
the Hartree theory for atoms. In that theory, it is
assumed that

("I
I'I r) = I'(r)~("- r). (2.2)

That the more general assumption (2.1) is necessary,
follows from Brueckner's" result for the infinite nucleus,
vis. , that the diagonal elements of V in a momentum
representation depend strongly on the momentum k
(see also Secs. X and XVI of this paper). Such velocity-
dependent potentials can, in ordinary space, be repre-
sented only by a nonlocal potential matrix (2.1). This
generalization of the potential concept is one of the
reasons why Brueckner's method has so much greater
power than the original Hartree method. In effect, a
nonlocal potential (but of course one of special type)
is already used in the Fock method.

A state of a nucleon in. the potential (2.1) must
satisfy the Schrodinger equation (5= 1):
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A state of the nucleus is de6ned by specifying which
of the one-nucleon states f„are occupied by nucleons.
The set of occupied one-nucleon quantum states will be
called the "configuration. " Each con6guration will be
described by a Slater determinant wave function which
contains all the occupied one-nucleon states. This deter-
minant we call the model wave function and we denote
it by 4. Because of the properties of the nucleon wave
functions, the model wave functions for diferent con-
figurations are orthogonal. It is essential for this
purpose that all nucleon wave functions are taken in

the same potential U. For the present we disregard
degeneracies (see, however, Sec. XVI).

AInong the configurations, we single out one whose

properties we wish to calculate. This we call the
chosen configuration. This need not necessarily be
the lowest state of the nucleus, but we shall generally
consider states of relatively low energy (say, below
20-Mev excitation energy). Throughout this paper, the
properties of this chosen configuration will be calculated
more carefully than those of other configurations.

It is often convenient to assign definite quantum
numbers to each nucleon, e.g. , by considering the main
diagonal of the Slater determinant. Thus we may speak
of the state ej of nucleon j; the states in the chosen
configuration we shall denote by superscripts 0, thus:

.082 ~

Now the actual interaction between two nucleons is

introduced; following Brueckner, it will be denoted by
v. It is a function of the distance between the two
nucleons, r;j, their spins and charge, and it may contain
exchange operators. It is assumed to be determined
from experiments on the two-nucleon system. Three-

body forces are assumed to be negligible. Whether this
is in fact true for nuclear forces is not known at present;
but it is clearly the simplest assumption to make, at
least until it is clearly proved that no agreement with

observation can be obtained without three-body forces.
The matrix elements of the known operator v;j can

be determined between two arbitrary conhgurations of

nucleons. Obviously, the states of all nucleons other
than i and j must remain unchanged in the transitions.
The states of all these other nucleons will inhuence the
matrix elements of ~;j only indirectly, by determining

the potential operator (r'l Vl r) of the self-consistent

field and thereby the wave functions P; and P, . How-

ever, since we now consider the wave functions P„ in

the potential V as giver, we need only consider matrix

elements such as

(2.5)

where the subscript iV indicates that the matrix element

is to be taken between the determinant (model) wave

functions describing the initial and Anal configurations

of the nucleus, which contain nucleons i and j in the

states e;, ej and rI, , ej', respectively. We shall assume

that all other nucleons are in the states prescribed by

the chosen configuration, eI,'. The states e;, rIj~ s' Qj'
need not coincide with e; and ej, respectively.

The matrix element (2.5) vanishes automatically if
any one of the four states rs;, mj, e or ej coincides with
one of the states occupied by one of the other nucleons,
e~', or if e,=ej or e =ej . If none of these prohibitions
due to the Pauli principle exists, we have

where the matrix elements with the subscripts P are
taken without regard to the presence of other nucleons,
and are given by

)&Pn;(r;)Pn;(r, )d'r, d'r, . (2.7)

The integrals in (2.7) imply also summations over spin
and charge, and the operator v;j may involve spin and
charge operators. The second term in. (2.6) is the well-
known exchange term. There are obvious selection rules
between primed and unprimed nucleon states.

It will be useful to consider a very large nucleus.
Then the wave functions over most of the nucleus can
be approximated by plane waves. This model will be
used predominantly from Sec. IX on. In this case,
momentum will be conserved between the two nucleons,
&M. )

k,'+k =k;+k, .
Then the final spatial wave function of nucleon j is
completely specified if that of nucleon i, and the initial
states of both, are given.

In the next section, we shall show how at least the
most important matrix elements of V, the one-nucleon
potential, can be determined from the interaction v;j.
These matrix elements are obtained with respect to
the wave functions P„(r) (e representation). Once they
are known, we may obtain V in the r representation
by the usual formula of transformation theory:

For self-consistency, the resulting (r'l Vlr) must be
identical with the initial V used in Kq. (2.3). Just as
in the original Hartree theory, this self-consistency
must be achieved by trial and error.

BI developed their theory without first defining a
potential V. This was made possible by their tacit
assumption" that the one-nucleon wave functions are
plane waves. This assumption is appropriate for an
infinite nucleus and follows in this case from the
general argument of invariance of all physical quan-
tities with respect to translation. Thus in this special
case a knowledge of the potential V is not required to
obtain the wave functions. In the case of a finite
nucleus, just as in the case of the Hartree-Fock atom,
the first step in the development of the self-consistent
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field must be a "guess" of the one-particle potential V.
Our method in this paper contains the Hartree-Fock
theory as an approximation (Sec. V) and goes over
into the Brueckner-Levinson theory in the limit of an
infinite nucleus (Sec. IX).

In every case, and thus also in the case of an infinite

nucleus, the set of one-nucleon wave functions must be
uniquely defined. The fact that the wave functions in

an infinite nucleus must be plane waves defines them

except. for one parameter, ~is. , the density of the
nucleus. To determine the density, the self-consistency

requirement must be used. Eden" ' has shown that
this requirement can be satisfied by formally calculating
the energy of the nucleus as a function of the density,
and then finding the minimum of this function. Thus
the self-consistency in this case is equivalent to the
variational problem. This will be discussed in more

detail in Sec. IX, and also in E,"Sec. IV.

III. REACTION MATRIX

The main feature of the Brueckner theory is the use

of the reaction matrix" for the scattering of two
nucleons while they are moving in the nuclear medium.

Consider, for example, the scattering of two nucleons i
and j from their states e, e,' in the chosen configura-

tion to some other states n,', e . The reaction matrix
6 for this problem is the solution of the equation:

The denominator e, or rather —e, means the exci-
tation energy of the two nucleons i and j in the inter-
mediate state e;"e;", as compared with their state
e e,' in the chosen conhguration, both calculated in
the nuclear medium, i.e., under the inQuence of all the
other nucleons. It will be calculated presently.

It is clearly necessary to exclude states for which
e=0. This is done by BL by using the principal value
in their Eq. (3) which corresponds to our (3.1). (Since
they are dealing with an. infinite nucleus their Kq. (3)

"R.J. Eden, Phys. Rev. 99, 1418 (1955).
2 R. J. Eden, Proc. Roy. Soc. (London) A235, 408 (1956). This

paper will be quoted as E.
"The real solution oi the scattering equation {3.1), corre-

sponding to standing waves, is required, not the complex solution
corresponding to outgoing waves; therefore we are dealing with
a reaction rather than a scattering matrix. Accordingly, the nota-
tion t;; is not appropriate since it is commonly used for the
complex scattering matrix. We did not wish to use r or R because
the distance between nucleons and the nuclear radius occur
frequently, and we have therefore adopted the notation G used
by M. L. Goldberger, Phys. Rev. 84, 929 (1951).Avoidance of t
also has the advantage of making the notation more different
from that for the kinetic energy for which we use T, as Eden
does in E. We think that IIo for the kinetic energy should be
avoided since the free-nucleon assumption does not a8'ord even a
"zero-order" approximation to the problem.

contains an integral over intermediate states rather than
a sum. ) Following Eden s' we have introduced the
operator Q to ful611 the same purpose as the principal
value operator: we define Q to be zero for all states
for which e=O, i.e., for the chosen configuration and
for all other configurations which have the same energy.
In addition, we are free to set Q=O for all configura-
tions which have nearly the same energy as the chosen
one, as long as we specify clearly at the beginning of
any particular calculation which configurations we shall
thus regard as "nearly degenerate. " This will be dis-
cussed further in Sec. XVI, where it will be explained
why this freedom in the definition of Q is useful.

It may be noted in passing that singly excited states
cannot be reached from the chosen configuration in the
case of an infinite nucleus because of the momentum
conservation (2.8); i.e., for an infinite nucleus it is
impossible to excite one nucleon without also exciting
the other. In a large but finite nucleus, the matrix
elements (e,se;"

~ e;,
~

e;sN p) are not zero but small, of
order 0 ' (where 0 is the volume of the nucleus)
compared with those elements in which both nucleons
are simultaneously excited with (approximate) momen-
tum conservation (see Sec. XV); leaving them out in

(3.1) would therefore be no great change and will be
done at various points to simplify the calculation.

As has been pointed out in Sec. II, the matrix ele-
ments v~ of the interaction between states of the
complete nucleus vanish if any of the states e e e,"e;"
is occupied by some other nucleon A&i,j in the chosen
configuration, i.e., if any of them is equal to some e&'.
Thus either these states e,', etc. are the states of
nucleons i and j themselves in the chosen configuration,
i.e., they are e and e, or they must be outside the
chosen configuration, i.e., they are normally unoc-
cupied states. For the final state e,'m, both of these
possibilities exist. For the intermediate state rs;"e,",
however, the operator Q;; (as defined) excludes the
possibility that either e; ' or e;" is equal to the chosen
states e,', e . therefore, in this case, both nucleons
must be in normally unoccupied states. Thus the Pauli
principle must operate in the intermediate state. %'e
could indicate this by explicitly summing in (3.1) only
over unoccupied states e;" and m,".

The Pauli principle has the consequence that the
denominators e are in general not even nearly zero,
especially if the ground state of the nucleus is calculated.
The e are all negative. Further, the matrix G,, has by
(3.1) the same selection rules as tt;;: it vanishes if
m =e,', or if either m or e,' is equal to any of the
states occupied by other nucleons, el,'. In this way, the
matrix 6,; depends on the entire chosen configuration
and not merely on the states of nucleons i and j.

The excitation energy —e is given by
—e =E(8)—E(C), (3.2)

where E(C) is the energy of the chosen configuration
C, and the intermediate configuration B(e,m;) differs
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from C(s;snjs) by having the states n;s and SP empty
and the states n; and nj 61led. It will be shown in Sec.
IV, after Eq. (4.17), that for any con6guration with
states e; occupied, one has in good approximation

Z=p(s;I T,
I

n,)+p(s, njI G, jI s, nj)+wig, (3.3)
'b

where mIt. is a constant which is nearly the same for
all states of low excitation, and which therefore cancels
in taking the difference (3.2). Now the interactions Gsi
between any two nucleons k,l other than i,j are the
same in the two con6gurations 8 and C and therefore
cancel in (3.2). Therefore we get

—e,j= B(n;,nj; s,s,nj )+AG;;, (3.4)
where

B(n;,Sj., S;s,n,')

=(S,
I
T, Is,)+p(s,n,oIG;, Is,n, '; s,'n, n;)

kQi
—(n,'I T;In,') —p(s ss'IG'sIs"ni')

+same for nucleon j (3.5)

may be considered as the excitation energy of nucleons
i and j in the field of all the others.

The quantum numbers listed after the semicolon in
the first G;~ matrix in (3.5) give the empty states and
the extra occupied state in con6guration B. The last
term in (3.4) is

AG;j= (s,njIGgjIsgsj) (sjsj —IG;;In,n;)
—(s;ssj I G;, I

s n;)y (n s,' I G;; I
s s ). (3.6)

Since this is only the interaction between one pair of
nucleons while (3.5) is the interaction between one
nucleon and A others, DG;j is of relative order 1/A. We
shall therefore neglect it although it could be taken
into account if we desired.

The reaction matrix (s;ss'IG;i, IS;ss', s,'sjs,sj) is
calculated by solving an equation similar to (3.1).
However, we must remember that in con6guration 8
the states e and ej' are empty, whereas there is an
extra nucleon in state ej. Therefore we must count the
excitation energy of nucleon i from the empty state
e, not from the "initial" state e;. Further, we must
include in the energy denominator the constant exci-
tation energy of nucleon j in going from state ej' to ej.
Explicitly, we have to solve

(sj nfl' I
Gj@ I sgn/g sPsj ~sj)

—(n, ss Ie,gIs,ns')~ P(s, ss—It,iIs, n, )

8(S;",Sj,n~", S;S,nje, nie)

& (s,"s„"
I
G,,

I
S,n,o; n,os,o,s,) (3.7).

The denominator h(s;",sj,ss", s;s,sjs,sI,') is a sum of
three terms similar to the two in (3.5). Thus it is

ordinarily "larger" than the denominator (3.5) oc-
curring in (3.1). This eRect has been mentioned by
Brueckner" in BC and called "propagation off the
energy shell. " In a naive application of the theory of
the scattering matrix, one might have expected the
denominator 8(s,ss', s;,sl, ') instead of that found in
(3.7); this would be much smaller and might even
become zero or negative.

The excitation energy (3.5) can in general not be
written as

8(s;,s;; n, n )=E(s;)+E(s,) E(s )—E(n,')—, (3.8)

i.e., as the difference between the energies of particles
i and j in the now occupied state and in the chosen
state. It is true that the second line of (3.5) may be
considered as the energy of particle i in the chosen
configuration,

E(n,')=(s,'IT;Is,')+P(s sy, 'IG, I, Is sg') (3..9)

But the 6rst line of (3.5) depends not only on the state
occupied by particle i in con6guration 8, but also on
the two empty states e, ej and on the state e; now
occupied by particle j; it can therefore not be written
as E(s,). We cannot define the energy of a normally
empty state n;, but this energy depends on the other
states which are empty or occupied. " The energy
"E(sj)+E(sj)"depends not just on two labels, n;s;,
but on four, R&sjs& and ej .

This is obviously a rather complicated situation. For-
tunately, for the two most important types of inter-
action the dependence on all the additional quantum
numbers is not great, so that (3.8) is probably a good
approximation. The 6rst type is a simple interaction of
the "classical" type, like Yukawa, square well, etc. ,
without a repulsive core. For this type, it will be
shown in Sec. X that the sum term on the right-hand
side of (3.1) or (3.7) gives a relatively small con-
tribution, so that for instance (3.7) reduces nearly to
the first term on the right, the interaction matrix v;~.
This then does not depend on the supernumerary
quantum numbers e, ej', mj, and in this case the first
line of (3.5) is a function of n; alone so that (3.8) is
valid.

The second important type of interaction is a repul-
sive core."In this case the difference between the inter-
action matrix e and the reaction matrix t" is large.
However, the main contribution to the sum in (3.1)
comes from intermediate states of very high energy.
For these states, the kinetic energy term (n;I T; I sj) in
(3.5) is far more important than the interaction term G.
This kinetic energy, however, depends only on the state
e;, not on e, ej', and e;.

We shall therefore assume in most of our calculations

"I am indebted to J. Goldstone for pointing this fact out to me.
2' This interaction will be treated in a forthcoming paper by the

author and J. Goldstone, to be published in Proc. Roy. Soc.
(London), which will be quoted as BG.
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that (3.8) is a good approximation. It is, however, an
approximation only; in BL and other papers of the
Brueckmer school, it was assumed to be exact, and it
was assumed to be the only task of the theory to deter-
mine the dependence of the eigenvalue E(u) on the
momentum k. The difficulty of defining E(n) for unoc-
cupied states e exists whether we treat an infinite
nucleus or a finite one.

However, for a finite nucleus the difficulty has a
further unpleasant consequence: it makes it impossible
to give a unique de6nition of the one-particle potential
V. It would obviously be desirable to define V in such
a way that the excitation energy of a particle as defined

by (3.5), agrees with the difference of the eigenvalues
of the particle calculated by solving (2.3) in the given
potential U. But this cannot be done since the excitation
energy (3.5) can in general not be written in the form
(3.8). Therefore (3.5) cannot be simplified by intro-
ducing one-particle eigenvalues.

It is possible, however, to define V in such a way
that the eigenvalue E(u;0) represents the energy re-
quired to remove particle i from the chosen configura-
tion. This energy is given by the second line of (3.5).
Thus we wish to choose V in such a way that

(u ~V~u )=P(u Ng'~G; ~u n') (3.10)

for all states n; in the chosen con6guration. The G,A,

in (3.10) do not depend on any quantum numbers
except m,' and e~', in contrast to the 6;k occurring in
(3.7). The right-hand side of (3.10) therefore depends
only on m, once the chosen con6guration is selected.
By the way, the sum on the right-hand side of (3.10)
may be extended to include k=i because this term is
automatically zero owing to the Pauli principle. The
eigenvalue of a nucleon in an occupied state of the
chosen configuration is then

E(u) = (e
~

T
~
u)+g; (un/ ~

G
~
uu, o). (3.11)

It is also possible to define uniquely the elements of
V leading from an occupied to an empty state, by
setting

(u;~ V[u )=P;(u;eP~G;;(u uP), (3.12)

where again the term j=i gives zero contribution. In
the 6nal state, only the state e of the chosen con-
6guration is empty and e; outside that con6guration
is occupied; thus the matrix element depends on these
two quantum numbers.

However, it is not possible to give any unique de6-
nition of the elements of V between two unoccupied
states, diagonal or nondiagonal. The diagonal elements
should be given by the second term on the right of (3.5),

(3.13)

but as we have seen, they depend not only on the state
of the nucleon e; considered, but also on the states n;,

n;, and n;. If (n;
~
V

~
u;) for an unoccupied state u; must

be defined, one might take a suitable average of (3.13)
over n, e,', and e,. This obviously would have no
physical meaning, but would serve merely to give a
definition of the self-consistent potential (r'~ V~ r). To
obtain this potential from (2.9), all matrix elements
(N'~ V

~
u) must be known.

As we have seen, the matrix elements starting from
occupied states are well de6ned. The nondiagonal
matrix elements e'/e are small, of order 0—' if the
nuclear volume 0 is large (Sec. XV). The diagonal
elements, u'= e (unoccupied), can only be defined with
some arbitrariness. To see what this arbitrariness
means for the potential (r'~ V~ r), let us assume that
we can use plane wave functions, which is legitimate
for a large nucleus. Then the contribution of the diagonal
elements for unoccupied states to (2.9) is

m (unocc. )

This is therefore associated with the behavior of
(r'~ V~ r) as a function of r —r', and particularly with
the rapid oscillations of this function. Presumably,
these have little influence on the wave functions iP„
which are solutions of the Schrodinger equation in this
potential. For a large nucleus, these wave functions are
essentially free-particle functions in a box. Therefore
we believe that the arbitrariness in the matrix elements
of V between unoccupied states will not have very much
influence on the set of wave functions iP, for the indi-
vidual nucleons.

The following may be an acceptable procedure:
choose (r'~ V~ r) by "guessing, " and calculate the P„,
the interaction matrix v;;, and the reaction matrix 6;;.
Then calculate the matrix elements of V between
occupied states from (3.11) and (3.12); they are well
defined. If they do not agree with the corresponding
matrix elements of the originally chosen (r'

~
V

~
r),

correct the latter suitably. However, do not attempt
to correct or even de6ne the matrix elements of V
between unoccupied states, but instead rely on the
"6rst guess" of V in this respect. This would presum-
ably simplify the procedure of obtaining a self-con-
sistent solution.

It is essential that V be the same potential for all
states iP„of single nucleons, in order to guarantee
orthogonality.

IV. CONCERNING THE PROOF OF THE METHOD

Following BL" the actual wave function 4 of the
nucleus in any given configuration (not necessarily the
ground state) is related to the model wave function by
an operator F, thus

(4.1)
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F has been called the model operator by Eden, "and it
is defined implicitly by the two equations

and (4.3), we have

F=F;;+ I;—;F,; (4 7)

F=1+—Q I,,F,;,
e

(4.2)
(no summation over ij). Therefore

F;,=1+—Q Ii Fi,
e lmQs j

(4.3) s'7'= s'~+s'~ (G' —i G'~—) F'~,
8

(4.8)

where the sums go over all pairs of nucleons, each pair
being counted only once, and the second sum excludes
the term in which both nucleons l and m are identical
with the nucleons i and j, but includes terms in which
ore of the two nucleons l, m coincides with one of the
pair i, j. The operator I is related to the scattering
matrix C de6ned in Sec. III. We write

Therefore

G'~ = &'~+&'~~'~
8

(4 9)

where (4.4) has been used. The last term, with G;, , will
turn out to be an unimportant correction. The other
terms may be combined by using the integral equation
(3.7) for G, which has the forms4

and, following Eden, we define 6;; as the operator
which comprises the diagonal elements of 6;, and those
in which the state of only one nucleon changes; for a
more precise definition, see Sec. VII and E. Then I;;
is essentially the "nondiagonal" part of the operator
6,;, more precisely the part which corresponds to the
simultaneous change of the quantum states of both
nucleons i and j. "Diagonal" is to be understood with
respect to the set of model wave functions defined in
Sec. II. The denominators —e denote the excitation
energy of the nucleus in the model state which is
established when the operators to the right of e have
operated on the "initial" model wave function C of Eq.
(4.1).

The excitation energy is to be calculated as in (3.4),
by taking the di6erence of the model energies between
the excited and the chosen configuration )see Eq.
(4.19)$. One must not use the difference between the
actual energies, and certainly not the difference between
the model (unperturbed) energy of the excited state and
the actual (perturbed) energy of the chosen configura-
tion, as is done in the Brillouin-Wigner perturbation
theory (see Sec. XIII, especially reference 50). The
operator Q is defined as in Sec. III, below Eq. (3.1).

A slight modification, introduced in K,"is desirable.
The actual nuclear wave function 0 must of course
satisfy the Schrodinger equation

M =HO=+; T 4++;, v;P. (4.5)

0 =PC'. (4.6)

Following BL" and Eden, "we can then derive the
Schrodinger equation for C' as follows. Comparing (4.2)

Now instead of requiring that (4.1) be true with C the
model wave function defined in Sec. II (which would
require further modification of F), we shall postulate
that (4.2), (4.3) is the correct form of the model oper-
ator, but shall de6ne a modi6ed model wave function
C' by setting

v;;F=G;;F;;—v;,-6;;F;;
e

(4.10)

( Q & Q
Giy~ F IijFij ~+IijFij &ij GijFijq

e e
(4 11)

where we have again used (4.4) and (4.7). We now
sum over ij and transform' the third term of (4.11),
using (4.2):

2 I'~F'~ = 2 (1 Q)I.P''~+2 Q—l'P''~
=2 (1—Q)1'P''J+ e(F—1). (4.12)

Collecting all terms in (4.5) and (4.6), we have then

EFC'= (Q T;+Q G;,+e)FC' eC'. +wC', —(4.13)

where m is an operator consisting of three parts,

wi= E(1—Q)1'~F'i, (4.14)

ws ———Q G;; I;,F;;, —
e

(4.15)

ws ———Ps;, G;,F;;—
sg

(4.16)

We shall now show that the terms involving FC'=4
in (4.13) can be greatly simplified by proper choice of e.
For this purpose, we consider +=F4' expanded in
terms of the original model wave functions of Sec. II
(Slater determinants). In order for this expansion to
be useful, all the model wave functions (for all con-
figurations 8) must satisfy the "mod.el wave equation"

(E Hsr)C e=0, — (4.17)
'4 It should be noted that the denominator here is e just as in

(4.2) and (4.3). Thus excitations of nucleons other than i and j
have to be included in e. This is in the spirit of Sec. III and
different from E, Eq. (2.7). It avoids the last correction term in
E, Eq. (2.15), which could give rise to a spurious dependence on
higher powers of A.
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8=Ec—E~ (4.19)

where Ec is the model energy of the chosen configura-
tion. Then (4.13) reduces to

(E Ec)F4'+e4"—=w4. '. (4.20)

We can first determine E. Assuming that the chosen
con6guration is not degenerate, i.e., that the nucleus
contains only closed shells (the more general case will
be considered below), we project Eq. (4.20) on the
model wave function of the chosen configuration, Cc.
From (4.19), we see that e=0 in this case.
Further, from (4.2),

(4'c,F4') = (4'c,4"), (4.21)

because Q=O in the configuration C. Therefore (4.20)
yields"

E Ec= (4'c,w4")/(4'c—,4")=—wc (4 22)

This, together with (4.17) and (4.18), is the basis of
Eq. (3.3). Equation (4.19) justifies our treatment of
energy denominators in Sec. III. Further, (4.20), may
be rewritten

e4'= (w —wcF)4'. (4.23)

The operator m —zvcIi is small. Its diagonal matrix
elements are zero by (4.22), and we therefore consider
its nondiagonal elements

(4 e, (w —wcF) 4 c) (4.24)

for states Ee/Ec. Then the contribution of wi is zero

2~The matrix elements here, and in the foregoing, must be
taken with respect to the model wave functions Cz because only
in these is the operator e diagonal Lsee the derivation of (4.20)g.
They must not be taken with respect to the complete nuclear
wave function, and in particular (4.22) must not be replaced by

(+c,me'), (a)
as BL do in their Eq. (25). The use of (4.22) is at the same time
a great simplification of the calculation, and it greatly reduces
the numerical value of the correction terms m2 and ze3, as will
be shown in Sec. XIV.

where H~ is the "model Hamiltonian"

IIsr P——T,+g 6;;. (4.18)

It will be shown in Sec. VII how 6;;must be defined in
order that (4.17) be true. In particular, the nondiagonal
elements of 6;; must be defined by (7.4) and (7.7),
regardless of the excitation of nucleons other than' and
j. This definition insures also that the 4» form an
orthogonal system. It should be noted that H~ has
only diagonal elements with respect to the model wave
functions 4e but that P T; and P 6,, alone would
also have nondiagonal elements. Further, according to
(7.3), the diagonal elements of 6;; are equal to those
of 6;; and are to be calculated by solving (4.9), taking
the excitations of al/ nucleons into account in the
denominators e.

We now define the operator e also as diagonal in the
model wave functions, thus

because of the factor 1—Q, that of ws and ws is ex-
tremely small according to Sec. XIV, and therefore
(4.24) is proportional to wc. This energy correction,
however, is also small as will be shown in Sec. XII.
Therefore, very nearly,

c,

and (4.22) may be simplified to

wc = (4c,w4'c).

(4.25)

(4.26)

Now consider this expression, in particular the part
due to zv~ which will be shown in Sec. XII and XIV to
be the most important contribution. The operator
1—Q equals 1 in our case because the nucleus is
ultimately in state C. Hence

(4 c,wr4c) = (I;,4c,F;Pc). (4 27)

Now when (4.27) is evaluated in a straightforward
manner, certain terms appear which are proportional
to A' and higher powers of the number of nucleons A
in the nucleus. These terms were discovered by Brueck-
ner in his "linked cluster" paper, "BC, and shown by
him to be spurious, i.e. to be compensated by other
terms, vis. the energy perturbations in the energy
denominators. Brueckner's prescription is to take into
account only linked clusters in the expression (4.26)
for Bfc.

For the purpose of defining link. ed clusters, we will
regard F as the sum of the infinite series of terms which
would be obtained by iteration. of F;, in (4.2) using
(4.3). Each term consists of a sum of products of two-
suffix symbols. We will consider one such product acting
on a single term in the Slater determinant 4; it will
involve a series of suKxes ij, ltu, Pq, and there will
be no summation. We will say that the pair ij is
"directly linked" to Pq if either one of the numbers i, j
is equal to either one of p, g. We will say that ij is
"linked" to lm if in the term we are considering it is
possible to go fromi j to lm via a chain of directly linked
pairs. The term will be called a "linked cluster" term
if all pairs of suKxes in it are linked. Thus a third order
term having suKxes ij, jk, kl is a linked cluster.

Brueckner, in BC, has shown that there should not
be any contributions from "unlinked clusters" to the
energy E of the nucleus. Unlinked clusters are the
analog of "disconnected graphs" in field theory, which
are known not to give any contribution in that theory.
In our case also, they would be entirely unphysical,
giving rise to the appearance of terms proportional to
A' and higher powers of A in the expression for the
energy of the nucleus. Indeed, Brueckner shows by
direct evaluation that at least up to fourth order of
standard perturbation theory, the contributions from
unlinked clusters actually cancel. This is a great
advance over the Brillouin-Wigner formulation of per-
turbation theory in which these troublesome terms
always occur.
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Goldstone" has shown quite generally that unlinked
clusters must be omitted, by direct application of field
theoretic methods to the problem of the complex
nucleus. His method is exact, and shows that zan is
given by (4.27) with the proviso that only linked
clusters must be taken into account. The corrections
w2 and wq of (4.15), (4.16) do not appear but there are
some minor modifications of the prescription for calcu-
lating the matrices G and 6'.

We shall now discuss the matrix elements

(C'B wlc C) (4.28)

'6 J. Goldstone, Proc. Roy. Soc. (London), (to be published).

in more detail. Because of the factor 1—Q, these ele-
ments are diferent from zero only if the state 8 has
the same energy as the chosen configuration. We must
therefore distinguish the two cases in which (a) the
chosen configuration is degenerate with other states,
and (b) it is nondegenerate. In case (b), wi has only a
diagonal element. Thus z» will only contribute to the
energy of the nucleus but will leave O'=C. It will be
shown in Sec. XII that the diagonal element of m~ can
arise only from the successive interaction of three or
more nucleons (three-particle clusters). As a conse-
quence, this term is rather small Per nlcleon, but it is
proportional to the number of nucleons. It will change
rather little from one configuration to another because
it depends only on the behavior of the wave function
when three nucleons come very close together, and not
on its over-all behavior. Thus the diagonal term of mi
for any configuration may be replaced by a constant,
~is. , its expectation value for the chosen configuration,
wio. This result has been used in (3.5).

In case (a), the diagonal term will also arise and
have substantially the same value as in case (b). But
in addition, there are matrix elements of m~ linking the
various degenerate configurations. For instance, all the
degenerate configurations may have 3 nucleons in the
1g shell, and differ by the magnetic quantum numbers
assigned to these 3 nucleons. Then the operator I;; may
change the magnetic quantum numbers so as to cause a
transition from one of the degenerate configurations to
another. Thus m~ will in this case have nonvanishing
matrix elements even if F,; in (4.14) is replaced 'by

unity, while in case (b) the matrix elements vanish if this
replacement is made, because the diagonal elements of
I;; are zero by definition (see Sec. XII). The non-

diagonal matrix elements of mi between degenerate
configurations are therefore apt to be considerably
larger than the contribution of ore pair ij to the diagonal
element m». On the other hand, only the nucleons in

incomplete shells will contribute to the nondiagonal
elements, and therefore the nondiagonal elements of m~

will. not be proportional to A but to a lower power of A.
The nondiagonal elements can be treated by the usual
methods of perturbation theory for degenerate states,
as will be described in Sec. XVI.

The two perturbation terms m» and m3 have already
been treated by BL. They show that the diagonal
matrix elements of m 2 and zv3 give a contribution to the
energy which is independent of A, and is therefore of
order 1/A relative to the main binding energy of the
nucleus. In Sec. XIV, we shall confirm this result and
shall show that the numerical value of this contribution
is much smaller than BL estimated, vis. , only a few
hundred kev for the whole nucleus, rather than 10 Mev:
hence the method remains good down to small nuclei.

The nondiagonal elements of m2 and m3 give con-
tributions of order 1/A to the energy and to the wave
function, as will be shown in Sec. XIV. They are
therefore entirely negligible.

V. DISCUSSION AND COMPARISON WITH THE
HARTREE-FOCK METHOD

The actual wave function defined by (4.1) to (4.3)
may be expanded in a series of terms involving no,
one, two, . . . interactions. The first approximation to
F is obtained if F;; in (4.2) is replaced by unity. Then
putting the nondiagonal elements of I;; equal to those
of G,; (see Sec. VII), we get for the wave function of a
nucleus containing A nucleons:

X (m,m, i G;; i
e,omio)

h(e;,e;; n,o,eg)

Here the model wave functions have been explicitly
designated by the configuration to which they belong,
and the primes mean that the sums go only over unoc-
cupied states e;, e, . Terms including more than two
excited nucleons have been omitted in (5.1). If G,;
were further approximated by e;,, then this approxi-
mation would correspond to the first-order (not zero
order) wave function of standard perturbation theory.
Thus the wave function 4 includes, besides the model
wave function C, also all states which can be generated
from 4 by letting an arbitrary pair of nucleons i and j
scatter each other. In higher approximations, i.e., when

F;; from (4.3) is inserted into (4.2), multiple scattering
is also taken into account (see below). Furthermore, the
use of G;; in (5.1) constitutes an improvement over the
use of e;; in first-order perturbation theory.

The Hartree-Fock method is obtained from the
Brueckner method by the following approximations:

(1) The wave function is assumed to be C, rather
than %.

(2) The second term in (3.1) is left out, i.e., the G
matrix is replaced by the o matrix, (e,'e ~m;, ~e,e;)~.
The Hartree approximation itself is obtained by the
further approximation of replacing (e I/

~
v, , ~

n,e,)z by
(I Nz'

~

v;i'
~
e,e&)p, i.e., neglecting the exchange term

in (2.6). Clearly, for nucleons which have exchange
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forces between them, this would be a very poor approxi-
mation.

To see that the Brueckner method is a vast improve-
ment over the Hartree-Fock approximation, we con-
sider merely the first step in solving Zq. (3.1) by
iteration, i.e. , we replace G;; in the sum in (3.1) by i);, .
(The Hartree-Fock approximation would be obtained
by neglecting the sum altogether. )

I et e;=e and e;=e =e,', where e,', e denote
as usual the states of nucleons i and j in the chosen
configuration. Sum over all pairs of nucleons i, j.Then,
according to (3.10), the left-hand side of (3.1) will yield
the total potential energy of the nucleus, E~,&"', the
superscript 2 indicating that this is the second approxi-
mation. We find

I
(aire IC) f'

()—E ()+Q Q
Eg—E~

(5.2)

where E„,"' is the first (Hartree-Fock) approximation
to the potential energy, C is the "chosen" configuration
of the nucleus, 8 any excited configuration, and

(5.3)

is the sum of the interaction operators over all nucleon
pairs. Clearly (5.2) is exactly the second-order per-
turbation theory result for the potential energy, and
the second term is the full configuration interaction, "
summed over all excited configurations which can be
reached by the excitation of two nucleons from the
chosen configuration. Thus (5.2) is a far better approxi-
mation than has ever been attempted in calculating
either atomic or nuclear energy levels, and it is only the
first step of the Brueckner method in improving the
Hartree-Fock approximation.

A great advantage of the use of the scattering matrix
G, instead of a perturbation expansion, will be that
unpleasant divergences common in perturbation theory
may be avoided. The case of the greatest practical

importance in nuclear physics is that of a respulsive
core, i.e., an infinite repulsive potential for r&a. Then
the matrix elements of the interaction z are infinite, but
the elements of the scattering matrix 6 are finite. "
There are probably also advantages in the treatment of
Coulomb interactions.

The wave function (5.1) also contains configuration
interaction. This is true in spite of the fact that in (5.1)
the crude approximation has been made of replacing F;;
by unity, which means the neglect of multiple scat-
tering. But even in this crude approximation, the wave
function contains strong two-particle correlations
between the nucleons, and thus is much superior to the
Hartree-Fock wave function. Moreover, it contains the
high-momentum components which are required by
high-energy experiments, as discussed in Sec. I and by
Brueckner, Eden, and Francis. '

Thus the Brueckner method gives an improvement,
both of the wave function and of the energy, over the

Hartree-Fock method. In the Hartree-Fock method,
the motion of one particle is considered in the average
potential produced by all the others. In the Brueckner
method, the interaction of two particles is calculated
accurately, and only the inhuence of the third and
further particles is replaced by an average potential.
Thus the Brueckner method is a logical extension of the
Hartree method; the price for its increased power and
accuracy is of course the increased complication in the
determination of the self-consistent field (see Sec. III).

Perhaps the most important advance is that in the
Brueckner method the error can in principle be calcu-
lated, by evaluating the matrix elements of the per-
turbations (4.14) to (4.16) between model wave func-
tions. In the Hartree method, the error has always
been assumed to be small, and has turned out to be
small in practical applications to atoms, but no method
was available heretofore to estimate the error quanti-
tatively.

The Brueckner theory is simplified, and made more
similar to the Hartree-Fock theory, if it is possible to
make the approximation (3.8), i.e. , to assign to each
nucleon an energy E(n,) as given by (3.11). One may
then identify the second term in (3.11) with the poten-
tial energy of nucleon i and set

V(n;) =P;(n,~,'~G;;~ e,~,o). (5 4)

=P;E(e;) ', P(e;( V(e;). —-(5 6)

The factor -', in (5.5), and the subtracted term in (5.6),
are of course very familiar from the ordinary Hartree
model, but nevertheless seem always to create some
difficulty. Further discussion wiH be found in Sec. IX.

As has been stated. , (5.4) and (3.11), and therefore
(5.5) and (5.6), are strictly applicable only to the
chosen configuration; for excited nucleons, the G;; in

(5.4) depends actually on several additional quantum
numbers.

VI. ACTUAL AND NOBEL WAVE FUNCTIONS

It is interesting to ask how closely the actual wave
function 4& is approximated by the model wave
function Cg. For this purpose, we consider the actual

For the occupied states e;=n;, as was mentioned in
(3.9), the matrix elements of G;; occurring in (5.4) are
always well defined and therefore the definitions (5.4),
(3.11) are sensible. BL assumed (5.4) to be correct for
all states.

The total energy of the nucleus is given by (3.3).
Neglecting m&&, we obtain the model energy, but this
is still not equal to the sum of the eigenvalues E(e;)
of all the nucleons, because in (3.3) each pair ij must
be counted only once while summation of (5.4) over
all i would count each pair i,j twice. We have for the
total model energy

E=g(ii,
i
T;im;)+-', Q(n;i Vins, ) (5.5)
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wave function expanded in model wave functions,

4'c =+ cs4s)

CB= (C B)+C)~

(6.1)

(6 2)

The second term expresses one, the third term two
scatterings.

To obtain cg, it is convenient to consider a nucleus
of given volume 0 and number of particles A. Both are
assumed large and proportional to each other. We then
wish to calculate the dependence of the various terms
on Q. Since 0 is assumed large, momentum will be
almost conserved in the matrix elements of I,; (see
Sec. XV). These will of course have the same de-
pendence on. 0 as v;;; the latter is given by

(k k Ie;;Ik,k;)

P (k,',r,)p*(k,r,)i;;(r;,)

)&P(k;,r;)P(k;, r;)d~;dr;

To calculate the expansion coeScients, we use the
expressions (4.1)—(4.3) for %c whose first three terms are

e a a
+c=C'c+2 —I'i@c+ZE I', —hA'—c+ (6 3)

e e e

F=III 1+—f'
I

i~' E. e
(6.6)

Each term gives a probability 2u/2 for finding just the
pair ij excited, with n defined in the last paragraph.
Since there are —,A' pairs, the total probability of finding
any pair excited is e " if we still set the probability of
the chosen model state equal to 1. However, it is more
convenient to change the normalization and to set the
10tal probability of any model state equal to one. Then
the probability of "finding" the nucleus "actually" in
the state described by the model wave function is

is therefore proportional to 0 '. Since the number of
pairs of nucleons ij is proportional to 0', the total
probability of finding the nucleus in an excited model
state is proportional to 0, the probability of the chosen
state being set equal to I. Of course this takes into
account only the action of the second term in (6.1).
Since 0 is proportional to A, we may set the probability
of an excited model state equal to aA, where e is a
numerical coefficient depending on the actual nuclear
forces.

We can easily generalize this result, especially if we
assume that there are no linked clusters containing more
than two particles each. Then (6.1) is equivalent to a
product over all possible pairs of particles,

=0 e
' ' ' 'e' 'p—2 i

—iki' ri—ikg' rg' iki ri+ikg r~'
I (@ @ ) Im~e nA— . (6.7)

Xi;; (r;;)dr;d~;. (6.4)

The factor 0 ' comes from the normalization of the
wave functions, each of the four wave functions having
a normalization factor 0 &. Now in the last form of the
integral, the exponential is exp[i(kk, —)(,'r, —r,)j,
considering that kj' —k;=k, —k by momentum con-
servation. Then, holding the relative coordinate ri—r;
6xed, we may integrate over d7-; and obtain a factor 0
while the integral over ri —r, gives a factor independent
of 0. Thus

g;.~pi ~0—&. (6.5)

Essentially the same result would be obtained for a
finite nucleus, i.e., if the wave functions f are not
exactly plane waves in the volume 0 but tail off at the
surface.

If we consider two definite nucleons k, , k;, then the
amp/itlde of the model state in which k; has been
changed to k,' by means of the term I,; in (6.1) is
proportional to 0 ', and the "probability" of finding
the nucleus in this state is therefore proportional to
0 ~. Now for given k, and k, , the final state k can be
chosen freely, and the number of possible quantum
states k per unit volume in momentum space is pro-
portional to Q. The other final state k is determined

by momentum conservation. Thus for given i and j,
the number of possible "final" states is proportional
to 0 and the total probabilit;y of exciting any of these

This is exponentially small for a large nucleus. Therefore
it would be entirely wrong to say that a large nucleus is
"actually" in its model state; the probability for this
is "infinitesimal, " and is smaller the larger the nucleus.
The result (6.7) is not changed if clusters of three or
more particles are taken into account, except of course
for the value of 0..

The difhculty of many'~ "old-fashioned" treatments
of nuclear structure was that they attempted to obtain
the actual nuclear wave function 4't.- which is corn-
plicated when expressed in model functions Cg. The
great achievement of the Brueckner theory is that it
permits the calculation of energy levels and other
nuclear properties in terms of the model function of
the chosen configuration, Cz. For the energy this has
already been demonstrated. We shall now discuss other
properties.

The most important observable properties of a
nucleus (other than the energy) depend on one-nucleon
operators, such as the magnetic moment which is the
sum of the magnetic moment operators of the individual
nucleons, the dipole moment for an optical transition
between two nuclear levels, or the momentum distri-
bution of a nucleon which inQuences some of the experi-

2~ Swiatecki I,
'to be published) has shown, however, that the

energy of a nucleus may be obtained by ordinary perturbation
theory provided the interaction between nucleons is well-behaved,
and that then each term in the perturbation expansion is propor-
tional to A.
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ments mentioned in Sec. I. We shall therefore consider
the evaluation of one-nucleon operators, in particular
of the diagonal matrix elements for the chosen con-
figuration of an operator M=+ M, , where M, is a
one-nucleon operator such as the magnetic moment; we
have

(M) =P,(e„M,e,)/(e, P,). (6.8)

Zs(+&~c'~"")(@~"'~+&)~ (6.10)

which represents essentially the probability that one
particular nucleon i is excited. This probability is of
the order of magnitude one, regardless of the size of
the nucleus. This follows from (6.7); the desired prob-
ability (6.10) will be the ratio of the excitation prob-
ability for all nucleons, e"~, to that for A —1 nucleons,
e &~ '&, giving e which is independent of A.

This result makes it possible to calculate the expec-
tation value (6.8) with a finite amount of labor. To
carry out such a calculation, it will probably be con-
venient to use the same techniques as have been applied
in 6eld theory, especially the method of Feynman dia-
grams. "The chosen con6guration corresponds to the
vacuum state in 6eld theory; a transition of one particle
is considered as the creation of a pair, consisting of a
hole in the state n,' of the chosen configuration and of
a particle in the state e outside the Fermi sphere. The
interaction e;; or 6,, connects two particle lines. The
operator M is then an additional operator which may
be inserted in one of the particle lines; it is similar to
the action of an external potential in field theory.

The analogy with field theory is close. The physical
vacuum state has only an infinitesimal projection on
the bare vacuum state, just as the actual wave function
+z of the nucleus has only a very small projection on
the model state C e, Eq. (6.7). Nevertheless, the proper-
ties of single electrons (such as their magnetic moment),
or the interaction of two particles, can be derived in
field theory by considering just these particles them-
selves and a limited number of photons, electron pairs,
etc. with which they interact directly. One may dis-
regard all disconnected diagrams and in the nuclear
case all unlinked clusters.

We consider 0'g expanded in terms of model wave
functions. Then, because of"...the orthogonality'of the
model wave functions,

(+c,M,%'e) =P P g (@e,C an; )
B n1' 74/

X(4Bn &e)'(lan, ,M,gn;), (6.9)

where 8 is a con6guration of the A —i nucleons other
than i, and Bn; denotes the con6guration of our nucleus
in which the A —i nucleons are in configuration 8 and
nucleon i in state n;. The last factor in (6.9) depends
only on the states of nucleon i; it is immaterial whether
the other nucleons are excited or not. We are therefore
only interested in

(n,'n IG,;In,n;)=0 if n, n Qn, , n;, (7.4)

(n,'n,'lr, , ln, n, ) =(n,'n,'IG, , ln, n, )
if n, ', n Wn;, n;. (7.5)

If one nucleon (i) changes its state, we must have

(n'
I
7 'In, )+Xi(n''n 'I G''In, n, )=0, if n, 'Wn, . (7.6)

Thus the sum in (7.6) must be chosen to be independent
of the states occupied by the other nucleons, and it is
most convenient to set

(n, 'n;IG;, ln, n, )=(n nPIG, ;ln,nP) if n An;, (7.7)

whether or not e,=e, and whether or not all the other
nucleons k are in the chosen configuration. However, as
we have shown in Sec. III, the right hand side of (7.7)
is still not de6ned if both e; and e differ from the chosen
state e; but if either of them is equal to e,', there is
no ambiguity; in the other case, we may choose an
arbitrary state m' to be empty, but this must be taken
to be the same state for al/ matrix elements of type

VII. DEFINITION OF THE MATRICES G AND I
While the reaction matrix 6 is defined by Sec. III,

particularly by Eqs. (3.1) and (3.7), there is still some
arbitrariness in the de6nition of the matrix 6 and hence
of I, Eq. (4.4). There is further arbitrariness in the
one-nucleon potential V. This can be used to make the
operator in (4.13),

2 7''+Z G' (7.1)

diagonal in the model wave functions. Then e in (4.3)
becomes a number, i.e., e is also diagonal in the model
wave functions. Furthermore, it is desirable to choose
I;; such that it has no diagonal matrix elements, and
no matrix elements leading from the chosen configura-
tion to configurations in which only one nucleon is
excited, because this choice will greatly reduce the
number of terms which needs to be considered in the
perturbations hei to ~e3, Eqs. (4.14) to (4.16).

We thus set
(n,n, lI,, ln, n;) =0, (7 2)

(n,n, lG, , ln, n;)=(n, n, lG, , ln, n;), (7.3)

where, if n; and/or n; are normally unoccupied, the
right-hand side of (7.3) should still depend on the states
left empty in the chosen configuration (see Sec. III).
The choice (7.3) actually does not affect the above con-
dition that (7.1) should be diagonal; the diagonal
elements of (7.1) can be chosen. arbitrarily without
violating this condition.

Since the one-nucleon wave functions are orthogonal,
the only nonvanishing elements of the operator T; are
(a) the diagonal elements and (b) elements in which
the state of nucleon i changes and all other nucleons
remain in the same state. Therefore 6 must not have
any elements in which both nucleons i and j change
their state,
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(7.7), i.e., independent of i. Once 6 is chosen, I is
determined by (4.4); in particular, (7.7) gives

(e,e;OI I,; I
n;oeP) =0 if n, Wn,' . (7.8)

Thus the elements of I which start from the chosen
con6guration and go to conhgurations with only one
nucleon excited are indeed zero as desired.

Since the model wave functions are orthogonal and
the one-nucleon wave functions satisfy the Schrodinger
equation (2.3), we have

(n.'ITIe)+(e'I vIn)=0 if e'Nn . (7.9)

In order to satisfy (7.6), (7.9), and (7.7), we must
choose the one-nucleon potential such that

(I'I vI e) =Q;(e'm;I 6,;I en;) (7.10)

=Qi (&'Ni'
I G'i I

~xi') (7.11)

This result was already used in (3.12). The matrix
elements of V must of course be independent of the
choice of the particular nucleon i in (7.7); therefore the
sum in (7.10) must not exclude any nucleon j.If either
e or e' is equal to e,', the term j =~ in (7.11) vanishes
automatically because of the Pauli principle, so that
there is no diKculty in this case. Thus the matrix ele-
ments of V between an occupied and an empty state
are uniquely and reasonably defined by (7.11) and
depend only on the initial and final state of a single
nucleon. Those between two empty states cannot be
uniquely defined as was shown in (3.13); since G is not
a proper two-nucleon operator, V cannot be a proper
one-nucleon operator. This ambiguity can only be
resolved by arbitrary choice of these elements of V, but
this choice has only little inhuence on the one-nucleon
wave functions (end of Sec. III).

It will be shown in Sec. XV that the nondiagonal
matrix elements of V and T, and the elements of G,j
in which only one nucleon changes its state, are small,
of order Q ' or less compared with the other matrix
elements.

VIII. SPIN CONSIDERATIONS

In this section we wish to evaluate the matrix ele-
ments of the interaction,

(e,'e I
v,; I

rs,e;)~, (8.1)

and in particular to evaluate the sums over spin and
charge of the two nucleons. We are particularly in-

terested in the case when n;, nj are the states of particles
i and j in the chosen configuration, although nearly
all our results will also apply to more general cases. If
e,=n and e, =nP, then (8.1) corresponds to the
removal from the chosen con6guration of the nucleons
in states n,' and n, and their placing into the states
n, 'n, so that the final con6guration is defined by
four quantum numbers, s' nj n ' nj which describe the
states empty in the chosen configuration and those
occupied outside that configuration. The states n ej'

should therefore be considered as having de6nite spins
and charges, these being determined by the spins and
charges of the nucleons which are left in the same
orbitals (spatial wave functions) after rs, o and eP have
been removed. "

We shall denote the spatial wave function (orbital)
of the nucleon state n; by m;, the spin state by 0.; and
the charge state by p;, and similarly for the states nj,
e,', and e,'. Whenever we need to specify definite values
of spin or charge, we call the spin wave functions o. and

P, and the charge wave functions y and 8. The inter-
action will be written for the present as

v~ j=vi+v2&~"'n j, (8.2)

where v~ and v2 depend on the spatial coordinate r,, but
may still contain a Majorana exchange operator P~.
As is well known, the symmetry of the nuclear wave
function in i and j needs to be taken into account only
once, and we choose to do this in the final state; thus
we take the initial state to be

I
'I~;)=m'n'v'(~)m~nn~(7)

and the final state

(8.3)

Ie,'e )=m,'n„'p,'(i)m n p (j)
—m n,'p g)m, 'n,'p (j). (8.4)

With these definitions, no normalizing factor 1/v2 is

required. Finally, in applying (8.2) to (8.3), it is

useful to distinguish immediately the cases when the
two particles have equal or opposite spin.

A. Initial spin equal, n, =n;= n (this is not meant to
imply that the spin is necessarily up). Then also in the
final state we must have n, '=nj =n,. otherwise the
matrix element will vanish. Then, without loss of

generality, we may set y, '=y, , y, '=y; (if y, = y, , this
makes no difference; if y,gy, , this defines which state
is called n,'). The application of (8.2) to (8.3) gives

v, , Ie,n, )= (v,+v2)m, (~)m, (j)np, (i)np;(j) (8.5)

and the matrix element with (8.4) is

(e,'I Iv, , Ie,n,;)
=(-, ('), (j), (+ ) .(')-,(j))

—(v', v )( '(') ''(j), ( + ) '(') (j)) (8.6)

The scalar product (y,y;) is 1 if y, =y; and 0 if y, Wy, ;
thus the second (exchange) term in (8.6) will be present

only when the two interacting nucleons have initially
the same charge as well as the same spin. The matrix
elements remaining unevaluated in (8.6) are purely
spatial matrix elements, for which we write in abbre-
viated notation:

(e,'e
I
v;, IN,e;)= (vi+v2)n —(y,y, ) (vi+ v2)x. (8.7)

2' I am indebted to J. Goldstone for pointing out that the wave
function of the two "removed" nucleons, i, j should not be sym-
metrized by itself in spin, charge, and space, because this is in
general incompatible with leaving the "residual nucleus" after
removal of i and j in a definite configuration.
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D meaning "direct" and X "exchange. " It should be
noted that in the 6nal state spin and charge of both
particles i, j are the same as in the initial state.

B. Initial spins different, u;= n, u;=P. Then without
loss of generality we set u, '=n, u =P, thus defining
which of the two final states is e,'. Application of (8.2)
on (8.3) gives

v,; I e;n;) = (v, —vp)m, (i)m;(j)ny;(i) py, (j)
+2v,m, (i)m;(j)Py, (i)cay, (j). (8.8)

We then have to distinguish two cases for the charges.
1. Initial charges equal, y;=y;=y. Then also the

final charges must be y =y, '=y. Using (8.4), the
matrix elements are found to be

(e e
I
v, ;I e,n, ) = (vi —vg)n —2v2x. (8.9)

2. Initial charges diGerent, y;=y and y;=b. This is
the only case where two different 6nal states are pos-
sible:

(a) Final charges=initial charges, y, '=y, y =6.
Then

(&''ri~'
I v*~ I ~'&~) = (»—»)n.

(b) Charges interchanged in final state,
y, '=y. Then

(ri,'ri I
v, , I

ri,n;) = 2v,x — .(8.11)

It is convenient now to introduce the interaction in
singlet and triplet state, m, and ~~, instead of v~ and v~.

We have

v)= vi+v2)

'Vs = Sy—3'V2)

(8.12)

(8.13)

and we get from (8.7) to (8.11) the following matrix
elements:

1. Charges and spins equal for both nucleons, wave
functions ny, ny (both initially an.d finally):

&i~ =&m —&~x. (8.14)

&ay'= &a). (8.15)

3. Spins different, charges equal, wave functions ny,
Py (initially and finally):

&&~=~ &~a 4L) ~ 4x—&|,x . (8.16)

4. Spins and charges different, initial wave functions
ny, P8: (a) final wave functions the same ny, Pb:

&su ~ (8.17)

(b) final charges interchanged, wave function n5, Py:

vo'= 2 ('4x —v~x). (8.18)

The most important matrix element is the diagonal
one, summed over all spins and charges of nucleon j,
keeping those of nucleon i fixed. This is obtained by

2. Spins equal, charges diferent, wave functions o.p,
nb (initially and finally):

summing Eqs. (8.14) to (8.17) which yields

v, ,=3v~n+v. n+2v Bx 2—v ~x (8 19)
spin, charge

The coefficients, 1 and 3, of v, and v&, are the statistical
weights. The signs of the exchange terms reflect the
symmetry of the spatial wave function. The factors —',

with the exchange terms arise from the fact that these
terms exist only between two like nucleons.

If the two nucleons are to be followed from the chosen
configuration through a set of intermediate states and
back to the chosen configuration, their spins and
charges are, in most cases, simply left unchanged in the
process. Only in the single case when both spin and
charge are initially diferent, two kinds of intermediate
states must be considered: the two nucleons may retain
spin as well as charge, or else they may retain their
spins but exchange their charges. The latter elements
will be absent if v,x——e&x, i.e., in particular if the triplet
and singlet forces are assumed to be the same. This is
not a bad approximation to the known interaction in the
5 state. The forces in the odd-parity states of two
nucleons are not sufficiently well known to decide
whether t,= v~ is a good approximation.

If the equation for the scattering matrix, (3.1), is
solved by iteration, as in Sec. X, then in the second
approximation the effect of a pair of intermediate
orbitals ns nz will be given by the sum of the squares
of the matrix elements (8.14) to (8.18). Although the
result is elementary we shall not give it, but shall first
simplify our assumptions about the interaction.

We assume now that the spatial dependence of the
interaction is that of a Serber force, i.e.,

(8.20)

where I'~ is the Majorana exchange operator. As is
well known, the Serber force is zero for all two-nucleon
states of odd parity (odd orbital momentum), while
for even parity it is simply v(r;;). Later on (Sec.XI) we
shall consider the assumption that there is interaction
only in 5 states; this is a special case of the Serber
force for which the following equations, especially
(8.28), remain valid, although the analytic form (8.20)
|s not.

If (8.20) is assumed, then

vn ——vx ———,'(m„'m Iv(r;;) Im, m~)

+-', (m m, 'l. (r, ,) Im,m,),

where the right-hand terms are ordinary spatial matrix
elements,

(m'ri'I v(r, ~) Iml) =
) P„*(r;)P„*(r;)

&&v(r, ,)P (r,)P (r;)dr, dr, (8.22).
Because of the equality vD=vx, the matrix eleInents
(8.14) to (8.18) simplify considerably:
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1. Spin and charge of the two nucleons equal:

v;;=0. (8.23)

There is, in this case, no interaction because the Pauli
principle requires the spatial wave function to be anti-
symmetric which makes it odd parity.

2. Spin equal, charge different:

(8.24)

3. Spin diferent, charge equal:

Vsg'= Vg. (8.25)

Pauli principle, and even parity of the spatial wave
function (Serber force) together require an antisym-
metric spin function, hence a singlet state.

4. Spin and charge different.
(a) Final wave function same as initial:

&s ~ (8.26)

2 (v's)'= k(v'+v P) (8.29)

Since the observed interaction is not very diferent in
triplet and singlet even states, no great error will be
made if —,'(v2+vP) is replaced by the square of the
average interaction, -,'(v, +vi).

Throughout this paper, we shall therefore adopt the
following simplified procedure. We replace the nuclear
matrix elements of v by the average of singlet and
triplet interaction for states of even parity. With these

(b) Final wave function has charges interchanged:

&ij g Vt V8 .
The sum over all diagonal elements, (8.23) to (8.26),

which was previously given by (8.19), now simplifies to

P v, ,=-,'(v, +v,). (s.2s)

This permits a simple interpretation: we consider the
interaction of a given nucleon i with all the four nu-
cleons in the orbital m;. This is found to be eR'ectively

equal to the interaction with three nucleons, since that
with the nucleon of the same spin and charge is exactly
zero, Eq. (8.23). The effective interaction with each
of the three nucleons is the average of the triplet and
the singlet interaction. This is related to the fact that
for even parity, there are equally many triplet as
singlet states. This may be seen by considering the 16
possible spin-charge states of two nucleons: ten of
these have symmetric spin-charge wave function and
hence antisymmetric spatial wave functions, i.e., odd
parity (9 of these have isotopic spin T= 1 and spin S= 1
while one has T=O, S=O). Six states have antisym-
metric spin-charge wave function, of which 3 are T=1,
S=0 and three are T=0, S=1.

We mentioned previously that the second-order con-
tribution to the scattering matrix from an intermediate
orbital nz is given by the sum of the squares of the
matrix elements, in our case (8.23) to (8.28). This
yields

elements of v, we then calculate the G matrix, using (3.1).
From G we obtain the effective one-particle potential V
by assuming that each nucleon interacts only with 3
out of 4 of the other nucleons (i.e., with 3 nucleons in
each orbital nt, ).

Although we shall use the Serber interaction through-
out this paper, it is still interesting to write down the
average interaction (8.19) for the more general case
when there is a Serber interaction v, in even states and
another interaction v, in states of odd parity. Thus we
write

av=)v~s+vio, v~x= vis vs~ (s.3o)

and similarly for the singlet. Then (8.19) becomes

P v;;=-,'v„+-',v„+(9/2)v, .+-,'v„. (8.31)

Thus each type of. state contributes according to its
statistical weight, the triplet odd states being T=S=1
(weight 9) and the singlet odd ones T=S=0 (weight 1,
see above).

IX. INFINITE NUCLEUS

(9.1)

In other words, the "self-consistent potential" V is now

diagonal in a momentum representation,

(&'I V
I &) = V(&) (2~)'~(&—&') (9 2)

The self-consistent field problem then consists pri-
marily in finding V(k). It may be noted that we have
here a situation opposite to that of the conventional
Hartree model where V is diagonal in the pos~ti, on; the
general case discussed in Sec. II where V is neither
diagonal in r nor in Ir comprises the Brueckner theory
of an infinite nucleus and the Hartree theory as special
cases.

The energy of a cubic centimeter" of nuclear matter
is

(2v.) ' 4d'kP V(k)+lP/2M/, (9.3)

~'It is more convenient to calculate immediately energies per
unit volume or per particle than to calculate first the total energy
and then express the result in terms of the total number of par-
ticles.

The simplest case to which the theory can be applied
is that of an infinite nucleus, in other words of nuclear
matter. Clearly, the Coulomb interaction must be
neglected in order to get finite results. In this case, the
state of nuclear matter is fully characterized by its
density (or more generally, by the neutron and proton
density separately) .

All positions are equivalent, and the proper wave
functions are obviously plane waves. This obviates
what is normally a most difficult part of determining
the self-consistent field, ~is. , the search for proper wave
functions. The energy of a nucleon in the chosen con-
figuration, which in Eq. (3.11) was shown to depend
only on the state e,' of that nucleon, will now depend
only on its momentum k, and we may write

E(k) = V(k)+t't'/2M.
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where the factor —', in the 6rst term arises again from
the need of counting each pair of interacting nucleons
only once, while the factor 4 in front comes from the
fact that for each momentum state k there are four
nucleons, of two spin directions and two charge values.

The determination of V(k) is the only problem of
self-consistency which is treated by Brueckner et al. In
fact, Brueckner" has pointed out that this may be a
rather tedious problem because the value of V(k) is
required in the second term of (3.1) or (9.10), and this
second term may be large and, with Brueckner's pro-
cedure, is indeed large. Fortunately, however, this
second term is greatly reduced if the exclusion principle
is taken into account immediately (see Sec. X) in its
evaluation (which Brueckner does not do), and in this
case a very rough initial choice for V(k) will sufFice for
the calculation of the second term in (3.1).

We shall use for the nucleons plane-wave functions
normalized to unit density. Then, if the interaction
v,;(r,;) is an ordinary potential, its matrix elements for
one-nucleon functions are"

(k k
~
v,; (r)

~
k,k, )~

=w, ,(k;—k, ') (2n-)'5(k +k —k;—k;), (9.4)

(k,'k, '
~
G,;~ k,k;)

= (k,'k, '
~
tt,; ~

k,k,)~—(2m.)
—' d'k,"

&&2'k,"(k k iv, ;ik;"k;")ii

X-
E(k,")+E(k/') —E(k,o) —E(k o)

y (k;"k;"
i
G,; i k;k,), (9.7)

where k,' and k denote the states occupied by nucleons
i and j in the chosen configuration. In (9.7) and the
following, we are making the very essential simplifi-
cation of assuming that (3.8) is valid for the energy of
the intermediate state. We thus disregard the com-
plications which were extensively discussed in Sec. III,
vis. , that the scattering matrix Q;; and the energy of
excited states E(k,) depend on the empty states and on
other excited nucleons which may be present. The
influence of this simplification will be brieQy discussed
in Sec. X. Since each matrix element of v, , contains a
b function expressing conservation of momentum, we
write

where 6 is the 3-dimensional 8 function and

w;, (0) = "e;,(r,,)e'& "~d'r;, '

(k, 'k ~e;;~k,k;)~
=(k iv, , ik;k;)~(2 )'5(k +k, '—k,—k;),

(k,'k ~G,, ~k,k;)i
=(k, ~G,, ~k,k,)(2 ) b(k, 'yk, ' —k,-k,),

(9.8)

= (k,'k/
~
fj;J ~

k;k, )N —(27r)
—' d'k, "

and obtain the integral equation
is the Fourier transform of the nucleon interaction. If
we use a Serber force (8.20), then the matrix element of (k, 'k, '

~
G;,

~

k 4,)
v,; for the nucleus is given by (8.21) which becomes in

our case

(k k ~t;;~k;k;)N ———,'[w;;(k,—k )+w, ;(k;—k )]
&& (2~)'b(1,'yk, ' —1,—k;). (9.6)

In the second (exchange) term, the nucleon i goes into
the final state k and vice versa. sr

The Eq. (3.1) determining the scattering matrix G
becomes now an integral equation":

~The factor (2s.)' in (9.4) and further equations is most
easily understood as follows: If the momentum components of
the momenta k;, k;, k, k are considered quantized in a large
volume, then momentum conservation permits exactly one quan-
tized momentum state for k if k;, k;, and k are given, and for
this one state the matrix element is w, Eq. (9.5). In the con-
tinuum treatment, we have to integrate over k momentum
space with the volume element (2'.) 'd'k; if then the integrand
is Eq. (9.4), the integration yields (9.5).

"Brueckner, in reference 15, erroneously takes the final state
to be —k which is correct only if the center of mass of the two
nucleons is at rest.

32The integral in (9.7) goes only once over each momentum
space k;", k;" and does not contain factors 4 for spin and charge.
This is because the spin-charge function of the two nucleons in
the intermediate state k;"k;" is completely determined, vis'. , it
is the same as in the initial state k;k;, and in the final state
k k, as was shown in Sec. VIII.

y (k,'k, '
~
6,, ~

k;"1~;")p-

X—
E(k;")+E(k,+k;—k,")—E(k ) —E(k,')

X (k,"k/'
~

G, & ~

k,k;), (9.10)

where of course k;" and k/ are de6ned by momentum
conservation, and P means the principal part.

In Sec. III we have shown that the intermediate
states k,"k;" must be different from all the states
occupied by other nucleons, k&'. Further, since the
principal value of the integral is to be taken, they
cannot both be equal to the chosen states k,skis but at
at least one of them must represent an unoccupied state.
Now momentum conservation requires that if k;"Wk;,
then also k;"&k;; so at least if i and j are initially in
the chosen states (k;=k,' and k;=kg), then both k,"
and k;" must be unoccupied states. Hence, with plane
wave functions, we may simply use the principal value
P of the integral, and we do not need to use the more
restrictive operator Q of Sec. III.
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As we have just shown, the integral in (9.10) extends
over all states in which both k;" and k/'=k~+k; —k;"
are greater than kp, the radius of the Fermi sphere. The
value of kp is given by

(2m.)
—'4(4m/3)kp'(4~/3)rp' ——1, (9.11)

w'here ro is the radius of the sphere containing one
nucleon. The most accurate information on ro for actual
nuclei comes from the Stanford electron scattering
experiments" and gives (for Au for which experiments
and analysis are best)

ro ——(1.180+0.012)X 10 "cm. (9.12)

Equation (9.11) yields

k~ 3 "~"'/2——ro 1.524/ro =——1.29X 10"cm '. (9.13)

The potential energy V defined in (9.2) is now

V(k~) =3(2') ' d'k;(k;k;~G;;~k;k;), (9.14)
~Jp

i.e., the integral over the diagonal elements of the
reaction matrix G. As was explained in Sec. VIII, the
factor 3 takes into account the fact that nucleon i
interacts with the three nucleons of momentum k;
which diGer from it in either spin or charge. It may be
noted that Mv»(ri2) is of dimension (length); for
the Fourier transform defined in (9.5) we have Mm i2(q)

(length)+', and we shall see later (Sec.XI) that Mwi2

is related to the effective range of the potential; the G
matrix elements are of the same dimensions as m, and
V(k) according to (9.14) is again of the dimension of a
potential, i.e. 3fV~length '.

The potential energy V(k), and therefore the total
energy of one nucleon E(k) = V(k)+k'/2M, will depend
on the radius of the Fermi sphere in momentum space,
kp, in addition to its dependence on k. Similarly, the
interaction between two nucleons, (k~k;~G;;~ k,k;), will

depend on kp, because the integral in (9.10) extends
over the momentum space outside the Fermi spheres
k;"=kg and k;"=k~. If G were replaced by v, this
quantity would no longer depend on kp but the poten-
tial energy V(k), Eq. (9.14), would of course still do so.

The total energy of a nucleus containing 2 nucleons
is, '4 according to (5.5),

r
Wt, t, =AW=QX4(2 )

—' 'I d'k &U(k)+ (915)
2M.

'

where 0 is the volume of the nucleus. " This clearly
depends on the density of nuclear matter,

p= A/0= (3/4m)ro
—' ——(2/3m')k&' (9.16)

'3Hahn, Ravenhall, and Hofstadter, Phys. Rev. Iol, 1131
(1956), where references to the earlier literature are also given.

~ This time the sum goes over all nucleons regardless of spin,
and hence there is simply a factor 4.

'5 One should avoid calling the volume of the nucleus v or U
because. this would be confused with the interaction or the
potential.

k'
W= „~d'k -', V(k)+

2M
(9.17)

(9.18)

Since H/ is a function of density only, the extra energy
added when another nucleon is added to a large nucleus
and the density kept constant, is given by 8'; in other
words, the binding energy is —W= ~W~. Also if the
volume is kept constant, the extra energy is W by
virtue of (9.18); we have

(&Wto~) (&Wq dW
=W+A~ )

=Wyp =W. (9.19)
gA )o KBA)o dp

Another way of calculating the binding energy of an
extra nucleon is to consider the energy per unit volume,8,», and differentiate it with respect to the density,

and may be calculated as a function of p. However, as
was pointed out by Eden"" (see also Sec. II of this
paper), we have not yet taken into account the require-
ment that the wave functions and the potential t/ be
self-consistent. This requirement cannot easily be for-
mulated for an inhnite nucleus but this can be done
for one which is extremely large. The proper procedure
would of course be to choose a potential matrix
(r'~ V~ r), calculate the wave functions f (r), recon-
struct V from this, etc. , until a self-consistent solution
is found. This would clearly be very de.cult, and
furthermore, since the nucleus is very large, it is clear
physically that the exact dependence of (r'~ V~ r) on
the positions of r and r' within the boundary layer will
have a negligible inhuence on the wave functions and
the energy of the nucleus, because it will aGect only
the surface energy. Obviously, the only parameter in V
which will seriously influence the nuclear energy is the
over-all dimension of the potential well, i.e., the size of
the nucleus for a given number A of nucleons. A problem
of this type, where self-consistency depends almost
entirely on the choice of one parameter, is eminently
adapted to the variational method. Indeed, Eden""
has shown that the self-consistent field problem in this
case is equivalent to the variational problem of making
the total energy a minimum as a function of the density
p.

Thus, while it is formally possible to calculate the
V(k) and the total energy for an arbitrary density, the
result would in general not approximate the self-con-
sistent solution for a large but finite nucleus. Only if the
total energy is made a minimum as a function of
density, will a self-consistent solution be obtained. The
"solutions" for other densities may thus be considered
as spurious, but they are of course useful for obtaining
such quantities as the compressibility of nuclear
matter, etc.

The variational condition may be rewritten
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i.e., electively kp. We have

qaW~, ~ ~aW...~ dW, ,

ERA)o E BA )o dp

can be seen from (9.19).On the other hand, this energy
is correctly given by E(kz) provided the above-men-
tioned contribution (c) is negligible.

X. EXCLUSION PRINCIPLE
d 1 r k'

«k —;V(k)y
2k'' dk~ 2gr' ~ 2M

using (9.16). Inserting (9.14), this becomes

taWq 1 d-p k
k'dk +——

BA ) o kp'dk» ~ 2M 4 16m4

X)t "d'kid'k2(kgkg~G;;~kgk2) . (9.21)

The first term, the kinetic energy, gives
k,'+k, '=k,"+k,"=0. (10.2)

The last of these relations brings the simplification that
if k,")kF, then also k;")k~ so that the allowed (unoc-
cupied) states in the integral (9.10) all lie outside the
sphere k;"=kg, and

E(k~+k;—k;")=E(k,"))Ep, (10.3)

E(k;) =E(k;) (Ep. (10.4)

The solution is best illustrated by an example. We
take v, , (r) to be a Yukawa interaction, which we write
in terms of the effective range theory" in the form"

(9.22)kg'/2M,

i.e., the kinetic energy of the fastest nucleon. The
second term gives three contributions: (a) from dif-
ferentiation with respect to the upper limit of the k~

integral, (b) from the same for k2, and, (c) from the
dependence of G;; on kp arising from the solution of
(9.10). We shall disregard contribution (c); this will
be shown (Sec. X) to be a good approximation for
normal or higher density. The contributions (a) and
(b) are equal, and the factor 2 arising from this cancels
the factor -', with V in (9.15). Since the volume element
in k~ space is 4mk~ dk~, twice the contribution of (a) is

3.56s
&
—2.12'/b (1o 5)

We shall now try to solve the integral equation (9.10)9.20 for the scattering matrix G, , Contrary to the procedure
of Brueckner, "we shall tat.e the Pauli exclusion prin-
ciple into account from the beginning. It will be shown
that this makes a large difference to the solution, and
further, that the solution becomes easier rather than
more dificult by taking the Pauli principle into account.

For simplicity, we shall consider the case":
k;= —k;. (10.1)

By momentum conservation in (9.10), we then have
also

= V(kp)+
BA 2' (9.24)

3 2)&4x kp'
"d k~(k~k2IG'~Ik~k2) = V(kp), (9.23)

4 16+4 kp' ~

if we use (9.14). Together with (9.22), we have then

where b is the intrinsic range which we choose to be
2.5X10 " cm, and s is the strength paramater. We
choose s=1, which means that the scattering length
for the two-body system at zero energy is infinite, cor-
responding to exact resonance at zero energy. " It will
be convenient to introduce

This is the total one-nucleon energy of the most ener-
getic nucleon, so that we obtain then

a=b/2. 12=1.19X10 "cm;

1.68

(10.6)

w= E(kp). (9.25) (10.7)

Thus, if (c) can be neglected, one may either use the
eigenvalue of the most energetic nucleon E(k~), or the
average energy W from (9.17).

It is perhaps somewhat surprising that one calculates
in one case an average energy and in the other case a
maximum energy, and that these two should be equal.
This is made possible by the factor —, in the potential
energy when the average W is calculated in (9.17); this
should just compensate for the diGerence between
average and maximum. This argument shows, of course,
that the energy of the top of the Fermi distribution,
E(4), must be negative. The relation (9.25) is only
true if the nuclear density is chosen so as to make 8'
a minimum; otherwise, 8' does not represent the energy
of an additional nucleon, added at constant volume, as

The Fourier transform (9.5) of (10.7) is

Mw;;(q) =4m X1.68
1+(qa)'

(10.8)

For small q, this is proportional to the range u of the
Yukawa potential. The potential matrix for a Serber

"The more general case, k;+k;WO, is at present being con-
sidered by Mr. Thouless of the Cavendish Laboratory, Cam-
bridge."It is a great advantage to use this theory so that one may be
sure that all parameters are chosen consistently, in agreement
with each other and with the evidence from two-body experiments.

3' J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949),
especially Eq. (4.4)

"Actually, a slightly greater value of s would be better since
we have to take the average of singlet and triplet interaction.
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force becomes, when we use (9.6), (9.8), and (10.2):
(k k i', , ik;k,)~

1
+ . (10.9)

1+a'(k;—k ')' 1+a'(k —k ')'

For the energies we use the same approximation as
Brueckner,

E(k) =k'/2M*, (10.10)

where the "eGective mass" 3f* is to be determined by
the condition of self-consistency, and we introduce the
new notation

s'= M—(6;;)y, G'= —MG;;, (10.11)
so that these quantities are now positive. We further
drop the reference to the state of particle j which is
given by (10.2) and the subscript i in k;, etc. Then
(9.10) becomes

(k'i G'
i k) = (k'

i

v'
i k)+ (2ir)

—'(M*/M)
1

x " d k" (k'~" ~k")- (I "~G'~k). (1o.12)
ky k'"—k'

This is very similar to Brueckner, i2 Eq. (7), except for
the lower limit Ap on k". To start vrith, we shall now
make the further simplifying assumption that &=0;
then the two terms in (10.9) will become equal.

We shall now show that the integral in (10.12) is
numerically rather small compared with the first term
on the right-hand side of (10.12). To show this, we
shall use an iteration procedure: We asslme that G'= ~'

in first approximation, we insert. this into the integral
and evaluate it, and then show that indeed the result
is small. We calculate in particular the diagonal term

(k I
G'

l
k =0) = 1.68X4n-a 1+(2~)-'(1.68) (4n-a)

I

X X4~ I (10 13)
M "si k'" (1+k'"a')'

The integral can easily be evaluated as a function of

n =kra = 1.29X1.19=1.53, (10.14)

(see 9.12, 10.6), and the result is

(k(G'(k=O)
=1+—(1.68) —

(
arc tan-—

(k ~.'~ k=o)
=1+0.064M*/M. (10.15)

Thus even if M*=M, the integral is only about 6% of
the first-order term, (k

~

v'~k).
This means that the Born approxiniation is we/i

jnstijied, a most remarkable result. The reason for this
result is of course the exclusion principle, which greatly
reduced the value of the integral. Indeed, this e8ect of
the exclusion principle arises from the same circum-
stances as the rapid convergence of Brueckner's "linked
cluster" expansion, " namely the fact that the matrix
elements of the two-body interaction for momentum

changes of the order of kp are small. The small result
for the second term in (10.15) justifies, of course, the
use of the iteration procedure for solving (10.12). It
further justj'L6es the use of the rough approximatioD
(10.10) for the energy in the denominator.

It is easy to see that the contribution of the second
term in (10.15) would be even smaller if the density had
been chosen higher. This would give a large value of kp
and of n, and in this limit the term in parentheses in
(10.15) becomes 2/(3n'), and

(kiG'ik=O)
= 1+0.36n ' . (10.16)

(k(~'~k=o)

The contribution thus decreases inversely as the density
of the nucleus, and the Born approximation becomes
increasingly good at high density because the Pauli
principle takes more and more effect."

On the other hand, if the exclusion principle had not
been taken into account, kg would have to be replaced
by zero. Then n in (10.14) is zero, and (10.15) is replaced
by

1+0.84M*/M. (10.17)
In this case, the deviation from Born approximation is
large, and the iteration procedure is no longer applicable.
This is the case treated by Brueckner, " and in this
case it is necessary to solve the integral equation (10.12)
explicitly, instead of simply carrying out a quadrature.
Brueckner was able, in his case, to reduce the integral
equation to a differential equation in coordinate space,
a reduction which becomes more complicated if the
Pauli principle is taken into account. " However, a
di6erential equation is still more complicated than a
quadrature, so that the exclusion principle still remains
a simplification.

It might be argued" that a good approximation
could still be obtained by solving Eq. (10.12) without
taking the Pauli principle into account. Indeed, we
have shown that a good approximation to (10.12) is
obtained if 6' in the integral is replaced by v' and then
the Pauli principle is taken into account. The total
potential energy of the nucleus is then proportional to

~
d k,d k, (k,k, (G(k,k,)

~d'k;d'k (kgb;
~
e~ k;k;)

+ (27') '~~d'k;d'k, d'k;"d'k/'
~ (k,k;( v [k;"k;"))'

s(k;"+k;"—l;—k,)X, , (10.18)
g Ilyg II

"The same conclusion has been reached by W. J. Swiatecki.
Starting from perturbation theory and taking into account the
exclusion principle, he finds that the Born approximation is quite
good at the observed nuclear density while it would be very poor
at low density. I am indebted to Dr. Swiatecki for sending me his
manuscript before publication.

"See, e.g., Brueckner, reference 12, footnote 5.
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where the integral over k;" and k;" goes only over unoc-
cupied states. Now, in this form, nothing wouM be
changed if the integral over k;" and k;", were extended
also over occupied states, because interchange of the
integration variables k;"k;" with k,k; would give the
same contribution with opposite sign. However, three
things are wrong with this argument. First, the energies
in the denominator in (10.18) will be different according
to whether the Pauli principle is taken into account or
not, so that the contribution of the unoccupied states
k,"k;"will be different in the two cases (it will be less
when the Pauli principle is not taken into account
because the effective mass will then be lower). Secondly,
while the first iteration provides a good solution of
(10.12) when the Pauli principle is taken into account,
this is not so when it is disregarded I

see Eq. (10.17)].
In this latter case, then, there is no reason for (10.18)
to be a good approximation to the energy of the nucleus.
Third, the interchange of integration variables is only
possible if both k," and k;" are occupied. A large con-
tribution comes from k;" occupied, k," empty or ~ice

versa, and this is not compensated by interchange of
initial and intermediate states.

The small contribution of the integral in (10.12) has
been demonstrated only for the case k=O. For k/0,
the denominator k'"—k' in (10.12) becomes smaller.
However, crude estimates show that the increase of
importance of the second term in (10.12) with k is very
slow, and only when k is eery close to kp does it become
appreciable. Mr. Thouless of Cambridge University
has done quantitative calculations which show that the
correction to the potential energy of a particle remains
small even near kp, although it is then of course larger
than for k=0.

In correspondence with K. A. Brueckner, the follow-

ing interesting comparison has been developed between
the solution with and without exclusion principle (EP).
According to (10.18), the average value of the second
term in the iteration expansion of 6 is the same in both
solutions Ldisregard the third argument given below Eq.
(10.18)$. From (10.15) and (10.17), we know that for
k=O this second term is larger without EP, leading to
a lowering of the energy level k=O. For k=kp, the
reverse must then be the case, i.e., the energy level
lies higher without the EP than with it. LIndeed, in
some cases, the highest occupied level calculated without
KP turned out to lie above zero energy, which is incom-
patible with Eq. (9.25).J Generally, it follows that the

nucleon levels calculated without EP will be too much
spread out in energy; in other words, that the eRective
mass will turn out too low. This in turn will reduce the
value of the second iterated term in 6 and thus the
error made by neglecting the KP. The error in the
average binding energy due to neglect of KP should be
less than in the eRective mass.

Our method of solution of (10.12) holds of course only
for "well-behaved" interactions v;;(r), such as the
"classical" shapes Yukawa, exponential, Gaussian, and
square well. It obviously cannot hold if the interaction
contains a repulsive core, because in this case the
Fourier transform (6.5) of the potential is infinite (and
repulsive). The integral equations (9.10) and (10.12)
are still. alright if v is interpreted as the limit of a finite
repulsive core. But the solution by iteration becomes
meaningless; therefore Brueckner et u/. , who were
mostly interested in repulsive-core potentials, could
not make use of our iteration procedure. Instead, it is
necessary to transform the equations (9.10) and (9.12)
back to coordinate space. In this form, the equations
are more complicated with the exclusion principle than
without, and it is therefore natural that Brueckner in
his first solution" neglected the KP.

A solution of the problem of a pure repulsive core
with Pauli principle has been obtained by Bethe and
Goldstone, "using a suitable coordinate space equation,
&rueckner (private communication) has obtained a
numerical solution for a more realistic case, vis. , a deep
and narrow attractive well outside a repulsive core, and
has found that in this case the eRect of the exclusion
principle is not large

Finally, we want to consider briefly the complications
discussed in Sec. III. These can easily be taken into
account if the integral equations can be solved by
iteration, as seems to be the case for our simple poten-
tials. We may as a first approximation set 6;;=e;,,
obtain the potential energy V(k) from (9.14), and set
E(k)=k2/2M+V(k), for all k. Then, in second ap-
proximation, we set 6;;=a;; under the integral in
(9.10)—as we did in solving (10.12)—and insert the
just-obtained values of E(k) in the denominator of
(9.10).To this approximation, the complications of Sec.
III have no inRuence on the reaction matrix and on the
energy of a nucleon in the chosen configuration. Now
we use the same (second) approximation to calculate
the reaction matrix for an excited state; according to
(3.7), we get, with the notation of (10.12):

(k''ki'I G'i'Ik'ki" k 'k ' k )= (k''«'I ~'~'Ik*ki') ~+ (2~) ' I

d'k;"(k, 'ki'
I v, i'

I
k;"ki")~

fl
(k;"ki"

I
v;i'I kki') ~. (10.19)

E(k;")+Z(k,+k&o—k;")+g(k;)—E(k o) —E(k&o) —g(k 0)
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The diagonal elements of this matrix,

(k,kP(G, i'~k;kP; k k,k;),

are then inserted into (3.5) to give the (second approxi-
rnation to) the energy of the state in which nucleons i
and j are excited. Since the second term of (10.19) will
again be a few (maybe 3)4' percent of the first, its
depefidefsce on the empty states k,', kfs and on the extra
occupied state k; will be only a fraction of this amount;
let us say, about one percent for the common choices of
these three states. Thus in practice the energy of the
state k, mill depend on the supernumerary quantum
numbers k,', kfs, k; only to about 1%, and to this
accuracy it is possible to define V(k,) and E(k;). In
third approximation, then, the energies of the excited
states k;, k, as calculated from (10.19) can be inserted
in the denominator of (9.10), and at the same time G
in (9.10) replaced by the second approximation calcu-
lated in (10.15). Since the second term in (10.15) is
only about 5% of the first, and the approximation of
h(k, ,k;; k,s,kfs) of (3.5) by the denominator in (9.10)
is good to about 1%, the error in the energy of the
grolwd state caused by this approximation will be about
0.05% which is completely negligible.

Thus the complications discussed in Sec. III are of
no practical importance for well-behaved nucleon inter-
actions such as the Vukawa interaction discussed in
this section. However, for potentials with a repulsive
core these complications may be much more important.

XI. INTERACTION IN 8 STATES ONLY

For an adequate treatment of the saturation problem,
it is necessary to use nuclear forces with a repulsive core.
A method for solving the integral equation (9.10) with
such forces and with the Pauli principle is given by
Bethe and Goldstone. "However, much work will be
required before reliable results can be obtained. It is
therefore desirable, for a preliminary orientation, to
investigate a potential which gives saturation without
having a repulsive core.

Such a potential is suggested by Brueckner's paper'
on the evaluation of his theory. He uses an interaction
which exists only in S states, which he justiles on
physical grounds. 4' Now such an interaction, even if it
contains no repulsive core,~ will always lead to satura-
tion. This can be seen most easily by a statistical
argument. A given nucleon in a large (infinite) nucleus
will interact essentially with all those nucleons which
are in S states with respect to the given nucleon, and
are within a sphere whose radius is equal to the range
of the nuclear forces, b. Thus the number of interactions

'2 Since the denominator in (10.19) contains three excitation
energies rather than the two in (9.10), the value of the integral
term in (10.19) is estimated to be only -', of that in (10.12).

~ If one assumes a Serber force, there is no interaction in I'
states. D-state interaction is small at the normal nuclear density
provided there is a strong tensor force fBrueckner (private com-
munication) g.~ Brueckner's S-state interaction does contain a repulsive core.

per nucleon is proportional to the number of S states
within a sphere of radius b, which in turn is proportional
to kgb. Therefore the attractive potential energy is
proportional to kp and hence to the cube root of the
density. LThis will be shown quantitatively in (11.17)
and (11.19).j The kinetic energy is proportional to kF'.
The combination of two such terms clearly leads to a
minimum of the total energy at some definite value of
kp and hence to saturation. The difference from the case
of an ordinary or a Serber force is, of course, that in
these latter two cases the potential energy per nucleon
is proportional to the density, and thus to kp', so that
no minimum of the total energy exists.

Interaction in S states only does, of course, not cor-
respond to an ordinary potential, but we may speak of
the potential acting between two nucleons in an S state
and denote it by e,,(r). We must now derive the matrix
elements (k,'k/~s, ;~k,k;)p. It is convenient to use
center-of-mass coordinates so that k;= —k; and then
to drop the subscript i. The desired matrix element is
then the spherically symmetric part of the Fourier
transform of s ~J(r), or in other words, the average of the
Fourier transform over all directions of the Anal
momentum k', keeping the direction of the incident
wave Axed. Thus we have, using a notation similar to
(9.8) and (9.5):

Now m depends only on

q= ik —k'[,
and if 8 is the angle between k and k',

der'=2s. sin8d8= 27rqdq/kk',
so that

(11.2)

(11.3)

1.446s
Mv (r)= —— e "'

a2
(11.5)

where rr, =b/3 54, with b th.e intrinsic range of Blatt and
Jackson. Taking again b=2.5&&10 " cm, we have
a=0.706&&10 " cm. The strength parameter s will
again be set equal to one (exact resonance). Then

sinqr—Mw(q) = —4s ~Me;, (r)r'drj ar

=8 sx1. 464a(1+a' q)
', (11.6)

(k'i 8;;Ik)i ——(2kk') ' qdqw(q). (11.4)
~ ]a—a'~

Since the S state has even parity, exactly the same
result will be obtained if the forces are Majorana
exchange or Serber forces.

The integral in (11.4) gives a slightly simpler result
if we use an exponential potential rather than the
Vukawa interaction between two nucleons. Again using
the effective range formula of Blatt and Jackson, "Eq.
(4.4), we have
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and (11.4) becomes, with the notation (10.11): and a=0.706X10 ",we have

(k't" /k) =
1.446 X8~a

2kk' ~ (1+a'q')'

1.446 X8~+

~p= 0.91,

[ ]=0.346 for «=0,

[ ]=0.244 for «=«p.

(11.15)

(11.6)

(11.7)
[1+a'(k —k')'] [1+u'(k+ k')']

Now it was shown in Sec. X that the reaction matrix
6' is nearly equal to the potential matrix v'. We are then
interested in the diagonal elements k'=k of v', and we
get

1.446X8~~
(k["~k) =

1+4a'k'
(11.8)

The potential acting on one particle k; is, from (9.14),

—MV(k, )= —3(2 )- d k, (l,i, ~G, ,'~l,i,)

Going back to the laboratory system, we have 2k=k,
—k;, which we shall denote by K, and

M(1 ,'1 i
.

i
1 ;1 ;)

1.446X 8~a
(2~)'6 (k,'+k, ' —k,—k,). (11.9)1+a'E'

Thus the potential decreases by a factor of 1.42 from
the slowest to the fastest nucleon.

For very high density, we have

[ ]=2(«p—vr/2) for «=0,

[ ]=«p—m/2 for «=«p,
(11.17)

—MVA„———M V(k~)k; dk;
~lp

1446X6 1 3 1 (3 1
+-«p+—

/

-+
7I'8 4«p 2 «p (4 16«p )

so that there is then a factor of 2 between slowest and
fastest nucleon. As was shown in Sec.X, the assumption
6= v is best in this limit.

The most interesting quantity is the average of the
potential V over the Fermi sphere [one-half of this
quantity is the average potential energy per nucleon,
see Eq. (9.15)].This is obtained by integrating 6rst over
k; and k; and last over E. The result is

1.446X24za 2x p~J' p~'+~& EdE
dk ' . (11.10)

(2w)' k, & p & (~;-a;( 1+g'E'

This can easily be evaluated by integrating 6rst over
k; and then over E. If we use

Xin(1+4«p~) —2 arc tan2«p . (11.18)

For small ~p, the expression in square brackets is of
course again 3~p'. For large ~p, it is

&=~i~) &F=~F~) (11.11) [11.18]= —,
'

(«p —-', m ) (11.19)

the result is

—MV(k~) =
1.446X6 «p' —«'+1 1+(«p+«)'

ln
m.u' 4«1+ («p —«)'

+«p —arc tan(«p+«) —arc tan(«p —«)

which approaches the mean of the two values given in
(11.17). For «p ——0.91, it is

[11.18]=0.280 (11.20)

closer to the lower of the two values in (11.16). [11.18]
means the expression in square brackets in Eq. (11.18).

The kinetic energy of any nucleon is

In the limit ~=0 we get for the expression in square
brackets in (11.12)

1
MT =-'k'=

28
(11.21)

[ ]=2(«p—arc tan«p),

while in the limit ~= ~g the result is

(11 13) and the average kinetic energy is

(11.22)MTA~= —,'(Skp') = «p'.
10a'

If, in addition, re+ is very small, both of these expressions
reduce to ~~~+' which can easily be checked directly
from (11.10). In this limit (i.e., for very low density),
the potential t/' does not depend on velocity.

For the adopted nuclear constants, kg=1.29X10"

W= {—Kp'+ (4/3)n[11.18]). (11.23)
103fa'

where
(11.24)a.= 15X 1.446/2x =3.452,

ln(1+4«p')+«p arc tan2«p. (11.1—4)
The binding energy per nucleon is conveniently written
in the form
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TAnrz I. Nuclear energies at two densities in Mev (exponential
interaction, no repulsive core).

1. Density: Observed Optimal Optimal,
large

2.92 u&&I
0'.367 1.07/

213 aP

0.91
1~ 18

20.7

2. Ky (ln 10'3 CQl ')
3. ro (in 10 "cm)
4. Mean kinetic energy
5. Mean potential energy

(negative) 32.3
6. Mean binding energy 8' 11.6
7. Slowest nucleon, binding

energy 79.7
8. Fastest nucleon, negative

potential energy 56.3
9. Fastest nucleon, kinetic

energy 34.5
10. Fastest nucleon, negative

eigenvalue 21.8
11~ Variation of potential energy 23.4
12. Ratio to variation of kinetic

energy, r
13. M*/M

278
65

2+2
+2

775 (16/3)eP

(g/3)n420

(3/3)a'355

65
355 (8/3) aP

1.00
0.500

0.68
0.595

1.6
0.384

when we recall that the average interaction energy per
nucleon is one-half of the VA„given in (11.18).

If we insert for [11.18$ the asymptotic value (11.19),
the maximum of 8' occurs at

(11.25)

[this is the reason for the choice of the coeKcient in
(11.23)J. For the actual value of o., 3.452, the asymp-
totic formula (11.19) is not accurate enough, and the
minimum of (11.18) is found to occur at xi = 2.92. This
value of ag is more than three times the "observed"
value sr=0.91, Eq. (11.15). In other words, inserting
the actual strength of the nuclear forces and using
interaction in S states only, we obtain a nuclear radius
(in equilibrium) more than three times too small, a
nuclear density about thirty times too large. [Using
(11.25) and (11.24) would be even worse. $

In Table I, we give the numerical values of various
physical quantities for e=3.452 and two diferent
values of the density, one the observed density of
nuclear matter (xr ——0.91) and the other the density
which makes W in (11.18) a maximum (called "optimal
density" in Table I, x&=2.92). All energies for these
two cases are given in Mev, and the range of the ex-
ponential. interaction is assumed to have the value
a =0.706&( 10 "cm.

In the last column of Table I, we have considered
yet another case of still less physical meaning, but of
some mathematical interest. We have assumed that
the nuclear forces are increased in strength so that n
is larger than (11.24). Then the asymptotic formulas
(11.19) and (11.20) do become valid, and all physical
quantities can be expressed in a simple manner in terms
of cz. In this column, all energies are in units of

8=3/10M'', (11.26)

which has the value 25.0 Mev for u =0.706)&10 "cm.
The f rst three rows of the table describe the case

considered. The next three give the energy of an average

nucleon, vis. , its kinetic, potential, and total binding
energy; in particular, line 5 is the average potential
energy per nucleon, or one-half of the average of the
one-particle potential V . The seventh row gives the
negative eigenvalue of a nucleon of zero momentum,
and the following three refer to the fastest nucleon.
Of these rows, line 8 gives the negative of the one-
particle potential for

Line 11 gives the change of the one-particle potential
from the slowest to the fastest nucleon, and line 12 the
ratio of this change to the kinetic energy of the fastest
nucleon (line 9). Assuming the variation of potential
energy to be quadratic in ~, the effective mass is then
M*/M=1/(1+r), and is given in the last line of the
table.

Ke first note that, according to Sec. IX, the negative
eigenvalue of the fastest nucleon (line 10) should be
equal to the average binding energy W (line 6), and
this is indeed true for the tw o last columns in which
the density (i.e., xr) has been adjusted to make W a
maximum. For the "observed" nuclear density (and
the adopted values of a and o,), W is not a minimum
and lines 10 and 6 therefore do not agree. This case,
therefore, is not a solution of the self-consistent problem
(Sec. IX) and the numbers in the table for this case
are actually not meaningful.

It has already been pointed out that the maximum of
8' occurs at a very high density. Indeed, ~p =2.92 is
3.2 times larger than the "observed" ~p of 0.91, and
theref ore the density is about 33 times too high. This
shows that the assumption of interaction in S states
only, while it formally gives saturation, does not give
saturation at the correct density at all. It is to be
hoped that the introduction of a repulsive core will
improve this situation —indeed, this surely must lead
to an equilibrium density far lower than corresponds
to rp =0.367 because for this value of ro the repulsive
core from one nucleon would almost reach the next
nucleon, if the conventional value r,=0.6)& 10 ' is
assumed for the radius of the core.

At the high density ~p =2.92, all energies are naturally
very high. The binding energy per nucleon, 65 Mev,
may be compared with the volume energy of 15.5 Mev
per nucleon deduced by Green and Engler4' from em-
pirical data on nuclear binding energies. At that, the
theoretical binding energy is a relatively small dif-
ference between the potential and kinetic energy, each
of which is over 200 Mev for an average nucleon. The
eigenvalue of the slowest nucleon is even larger, cia. ,
almost 800 Mev. It is clear that none of these numbers
have any relation to actual nuclear energies.

We now consider the results at the observed nuclear
density, ~~=0.91. This is not legitimate since 8' is not
a maximum. We couM imagine, however, that an added
core migh t change the position of the maximum of W
so as to give the correct density, and might at the same

4' A. E. S. Green and N. A. Engler, Phys. Rev. 91, 40 (1953).
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time not change S" itself very much. Assuming hope-
fully that this can be achieved, the binding energy 8'
of 11.6 Mev is now in reasonable agreement with the
observed value of 15.5 Mev, closer in fact than our
crude assumptions about the nuclear interaction
warrant. Thus there is some hope that if the theory can
be made to yield the correct density, it will then also
yield a good value for the binding energy.

Our model, just like Brueckner's, " gives a large
increase of the one-particle potential V with momentum.
This increase is quite comparable with that of the
kinetic energy. Indeed, the ratio of the two (line 12)
varies from 0.7 to 1.6 for the three cases considered,
increasing with increasing density. For the case ~p
=2.92, the ratio is accidentally exactly 1. The corre-
sponding eBective masses range from about 0.6 to 0.4.
If we consider the case of the observed density as
significant, even though 8' is not maximized, we should
expect an effective mass of about 0.6 which is somewhat
larger than that reported by Brueckner. "

XII. CLUSTER TERMS

In Sec. IV it has been shown that the Brueckner
method will work satisfactorily provided that certain
terms, which we have called cluster terms, are small.
The most important of these is the correction to the
energy,

DE= (C'p
( P jI L'~ C'p) =P' '; (I;4p, L; 4p)', (12.1)

where C 0 is the model wave function of the ground state,
the sum goes over all pairs of nucleons, and L;;
includes all terms of the operator Ii;;, Eq. (4.3), which

are "linked" to the pair ij.Another interesting quantity
is hE; which is the contribution to (12.1) from clusters
which involve one particular particle i. If the chosen
configuration is degenerate, we shall be interested in
the matrix elements of g I;;L;;between two degenerate
con6gurations; these will be considered in Sec. XVI.
In the present section, we shall evaluate the cluster
term of Eq. (12.1).

It was shown in (7.2) and (7.8) that the only non-

vanishing matrix elements of I;; starting from the
chosen configuration C are those in which both nucleons

i and j become excited. Hence I;,40 contains only such

model states in which i and j are excited while all

other nucleons are in their chosen states. L;; of Sec. IV
may be expanded thus:

e e e e
L;;=1++ I;g+Q I;(+Q—I;g Q I)——

l/j g '$ lgs g '$ l/ j g$$ mgi

+3 other terms involving 2 factors I
+terms involving 3 or more factors I. (12.2)

In the energy denominators e, the nucleons ex-

cited at each stage have been put in evidence. The
first term inserted in L;,4p of Eq. (12.1) gives Cp

which is clearly orthogonal to I;,40. In the second

(third) term, E must be different from j (i), so that
IA'p(I;@p) is again orthogonal to I;,4p. Only the next
term in (12.2) can give a nonvanishing result,

Q Q
~Ep=~l C p I;;—I;~—Ik C'p

I (12.3)

In this term, the three nucleons i, j, and k are suc-
cessively excited. There are of course also terms in
which more nucleons are successively excited and de-
excited.

The term (12.3) was first derived by BL, Eq. (20).
It was investigated by Brueckner" who called it a
cluster term. According to Brueckner, AE3 is the con-
tribution to the energy of a cluster of three particles
which interact simultaneously. When we constructed
the G matrix, in Eq. (3.1) or (9.10), the influence of
particles other than the two interacting particles i,j
was already taken into account, but only insofar as it
could be expressed as an over-all potential which
influenced the excitation energies E(n;")—E(mP) of
the interacting particles i and j. Thus (12.3) (and
higher cluster terms) are required only to take into
account the ggcAsafioes of the influence of other par-
ticles (in this case k) on the interaction of two particles
i and j. From this description it becomes plausible
that AE3 should be small: It is necessary that while i
and j interact strongly, a third particle k be so close
that it also has a much higher interaction with them
than the average. This is very unlikely, no matter
what the nuclear density is: If it is high, then many
nucleons are always close to particles i and j, and their
action can be approximated by an average. If the
density is low, and if no actual clusters are formed (see,
however, the discussion below), then it is geometrically
very improbable that three nucleons come close enough
together so that all of them interact strongly —in this
case, the inAuence of the other particles on i and j can
be omitted altogether. This argument is clearly an
essential point for the success of the Brueckner method.
Whether it is valid can be decided only by actual calcu-
lation of AE3 and possibly higher cluster integrals.

Such an actual calculation has been carried out by
Bruckner" and will be repeated in this section. Like
Brueckner, we shall assume for the present that the
interaction is of the Serber type, (8.20), and has the
spatial dependence of a Yukawa potential, (10.5).
Other possibilities will be discussed at the end of this
section.

Let us assume that the nucleons i,j,k have respec-
tively the orbitals (spatial wave functions) a,b,c in the
chosen configuration. Further we assume that the inter-
actions take place in the order ij, jk, ki, as shown in
(12.3); thus the order of the three orbitals a,b,c is
meaningful. Since two or even all three orbitals may be
alike, E' diGerent choices of the orbitals a,b,c are pos-
sible if X=A/4 is the total number of orbitals occupied.
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We must 6rst discuss the inRuence of spin and
charge. Considering a, b, and c different (the other case
being unimportant), there are 64 different spin-charge
combinations which may be associated with the three
orbitals in the chosen configuration. We may call the
three spin-charge wave functions rr, P,&; they are initially
associated with u, b,c, respectively, so that the order of
rr, P,& is meaningful. Several cases may arise:

1. The spin-charge states u,P,y may all be different;
there are 24 possible choices of rr, P,y corresponding to
this case. Then it can be shown (see Appendix) that in
the two intermediate states the spins must be the same
as in the chosen state: In the first intermediate state,
the wave functions of the three nucleons are a' n, b'P,
and cp, in the second a' n, bP, and c'y. That is to say,
we can choose the orbitals a', b', c' of the intermediate
states (keeping in mind momentum conservation, how-

ever), but we have no further choice of the spins. If we
disregard the diGerence between G' and ~', as is reason-
able for the Vukawa interaction according to Sec. X,
then each matrix element I;;, I,s and Is; in (12.3)
becomes the matrix element of the interaction v.

2. Two of the spin-charge states may be the same;
there are 36 choices of this type. It is shown in the
Appendix that for a Serber force the result is zero if
either n=P or n=y, and that each of the 12 states P=y
gives a contribution which is the negative of that from
the states of type 1. This is due to the fact that there
must be three exchanges of spin between orbitals.

3. If all three spin-charge states are the same (4
cases), the result is zero.

Thus, for a Serber force, the result is as if there were

only 12 rather than 64 spin-charge states for any triple
of orbitals e,b,c. This factor, reducing the result, was
not taken into account of Brueckner. We also propose
to omit it for the moment because (a) this facilitates
comparison with Brueckner, (b) the factor depends on
the special assumption of a Serber force, and (c) the
negative contribution of the spin distributions of type 2

seems to depend on the fact that an odd number of
interactions is involved, hence the small result for
3-particle clusters may not be repeated for the 4-particle

type.
We now consider again an infinite nucleus so that the

initial nucleon orbitals are dined by their momenta

k;, k;, and ks. Because of momentum conservation, only

one further momentum can be chosen; we take it to be
the momentum change of nucleon j in the first transi-

tion and call it q. Then after the first transition we have

k =k;—q; k/=k+q; ks'=4, (12.4)

and after the second transition

k =k,—q; k;"=k;; ks"=ks+q. (12.3).

The initial states k;, k, , and ks, which lie inside the
Fermi sphere, and the momentum change q, must all

be chosen so that the intermediate states k, k and
ks' lie outside the Fermi sphere. "

The energy will again be assumed to depend quad-
ratically on k, Eq. (10.10). The Fourier transform of
the potential is given by (10.8), and we shall use the
abbreviation

f(q) —=f(V) = 1/L1+(~~)'] (».6)

Then with our assumptions and notations, the three-
particle cluster term gives a result similar to Brueck-
ner's" Eqs. (59) and (62).The contribution per particle
1s

&Es/A = —(2m X1.68a)'(2M*)'M '64(2x) "
~sr' +sr ~ss

X d'k, . I d'k, d'. k, I dsq

X[f(q)+f(k —k'+q)]Lf(q)+f(k. —k -)]

X[f(q)+f(ks —kr+ q)][(k r
—q)'+ (k&+q)'

—kp —kfs] '[(k;—q)'+(k&+q)' —kp —kI,']—'

ky - —1

X 4(2') ' ~ d'k, (12.7)

where it is understood that (k;—q~, (k;+q(s and

~
ks+q~ must all be greater than ks. The use of 2s. in

the first factor, rather than 4x, takes into account the
factor -', in the Serber force. 'r The factor (2w) " goes
with the four integrals over momentum space, and 64
represents the possible spin-charge states of the three
initial nucleons k;, k;, and kI,. The denominator
4(2s.) 'J'd'k reduces the result to an energy per
nucleon. The negative sign arises from the fact that
there are three attractive interactions.

Now the matrix elements (12.6) decrease rapidly
with increasing q. Therefore, if the s axis is chosen to
be in the direction q, the most important contributions
will come from initial momenta k, and kq which have a
positive s component, and momenta k; with a negative
s component, and particularly from states which lie

' P. C. Martin and J. Goldstone have independently pointed
out to me that there is still another possible type of 3-particle
cluster term: After the first intermediate state (12.4) is reached,
the nucleon k fills the void left by nucleon i, while nucleon j
takes up the momentum balance. This gives the alternative
second intermediate state

k;"=k;—q; k;"=k;+kI, —k;+ q; kI,
"——k;.

The contribution from this alternative is likely to be of the same
order as that from (12.5). LThe possibility of letting nucleon k
fill the state k; does not give anything new because in this case
k;"=kg+ q, ks"=k;, which is the same as state (12.5).g' Brueckner has an additional factor —,

' which presumably is
meant to take into account that each pairij, jk, and ki in (12.3)
is to be counted only once—as is well known, the sum over all
pairs ij is equivalent to one-half the sum over i and jindependently
However, in our case, the three states i,j, and k are distinguishable
by the order in which the nucleons get excited and de-excited.
Thus i is the nucleon which gets excited in the first step but de-
excited only in the last. Therefore we should let each of the three
nucleons i, j and k indePendently assume each of the possible A
states.
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the integral over q diverges for this term. But it is clear
from the discussion above that the integrand has been
greatly overestimated for q) kp, therefore it is reason-
able to cut off the integral at about kp, and in this case
the contributions of the two terms in the square
bracket will be about the same. Since only an estimate
is wanted at present, we have considered only the first
term in the bracket, integrating up to ~, and have
then doubled the final result.

The integrals over p,; and p, I, are then elementary and
alike, and the whole p, integral becomes

1+t*'
p;dp, 1—p, ln

0 Pi
(12.11)=0.089.

The p; integral has here been evaluated numerically,
which is probably the quickest way, and quite reliable
since the integrand is almost constant at about 0.1
over the range from a;=0.2 to 1. (Brueckner's result is
0.078.) The q integral gives 1/4a', and

AE, 3 q M~q' kp

( (1.68)'0.08&, (12.12)
&2v'J EM) Ma

where the factor 2 has been inserted to take into
account the second term in the bracket in (12.10).

This result is proportional to kp, as is Brueckner's
Kq. (73). Thus the three-particle clusters will not be
very important for large kp where the main part of the
potential energy will be proportional to kp' if Serber
forces are assumed; this is in agreement with our
previous argument that these terms represent Quctua-
tions in the effect of a third particle on the interaction
of a pair and that the fluctuations become (relatively)
smaller at higher density. For low density, on the other
hand, although the absollte value of (12.12) decreases
(in accord with the discussion in the beginning of this
section), its relative importance becomes greater. This
means that the independent-nucleon picture is then
relatively more perturbed by the "cluster" term. As
the density is lowered, a point will be reached where
the cluster terms are so important that the approxi-
mation scheme of this paper no longer applies. It will
then be a better starting point to assume that the
nucleons associate in actlal clusters, i.e., that we have
a number of o, particles widely separated from each
other. That this is so will also be indicated by the fact
that the energy of a dilute nucleus, calculated according
to the prescriptions of this paper, will turn out to be
higher than that of an assembly of noninteracting
o,-particles. Thus we see that the tendency to cluster
formation at low density will be automatically indicated
by the formalism. Conversely, the calculation at normal
nuclear density indicates (see below) that the cluster
terms are not important. This we consider as the best
possible proof of the "shell-model" approximation used
in this paper. We do not think it is necessary to make
an additional pkysical assumption that clusters are

16 3f*' 0~4 ~" q'dq

(2v-)' M' pkF' ~ p q'

0 0

1 1
X— — [f(q)+f(k~(t ~ t ~))j (1—2 9)

tj ~+Pj tj ~+Pa

The integrations over x;, x;, and x~, may be carried out,
and f inserted from (12.6):

AEp 6 t M*q' k~ I.
" q'dq

) (1.68a)—
v' E M ) M ~ p (1+q'a')'

1

[ ~ t 'dt wAt ~t ~dt ~

X
~ " ~ (t*+t')(t'+t~)

0

X +, (12.10)
1+q'a' 1+a'(p; pp)'—

with n given by (10.14).
Brueckner has considered only the first term in the

square brackets. The second term is somewhat more

difficult to integrate; in fact, if (12.10) is taken literally,

close to the surface of the Fermi sphere —the latter
assumption will also reduce the resonance denominators
in (12.7). Thus the main contribution will come from
rather restricted regions of the Fermi spheres for k, , k;,
and kz, and this is the main reason why the contribution
5E3 will turn out to be small.

If we assume that only these restricted regions of the
Fermi sphere contribute appreciably, two simplifica-

tions are possible. First, the exchange terms f (k;—k;+ q)
and f(kI, —k~+q) can be neglected because the mo-

mentum change in each case is about 2k', and f(2k')
is only about 0.1 [see Kq. (10.14)]. However, the last
exchange term, f(kI,—k, ), may be large. Secondly, the
denominator may be approximated by

(k;—q)'+ (k,+q)' —k P—kg =2qk&(p, +p;), (12.8)

where p;=cosg; [0; being the angle between k; and the

positive s axis (q direction) j, and p, =cose, (0, being

the angle between k, and the negative s axis). According

to the argument of the last paragraph, both p, and p,
are between 0 and 1. We have assumed in (12.8) that

k;, k;, and kq are all close to kr. In (12.8), a term

quadratic in q is neglected; if it were included, the con-

vergence of the integral for large q would become more

rapid [see Kq. (12.20)J.With the same approximations,
d'k, =2m%I'dx, dp, ;, where x,=kz —k, may go from 0
to qp;, again neglecting terms of order q', a neglect
which again overestimates the integral. Putting also

d'q=4~q'dq, we get then
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absent' at normal nuclear density, but we consider this
a purely mathematical result of the theory.

With our adopted constants, AF/Ma=45 Mev, and
(12.12) becomes

DE3/A = —1 8(M*/M)' Mev. (12.13)

Tentatively, we may adopt for M*/M the value ob-
tained in Sec. XI, Table I, for the observed nuclear
density, vis. , 0.6. Then

DES/A = —0.66 Mev. (12.14)

This is approximately 100 times Brueckner's result,
Eq (74),

(DEg/A)s„«, i,„«=—0.007 Mev. (12.15)

Of this discrepancy, a factor of 8 is explained by the
counting of states. 4' A factor of 2 disappears in
Brueckner's calculation between his Eqs. (71) and
(73). Another factor of 2 was introduced by us in

(12.12) to take into account the second term in the
bracket in (12.10).A factor of 0.089/0. 078= 1.14 comes
from the evaluation of the angular integral (12.11).
There is some difference in the choice of constants, which
accounts for a factor 1.3 in the same direction. Finally,
our evaluation of Brueckner's Eq. (73) with his con-
stants gives 0.013 Mev.

Our result (12.14) is small but not spectacularly so.
It will be greatly reduced if we take into account the
previously deduced fact that actually only 12, rather
than 64, spin-charge states contribute; then

AE3/A = —0.12 Mev, (12.16)

which gives about 1% correction to the binding energy.
Since this is no longer entirely negligible, it would be
desirable to repeat the calculation more accurately,
especially the integration of (12.7). The actual result
will be probably somewhat smaller than 0.12 Mev.

The result may be compared with the first-order
average potential energy which is about 30 Mev at the
actual nuclear density (Sec. XI, Table I), and with the
second-order contribution which comes from the dif-
ference between G' and i' in (10.12) and which is 4%
of the first order (with the assumed value M*/M=0. 6)
and hence about 1.2 Mev. Thus the third-order term,
(12.16), falls rather well in line with the first two

orders. This result is far more plausible than that
implied in Brueckner's papers: in his calculation, the
second order was about as large as the 6rst because the
Pauli principle had not been taken into account, while

the third-order correction (12.15) was about 1 part in

4000 of the potential energy.
Our separation into first, second, third, ~ order

is of course only valid for "well-behaved" potentials for
which the G matrix can be expanded into a rapidly
convergent series in powers of v, as shown in Sec. X.
For potentials with repulsive cores this expansion is

Contrary to R. j. Eden, reference 20, Sec. III.

impossible because the matrix elements of v do not
exist while those of G do. The cluster expansion, on the
other hand, remains meaningful. Brueckner et al. con-
sidered primarily potentials with repulsive cores;
therefore the idea of comparing the cluster expansion
with the expansion of G could not occur to them. How-
ever, it remains gratifying that for potentials for which
G cue be expanded, the various orders of this expansion
and of the cluster expansion form a sequence which
converges quite regularly.

We may then expect the next order, i.e., the four-
particle cluster term, to be again about 10% of the
third order. If we assume that there is no benefit from
spin factors, i.e., nothing comparable to the factor
12/64 of the three-particle clusters, (an assumption
which is quite unreasonable), the fourth order may be
about 10% of (12.14) which would make it about half
as large as the third order. The higher order terms would
then be definitely smaller. The sign of each order is
negative: In the nth order, (12.1) contains e interaction
terms (negative), and e 1energy de—nominators (also
negative). This result as well as the estimates of orders
of magnitude should of course be checked by actual
calculation.

Even though our result (12.16) for the three-particle
cluster terms is not spectacularly small, it is still small
enough to make the calculation without this correction
very accurate. Moreover, this correction is merely a
correction in the total binding energy and will probably
not affect very much the relative positions of nuclear
energy levels.

That AE3 is so small is of course largely due to the
Pauli principle, as already pointed out by Brueckner.
The action of this principle greatly reduces the part of
momentum space which can contribute appreciably.
Only the halves of the Fermi spheres for which k;, and
k~, are positive, and k;, negative, will contribute, and
the main contributions come from the neighborhood
of the "poles" of the Fermi spheres, i.e., k;„k~„and
—k;, nearly equal to kp. These geometrical restrictions
make the integral (12.11) as small as 0.09. The restric-
tions, of course, exist only because the Fourier transform
of the potential, (12.6), is quite small when the mo-
mentum of the nucleon changes from one side of the
Fermi sphere to its opposite pole, i.e., when q=2kp.
The great effect of the Pauli principle therefore again
depends on the relatively high density of the nucleus,
compared to the relatively long range of nuclear forces.

We shall now consider some other forms of the inter-
action between particles. The first is the Coulomb force.
In this case, the factors (1+q2a') ' in (12.10) will be
replaced by q . Then the integral will diverge for small

q, a result which is clearly due to the long range of the
Coulomb force. It might possibly be remedied by using

the scattering matrix G' for the Coulomb field, rather
than the potential matrix v'.

The second type of interaction is one which is more
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important for nuclei, vis. , a repulsive core. In this case,
the matrix I in (12.3) must not be replaced by the
interaction matrix v but must be used directly. BG"
show that the scattering matrix for two nucleons whose
center of mass is at rest may be written

(k', —k'~G'~k, —k)= wq(y)e '"''rd'y, (12.17)

AE3 4 kp2

(her, )'.
A 3x' 3f

(12.21)

Using r,=0.6)(10 " cm, and our old value kg=1.29
&(10" cm ' this gives 1.37 Mev. However, for these
values of the constants, kyar, is actually not very small,
and more accurate evaluation gives a correction factor

where m does not depend strongly on k. If the radius of
the repulsive core r, is small so that her, (1 (which is
well fulfilled for the actual dimensions), then

~.(y) =~b —r.)/~. , (12.18)

where b is the ordinary, one-dimensional b function.
Then 6' is independent of k, and presumably also inde-

pendent of the assumption that the center of mass is at
rest, and we have with abbreviated notation

(k'
~

G'
~
k) =4m. sin(k'r, )/k'. (12.19)

This takes the place of (10.8), and k'is nearly equal to q.
The Inain concern one might have in connection with

a repulsive core is that the contribution from large q

might diverge, or at least be very large. We therefore
investigate (12.7), with the changed expression (12.19)
for the matrix element, for large q. In this case, the
previous approximation (12.8) for the energy denomi-

nator is not satisfactory but the energy denominators

may instead be replaced by 2q' each. The integrals over

k, , k;, and ki each give a factor (4s./3) kg'. The effective
mass 3E* for high q should be put equal to M. The term
—2a-X 1.68a[f(q)+f(k;—k,+q)) and the correspond-

ing term with k~, will each be replaced by (12.19).
Further, 2rrX—1 68af.(k& k;)—will be replaced by the
limit of (12.19) for small k', ets , 4rrr„.and f(q) may be
neglected by comparison. Finally, we change the 64 in

(12.7) to the more correct value 12, see above. Then
(12.7) is replaced by

AE, 12 (4s.
=—(2~)-

~

—u,
~
(4~).,4~

(3 ]
r q'dq sin'(qr, )

X)' . (12.20)
4q4 q'

This integral clearly converges at large q and the rn.ain
contribution comes from near the lower limit. This
limit we put arbitrarily equal to 2k+, which is about
the point where our approximations become seriously

wrong. Then, assuming kyar, «1, we obtain

of about 1/3, or AEs/A =0.45 Mev. This is larger than
the result (12.16) for the attractive Yukawa potential
but still a rather small correction, leaving the Brueckner
theory a very good approximation.

It will be noted that (12.21), arising from a repulsive
interaction, is positive while (12.16), coming from an
attractive interaction, is negative. There will thus be
partial compensation of these contributions, as was
pointed out by Brueckner. "Further calculations will be
necessary to establish the actual correction terms from
3-particle and larger clusters; for the time being, the
best estimate is a few hundred kev, and the sign is
uncertain.

XIII. THE DEPENDENCE ON THE MASS NUMBER A

Brueckner" has shown that the leading term in the
energy of a large nucleus is proportional to its mass
number A. This result —which is correct under his
assumptions —has given rise to considerable discussion
because it is well known that the energy of certain
systems is not proportional to the number of particles;
e.g. the energy of an atom with Z electrons is propor-
tional to Z'I3. Only if the forces in the system saturate
should the actual binding energy be proportional to A.

The point is that Brueckner tacitly assumes that the
density of particles is held constant as the size of the
system is increased. With this assumption, the result
E A is most plausible, in fact nearly obvious. "Now
as we have discussed in Sec. IX, calculating the energy
at given density gives merely a formal solution of the
problem. To get the actual self-consistent solution, we
must find the minimum of the energy as a function of
density. Now if the forces saturate, then the density
tends to a de6nite limit for large number of particles,
and then the actual binding energy will also be propor-
tional to A. This corresponds to the observed behavior
of nuclei. If, however, the forces do not saturate, the
density itself will increase with A, and the binding
energy per particle will do likewise.

A convenient example of a nonsaturating force is the
gravitational interaction, i.e., an attractive potential
—g'/r between any two particles. The self-consistent
problem for this case is easy to formulate, and not very
di6icult to solve. If the number of particles is very
large, the Fermi statistical method may be used, and
the problem then becomes similar to the Fermi-Thomas
statistical distribution of the electrons in an atom.
There are two differences, however: (a) the interaction
between the particles is attractive rather than repulsive,
and (b) there is no central body attracting the particles.

4' Private communication through R. J. Eden.
~Nevertheless, this result represented great progress. The

Brillouin-Wigner perturbation theory expansion, in which the
energy denominators are E—II0, with E the exact eigenvalue and
Ho the unperturbed Hamiltonian, gives in fourth-order terms
proportional to A~, in the sixth-order proportional to A3, etc.
PK. A. Brueckner (private communication) and BC).In BC it was
shown for the first time that these divergences with A, which
must be spurious on physical grounds, do in fact cancel if E is
replaced by the unperturbed energy.
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Exactly the same problem as ours occurs in the theory
of the density distribution in a white dwarf star" in
which we have a degenerate electron gas held together
by gravitational forces."

If relativistic eGects are neglected, we can easily
calculate the radius R of the sphere containing A par-
ticles interacting by gravitation. The kinetic energy per
particle is proportional to kp', where k~ is the Fermi
momentum. The potential energy per particle is the
gravitational potential which is proportional to A/R,
where R is the radius of the sphere. The density is
p A/R' and kp' is therefore proportional to A/R';
hence the potential energy is proportional to A'~'kp

and the total energy proportional to

g= ~& 2-&A2~3I, (13.1)

XIV. TERMS OF ORDER 1/A

In Sec. III we stated that certain correction terms
were of relative order 1/A, and hence negligible in
comparison with the main term for large nuclei. We
shall now discuss these terlns. In this section, we shall
consider only those matrix elements which conserve

"S. Chandrasekhar, Monthly Notices Roy. Astron. Soc. 95,
207 (1935)."It does not matter that the gravitation acts primarily on the
nuclei in the white dwarf because nuclei and electrons are closely
tied together by the (much stronger) electric forces.

where c is a constant. The minimum of this expression
is obtained for

(13.2)

The other quantities then depend on A as follows:

R A'"/kp-A '", p AR ' A', h A'". (13.3)

The volume of such a sphere is thus inversely, rather
than directly, proportional to the number of particles.
The radius behaves just as in the Fermi-Thomas, atom
where the mean radius is proportional to Z '~3 and
the total energy goes as A'13, which is also the same as
in the Thomas-Fermi atom.

The behavior just described will also be obtained
from the Brueckner method because it, just like the
Hartree method, has the Fermi-Thomas model as its
limit for high particle density. Thus the actual binding
energy in our example is by no means proportional to A,
but to a much higher power; but this does not neces-
sarily affect Brueckner's proof that at given density,
the energy is indeed proportional to A.

This last statement has to be qualified, however, by
the condition that the energy per particle must be
finite in an infinite system if the density is kept
constant. This condition remains satisfied if the inter-
action does not saturate but has finite range. But for
Coulomb forces, with their eGectively infinite range, it
is not satisfied: The gravitational potential at the
center of a sphere of radius r at constant density is
proportional to r' and therefore does not tend to a
finite limit as r increases.

momentum, as is required for an infinite nucleus; those
which do not conserve momentum will be discussed in
the next section. We shall first discuss the diagonal
elements of the correction terms for the chosen con-
figuration, and then, very brieQy, the nondiagonal
terms which mix the model states.

We shall here consider the terms m2 and m3, Eqs.
(4.15) and (4.16). These terms were already considered
by BL, Sec. III. We shall follow their argument, but
with the important difference that we consider the
matrix element

(C c,w„c'c), (14 1)

Q
(Cc,~2Cc) = —PI ec,G,,—I,,L,Pc I

'i 2 e

(Q6;Pc,I;~L—;,ec I.
i Ee

(14.3)

But 6,;, according to its definition, (7.4), (7.10), and
(7.11),can excite at most one nucleon out of the chosen
configuration. On the other hand, I;; operating on Ct.
must excite both nucleons. Therefore, at least if I;; is
replaced by 1, Eq. (14.3) gives exactly zero. The first
nonvanishing contribution is of the three-particle
cluster type, ~is. :

Q Q Q
ZI @c,Go—Io Iia Ii„4c I, ——' "e,;"e;, 'e„' (14.4)

where 6;; excites either nucleon i or j only. Of the I
operators, at least one must violate momentum con-
servation; 6 does the same, and it is shown in Sec. XV
that each such operator introduces at least a factor A —&.

Thus (14.4) will be at least a factor A smaller than
the analogous term (14.7) below, and is therefore
entirely negligible. In BL, on the other hand, this term
gives the main contribution, Eq. (26), which they
evaluate to be about 10 Mev for the whole nucleus
(their Appendix B).

The diagonal element of ma is

Q
(@c,~3Cc) = —~I ec,ii;, GeL;, e'c I—

'ii e~j

Q= —PI 0;,—i;PcL;ec I.
e;;

(14.5)

The operator v;;, in contrast to 6,; in (14.3), can excite
both nucleons i and j, and the operator 6;; will then
leave the two nucleons excited. The structure of (14.5)

while they used

(Oc,~ Cc). (14.2)

It was shown in footnote 25 that the use of (14.2) is
incorrect, and we shall show now that (14.1) is much
simpler and gives a much smaller result than (14.2).

The diagonal element of m2 is
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is therefore analogous to the cluster term (12.1) except
that I;; has been replaced by a more complicated
expression,

In spite of the smallness of m3, it is interesting to
investigate the meaning of the change of the denomi-
nator in (14.9). According to (7.3),

(14.6) (&;e;lG;ill,n;)= (e,e;lG,;lrt,e;), (14.10)

The lowest order nonvanishing contribution to (14.5)
is therefore, in analogy to (12.3), the three-particle
cluster term

Q Q Q
w»= —Z I

4'o &'i—G'i—1~7,—Ii.@'o
l (14 7)

e;; e;t e„
Now (14.7), or the more general expression (14.5),

can easily be combined with (12.3) or (12.1), respec-
tively, if we replace v;, by I;,.As we have seen in Sec.X,
the v matrix is not very di6erent from the 6 matrix if
the potential is well-behaved, and the elements of v;;
which lead to the excitation of two nucleons are essen-

tially equal to the corresponding elements of the I
matrix, Eq. (7.5). Writing then

(14.8)

t the term 1 in F;; gives no contribution to either (12.1)
or (14.5)j, we get for the sum of (12.1) and (16.5):

( (Q Q
l co ZI.

l

——G'~—ll- '/Co l.

(C'epws'o) p (14.11)

are important because they indicate to what extent
the "improved" model wave function O', Eq. (4.6),
diGers from the simple model wave function 4 ~ defined
in Sec. II. We have shown in Sec. IV and in KB that mi
has essentially no nondiagonal elements if the chosen
configuration is nondegenerate. Therefore we have to
consider only m» and m».
&; It can be shown fairly easily that m 2 and w3 cause an
admixture of "foreign" con6gurations 8 in the im-
proved model wave function C' which is only of order
1/A. The corresponding second-order perturbation of
the energy is then also of order 1/A; a rough estimate
yields

and this is the first term in DG;;, Eq. (3.6), which is a
small correction to the excitation energy —e;;, Kq.
(3.4). Thus, according to (14.9), the interaction between
the two excited nucleons ij should be omitted in the
first (but not the other), resonance denominator e;;
when calculating the cluster term AE3. This takes into
account all the small (1/A) corrections of Sec. IV
provided we put v=6 in these corrections.

The nondiagonal terms,

I'i@'& li
( Q

(14.9) Zlc'e (w2+w3)col'
gg, (2)—

which is completely negligible.

2 Mev
(14.12)

A

where in the last line it has been assumed that 6;;((e;;,
as will be shown to be indeed the case. Thus the only
effect of m3 is to modify the first denominator in the
cluster terms by adding 6;;.

&ow '0;; is essentially the same as the diagonal
element of n;;. This was calculated in (6.4) and found
to be proportional to 0 ' or 3 '. This shows that the
G,; in (14.9) gives a correction of the order of 1/A,
since e,, is independent of A. The term m~ is therefore
of order 1/A compared with the cluster terms, and using
the estimates of Sec. XII for the latter, we see that m»

is of the order of a few hundred kev for the whole

enclees, which is clearly negligible.
The reason for the smallness of m3 is the occurrence

of the operator G,; in (14.5). This operator is of order
0—', which has to be compared with the denominator

e;; which occurs associated with it and which is inde-
pendent of Q. It may be argued that the I;; occurring
in (12.1) are also of order Q '. But I;;, being a non-
diagonal element, leaves open the choice of the mo-
mentum change q, (see Sec. VI), and the number of
choices of q is proportional to Q. On the other hand, g
is a diagonal element and thus permits no choice of final

st@t;e,

XV. TERMS NOT CONSERVING MOMENTUM

In all our quantitative calculations, e.g., in Secs. VI
and IX—XIV, we have assumed that the matrix elements
of e;; and G;; are diferent from zero only if momentum
is conserved, as in (2.8). This is of course not strictly
true for a finite nucleus. In this section we shall estimate
the magnitude of the matrix elements which do not
conserve momentum, particularly those in which only
one nucleon changes its state.

For this investigation, it is convenient to replace 6;;
by v;; (Sec. X). Then the required matrix elements are

(e,~/li;;le, ~,)~

=
i dr, dr;P*(rt;, r;)P*(n/', r,)v;;(r; r;)—

&&/(e;, r,)P(e;,r;). (15.1)

It is convenient to define a quasi-potential acting on
particle j, thus:

(15.2)



NUCLEAR MANY —BODY PROBLEM 1385

In a nucleus of volume Q, I/I' is of order Q ' and u(r;)
for any given point r, will be of the same order, due to
the assumed Qnite range of e;;. The diagonal element
ofv;;,

(n,n;Iv, ;Imps;)= dr, u(r, ) fg(rl, , r;) I', (15.3)

large nucleus, p is very nearly constant (=po) over the
interior of the nucleus. Only in a surface layer of relative
volume of order A '~', does p become appreciably
smaller than po, To estimate the nondiagonal elements
(7.9) of V, we therefore form, similarly to (15.4):

will then be of the same order Q ' since lg I' is of order
0—' and the whole nuclear volume 0 gives a positive
contribution.

To estimate the nondiagonal terms, we use closure,
thus:

ni'Hn1

(15.6)

nj'

nj'
dr, P*(e/ r,)u.(r,,)P(rl, .r,).where

(V)= t V(r;) I P(e;,r;) I
'dr; (15.7)

dr,
f u(r;) I' fg(e;, r,) I'. (15.4)

(15.5)

where p is the total density of nucleons. Now for a

Since u and I/I' are each of order Q ', the integrand
is 0—' and the integral over the nuclear volume is 0—'.
Thus the sum in (15.4) is of the same order of magnitude
as the single term e =u; which is the square of (15.3).
In other words, all the nondiagonal terms together con-
tribute about as much to (15.4) as the single diagonal
term.

The number of nondiagonal terms e, however, is
proportional to Q since Pn may be replaced by
Q(2w) '1'd'k . Hence each individual term e gives
a contribution of order Q ' to (15.4), or the matrix
element (15.1) is of order Q '".This compares with Q '
for the matrix elements which conserve momentum
(Sec. VI), and thus shows that indeed the elements in
which only a single nucleon is excited, become small
for large nuclei. The same is true for matrix elements
in which both nucleons are excited but momentum is
not conserved.

If we calculate, for example, the contribution to the
cluster term AE3. which comes from matrix elements
which do not conserve momentum, then at least two
such elements must be involved, and the resulting con-
tribution is at least by a factor A smaller than that
calculated in Sec. XII.

An even closer estimate than (15.4) may be made for
the nondiagonal matrix elements of the one-nucleon
potential V. With our assumption G;,=~;;, and with
the de6nition (15.2), we have

is the expectation value of the potential. Now in the
interior, V(r;) (V) is of o—rder A '" so that the con-
tribution of the interior to (15.6) is of order A '13. The
main contribution comes from the surface layer and is
proportional to the relative volume of that layer, A '~'.

Thus the sum is (15.6) is of order A '~3, and is smaller
by this factor than the diagonal term (e, I

U
I
rt, )'. Since

the number of terms is again proportional to A, an
individual term (n I Vle;) will only be of order A '~'

compared with the diagonal term.

XVI. PROBLEMS FOR A FINITE NUCLEUS

In Secs. II, III, and VII we have developed the
general method for a finite just as for an infinite
nucleus. In Secs. XIV and XV we have shown that
the correction terms which may arise for a 6nite
nucleus, are small. Nevertheless, many further problems
will have to be solved before reliable quantitative
results can be obtained.

The first step in treating a finite nucleus is the choice
of a potential to start the self-consistent calculation of
Sec. II. This is far more dificult than in the Hartree
method for two reasons: First, the whole potential
concept is somewhat invalidated by the complications
discussed in Sec. III, but we have shown at the end of
Sec. X that these complications are not very important
quantitatively, at least for "well-behaved" interactions.
Second, we have to know a potential matrix (r'I Vl r),
rather than a simple potential U(r)

To determine the potential matrix in a 6nite nucleus
combines the problems of 6nding the Hartree potential
for an atom and the Brueckner potential for an infinite
nucleus. The Hartree potential is diagonal in position,
V(r), and when transformed to momentum space,
depends only on the difference

I

k' —k I. The Brueckner
potential for an infinite nucleus (Secs. IX to XI) is a
function of momentum only, V(k), and if transformed
to coordinate space, will depend only on the distance
I
r' rl; these two a—re therefore complementary. The

potential matrix in a finite nucleus will be neither
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diagonal in position nor in momentum, and will thus
depend on r' —r as well as r'+r, and on k'+k as well

as k' —k.
There remains, however, a simplifying feature which

will probably be very important for the actual solution.
The dependence on r'+r is designed to simulate the
conventional potential well; the potential V will there-
fore droP when sr ~r'+r~ exceeds the nuclear radius
R=roA'I3. On the other hand, the dependence on x' —r
is to represent the momentum-dependence of the
Brueckner potential V(k) for an infinite nucleus. Now

V(k) changes appreciably when k goes from 0 to k&,
therefore the Fourier transform V(r' —r) will change
appreciably when

~

r' —r~ goes from 0 to 1/kF, which
is about ro. For a large nucleus, therefore, much larger
distances are involved in

)
r'+ r ) than in

(
r' —r ~, and

the two dependences can be separated (except in the

region of the nuclear surface). For a small nucleus, the
determination of (r'~ V~ r) is likely to be much more
dB5cult.

The wave functions of the nucleons will be determined
mainly by the large-scale behavior of V, i.e. by its
dependence on r'+r. For a first approximation, there-

fore, one can probably take simply

(r'~ V~ r)= V(r)8(r' —r),

in other words an old-fashioned Hartree type potential,
and determine the wave functions in this potential by
solving (2.3). In other words, one may go back to the
standard procedure in shell-model theory. Of course,
once the wave functions of the nucleons have been
determined, one must then find the reaction matrix
using (3.1) and one will thus obtain a velocity-de-
pendent potential, just as for an infinite nucleus. This
potential will rot agree with the Hartree potential used
at the start, but when wave functions are calculated in
this new potential, it is hoped that they will not differ
too much from those calculated in the 6rst approxima-
tion.

The accurate determination of the potential matrix
(r'~ V~ r) in the region of the nuclear boundary is ob-

viously a very dificult problem. To solve it, it will

probably be best to consider 6rst the problem of an
in6nite plane nuclear boundary and to solve the self-

consistent problem for this. Then if the normal to the
boundary is in the x direction, we may write

(r&
~
V

~
r&) = V(s (x&+xs), x&—xs, r»). (16.1)

It has been suggested by Skyrme~ that one might
consider the dependence on r~2 to be similar to that for
an in6nite nucleus whose density is the same as that
found at s~(xr+xs). Solution of this problem of the
nuclear boundary layer will yield the surface energy
of the nucleus. "

Once the problem of the plane nuclear boundary is

solved, the potential matrix for a finite nucleus may be

"T.H. R. Skyrme (to be published).

assumed to depend on the position coordinates r, r'
in the boundary layer in the same manner, i.e., it
should be a good approximation to neglect the curva-
ture of the nuclear surface. From the potential, one
may then obtain the wave functions solving the
Schrodinger equation (2.3).

Let us now assume that the wave functions of the
individual nucleons have been determined. For the
moment, we shall assume that the potential (r'~ V~ r)
is spherically symmetric, i.e., that it depends only on r,
r', and the angle between them (more about this later).
Then the wave equation (2.3) separates in polar coor-
dinates, and the nuclear wave functions f(e,, r~) should
be the well-known shell model wave functions. In order
to obtain the observed dependence on j, it must be
assumed that V contains a term coupling spin and
orbit, and it will be one of the tasks of the theory to
derive such a term from the observed interaction
between two nucleons.

If the chosen con6guration C contains only closed
shells, and corresponds to the ground state, the further
calculation is essentially the same as for an infinite
nucleus. It should be mentioned again, however, that
configuration interaction is already contained in the
method (reaction matrix); therefore the state of a
closed-shell nucleus must not be considered as a mixture
of various configurations, in an endeavor to lower its
eigenvalue. The model wave function corresponds to
one configuration C only.

Essentially the same statements hold for a nucleus
containing one nucleon outside closed shells, or one less
than a closed shell. This is analogous to the problem of
an alkali atom.

If there are two or more nucleons in an incomplete
shell, the situation is more complicated, just as in the
corresponding case in the theory of atomic spectra.
There are then many con6gurations of the nucleus
which have the same energy, at least as long as we only
consider the sum of the eigenvalues E(N;e) of the
individual nucleons and disregard the interaction of the
nucleons outside closed shells with each other. We
therefore have to consider degenerate configurations;
in fact the degeneracy is much higher than in the atomic
case.

The most important consequence of degeneracy is
that ver, Eq. (4.14), now has many more nonvanishing
matrix elements than in the absence of degeneracy, and
that these appear in a much lower order of approxi-
mation. The operator 1—Q in (4.14) has the value
unity for all con6gurations which are degenerate with
the chosen configuration. We may thus consider the
matrix element of (4.14) between the chosen configura-
tion C and any other configuration 8 which is degener-
ate with it, vis. ,

(4 Ir, wgC c)=Q,; (4 e,I;;L;,4o). (16.2)

Now in contrast to the diagonal element (12.1) of wr,
the nondiagonal element (16.2) will in general not
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vanish even if we set L;;=1, its first approximation
according to its definition (12.2). Then, in first approxi-
mation,

(@s,w,C g) =p,;(4 J3,I;,@c). (16.3)

This is nonzero if 8 and C differ in the quantum
states of two nucleons, which is indeed the most common
case for two degenerate configurations. Assume, for
example, that there are exactly two nucleons outside a
closed shell of 50 nucleons; then these two nucleons may
be in the 3s, 2d, or 1gy/2 shell. A state of total angular
momentum 0 (S state) may be obtained from the con-
figurations 3s', 2d', or 1g'. To go from the first to the
second of these configurations, the two nucleons (i and

j) have to be moved from an s to a d state which cor-
responds exactly to the matrix element (16.3). If there
are more than two nucleons outside closed shells, we
do not need to invoke. the degeneracy of nucleon states
of diGerent l, such as the 3s, 2d, and 1g above, but even
if all nucleons are within the same shell el, there are
many diGerent configurations leading to the same total
orbital momentum and spin, L and S, of the whole
nucleus, which "interact" through matrix elements of
the type (16.3).

Expression (16.3) is entirely analogous to the ex-
pression for the interaction of degenerate configurations
in conventional shell-model theory. The only di6erence
is that in the conventional theory I;;=G;; is replaced
by e;;, and according to Sec. X this does not make
much difference for well-behaved potentials. For poten-
tials with a repulsive core, it does make a diGerence,
and in fact only the "modern" expression (16.3) is
meaningful while the old-fashioned one with v;; would
not be. But the details of I;; or v;; do not actually
matter; we are interested only in the matrix element
(16.3) which depends on some over-all behavior of I;;.
This I;; may well be replaced by an equivalent well-
behaved potential which has the same matrix elements.

This is the more so since the most important matrix
elements of (16.3),

(~ ~ )G;;)N,~;), (16.4)

are those in which the states of the nucleons i and j
(initial as well as final) are not very diferent. Then
the product of the four wave functions involved in
(16.4) will not change very rapidly with the distance
r;;, and the exact dependence of G;; on r;; will not
matter much.

Thus our theory fully justifies'4 the conventional
procedure of shell-model theory: the interaction between
degenerate configurations is given by a very similar
expression, and considerable freedom is allowed in the
choice of the quasipotential v;; which is to replace I;;.
Of course, it will be desirable in future shell-model
calculations to choose v;; so as to be compatible with

~ When calculating operators other than the energy, it is of
course necessary to take into account that the actual nuclear wave
function differs from the model wave function, as has been
described in Sec. VI.

the G;; which has to be used in the Brueckner theory for
an infinite nucleus, and which is derived from the inter-
action between two free nucleons in the manner de-
scribed in Sec. X.

While the interaction between degenerate configura-
tions thus reduces essentially to the conventional
shell-model expression, the interaction between nonde-
generate configurations is treated completely diGer-
ently. In the conventional shell model, the matrix
elements of the interaction corresponding to transitions
from C to @my other configuration would have to be
calculated, and the resulting Hamiltonian matrix
reduced to diagonal form, an essentially impossible
task. "In our theory, all this part of the work is done
in the first part of the procedure, i.e., when the scat-
tering matrix G;; for the two-nucleon system is deter-
mined by solving (3.1). After this is done, the con-
figurations 8 which are not degenerate with C need
no longer —in fact mist no longer —be considered when
the problem of the whole nucleus is set up. Thus the
Hamiltonian matrix which has to be diagonalized for
the nucleus is finite rather than infinite, and contains
only the degenerate states. (Obviously, only states of
the same total angular momentum J, and the same
J,=M, need to be considered. ) Thus Brueckner's
method separates the essentially insoluble problem into
two simpler ones, that of determining the G matrix and
that of reducing the Hamiltonian matrix for degenerate
states only.

When solving (3.1) for a finite nucleus, the wave
functions f(e;,r,) are of course shell-model wave
functions, i.e., radial functions times spherical har-
monics, not plane waves. However, because of the
Pauli principle, the sum over I;" and n," in (3.1)
contains only unoccupied states which may be expected
to be states of high momentum and to be not very
diGerent for a finite and for an infinite nucleus. Stated
somewhat differently, the sum in (3.1) makes G;; dif-
ferent from ~;; at small distances r;;, of order ro or less,
and at these distances the over-all behavior of the
wave functions, i.e., whether they are plane waves or
spherical shell-model wave functions, should not matter
very much. Thus it is to be hoped that the results from
infinite nuclei can be taken over with little change.

We have made an essential distinction between de-
generate and nondegenerate configurations. The ques-
tion arises how to distinguish these in practice, especially
because nucleon states like the 3s, 2d, and 1g7/2

mentioned above are almost but not exactly degenerate.
Fortunately, there is great latitude in the definition of
the operator Q in Sec. III, and this makes it a matter
of our choice which of the configurations we wish to
consider degenerate, and which not. For those in the
former category, we set Q=O, which means that they
are not taken into account as possible intermediate

~5 In practice, only a few other configurations are considered.
This practice, adopted only for the sake of simplicity, is justified
by our method.
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states in calculating the scattering matrix G from (3.1);
they will then give nonvanishing matrix elements
(16.3) and thus have to be taken into account in the
final Hamiltonian matrix of the complete nucleus. For
the configurations which we wish to consider as nonde-
generate with the former class, we set Q= 1; then they
will contribute as intermediate states to the scattering
matrix G in (3.1) but will not contribute elements (16.3)
to the final Hamiltonian matrix.

It will presumably be convenient to include all con-
figurations arising from particles in the same shell (in
the sense of the shell model) as degenerate, and all
others as nondegenerate. Thus if we have e particles
outside the 50-shell, we distribute these in all possible
ways over the 20 available places in the shells 3s, 2d,
and 1g7~& (and possibly also h»~2?), and consider all
configurations arising in this way as degenerate. If one

particle is put into the next higher shell, or a particle
removed from the 50-shell and put into the sdg shell,
the resulting configuration is considered as not de-

generate with the former class, and assigned the value
Q=1. Then the smallest denominators occurring in

(3.1) will be equal to the energy difference between two
successive shells. From the estimates in Sec. X it is

likely that the contribution to G from con6.gurations
which have the smallest possible denominator will not
be very large, and this fact justifies their inclusion

among the "nondegenerate" configurations.
In contrast to the case of an infinite nucleus, the

one-nucleon levels in a 6nite nucleus are discrete and
the number of distinct shells is rather small. If we

consider the nucleon shells e= 1, 2, 3, as closed at
2, 8, 20, 28, 50, 82, 126, ~ . nucleons, then from m=4
up the total number of nucleons up to shell e is given by

E(e)= -'e(e'+5) (16.&)

and the number of shells for a given mass number is

roughly

(16.6)

The energy spacing between successive shells therefore
decreases with A only as A 'l", and it is this slow

decrease which makes the shell model so useful. The
number of nucleons per shell goes up as A'~'.

Furthermore, the matrix elements of v;; or G;; vary
greatly from one nucleon pair to another. Two nucleons
which have the same spatial wave function (and differ
in spin or charge) will have a very large interaction,
decreasing with atomic weight more slowly than 1/A.
Two nucleons in different shells, on the other hand,
will have a considerably smaller interaction. Our
estimates in Secs. VI and XV of the size of nuclear
matrix elements must therefore not be taken seriously
for individual matrix elements but hold only on the
average.

The interaction between a pair of nucleons in the
same shell depends greatly on the symmetry of the
wave function with respect to the two nucleons. This

establishes a connection with the theory of multiplets
developed by Wigner. "The only difference is that in
our theory the multiplet structure, caused by the sym-
metry of the wave function, is subordinate to the shell
structure for the individual nucleons, just as it is in
atomic spectroscopy. This is of course quite familiar
from the conventional treatments of the shell model.
It is quite possible that the shell model with symmetry
sects considered in second approximation, becomes a
better approximation as the size of the nucleus increases,
and that for very small nuclei (up to carbon, say) the
original Wigner procedure, of considering symmetry
first, is preferable.

The interaction between nucleons can presumably
separate levels of the nucleus with diferent numbers of
spatially symmetric pairs" very greatly, probably by
more than the energy diGerence between successive
nucleon shells. It may therefore be desirable to redefine
the concept of "degenerate configurations" to take this
symmetry effect at least partially into account. This
will be important only when there are many nucleons
in an incomplete shell.

If there are many nucleons in an incomplete shell,
the "collective model" of Bohr and Mottelson'~ may
become applicable. In our theory this means that a
self-consistent solution will not be obtained for a
spherically symmetric potential (r'~ U~ r) but for one
of ellipsoidal shape. Since the self-consistent method is
equivalent to a variational principle, "we may also say
that the ellipsoidal shape gives a lower energy to the
nucleus. Clearly this will happen only for certain dis-
tributions of the nucleons over the possible ns values
(magnetic quantum number) in the incomplete shell.

We have frequently stated that our method is
applicable not only to the ground state but also to other
states of the nucleus. For instance, all the configurations
which are considered "degenerate" in first approxima-
tion, will be calculated simultaneously by diagonaliza-
tion of the Hamiltonian matrix of the nucleus, as is
customary in conventional shell-model theory. But
also states in which one or more nucleons are excited
to higher shells can be calculated. In this case, some of
the denominators in the fundamental equation (3.1)
will be negative because the intermediate state can
have lower energy than the now chosen configuration.
But this makes no difference: the main point is that
states degenerate with the chosen one are always
excluded by the operator Q so that no vanishing de-
nominators can occur. Of course, the higher the excita-
tion, the higher the degeneracy, so that it soon becomes
impossible in pratice to diagonalize the Hamiltonian.
But at least a reliable method is provided for calcu-
lating statistical properties, such as the spread in energy
of all the levels which arise for instance from a given

"E.P. Wigner, Phys. Rev. 51, 106 (1937). For a simple ex-
position, see J. M. Blatt and V. F. Weisskopf, Theoretical 2Vnclear
Physics (John Wiley and Sons, Inc. , New York, 1952), Chap. VI.

57 A. Bohr and B. R. Mottelson, Physica 18, 1066—1078 (1952).
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APPENDIX. SPIN CONSIDERATIONS FOR
THREE-PARTICLE CLUSTER TERMS

In this appendix, we shall consider the possible values
of the spins of the three nucleons which interact ac-
cording to Sec. XII. We shall consider wave functions
which describe both spin and charge of a nucleon, and
denote them by n, p, v for the three nucleons in the
cluster. The orbitals of the three nucleons will be
denoted by a, b, c. Then (an, bp, cv) denotes a possible
assignment of spin-charge to the three orbitals;
(ap, bv, cn) would be another. The part of the wave
function referring to the three nucleons (denoted 1,
2, 3) is the Slater subdeterminant

a(1)n(1) bP(1) ~v(1)
A= (~,bP,n)= a(2)n(2) bP(2) ~v(2) (A 1)

a(3)n(3) bP(3) cv(3)

First step. We operate on the wa—ve function (A.1)
with the Serber operator

which gives

&= p&~(1+&~~), (A.2)

,'v [(m,bp, cv)+ (bn, ap, cv)-5, (A.3)

excitation of one nucleon, and perhaps also the dis-
tribution of these levels in energy. This will give a
better basis for calculations of level density, and it
may also be relevant to the giant resonance in the
photoeffect. 5'
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tbp= (an ~bP~& v ) (A.S)

Since b and c interact, their spins in state P~ must be
different, according to (A.6). Hence we must have

v&p' (A.9)

However, it is permissible that y=e' since particle u
does not interact at this stage. We discuss separately
the two cases defined above.

I. If P'=P, then (A.9) shows that vAP. Then we
must also have v'= v, Eq. (A.8), and the matrix element
1s

—,'(bc'I T Ib'c)+-', (c'b InI b'c) (A.10)

II. The two interacting particles have the spins
p'=n and v in the erst intermediate state, so we must
have y/e. In the second intermediate state, their
spins are p and v'. Since the interaction does not
contain spin, the spins v, n must match the spins p, v'.
Since we know that nWP, the only possibility is that
v= p; hence we must have v'=n and the states of the
three particles are

Further, it is sufhcient to take the part of (A.3) which
assigns the state cy to particle 3, then we have

&p= —,'n~[an (1)bP (2)+bn(1) aP (2)
—bP(1)an(2) —aP(1)bn(2))~v(3)

= 2~~[a(1)b(2)+ b(1)a(2))
X [n (1)P(2)—P (1)n(2) jcv (3). (A.6)

Clearly, the interaction is zero if n=P as also shown in
Sec. VIII. The integral over the coordinates of the
third particle gives unity, and there is at this point no
restriction on the spin y.

The matrix element Q ~,vip) for nWP will give a non-
vanishing result in two cases:

I. If n'=n, p'= p, the matrix element comes from the
term n(1)P(2) in (A.6) and is

(A,~A)= p(a'b'I~Iab)+2(b'a'I~Iab) (A 7)

II. If n'=P, P'=n, the matrix element comes from
—p(1)n(2) in (A.6) and is equal to (A.7) with opposite
sige.

Second s/ep. —Next we let particles b and c interact,
in accord with the form of the three-cluster operator
(12.3). This operation must bring a particle back to
state bp. Thus the second intermediate state is

4= ( 'a'bn'p', ~ )v (A.4)

and take the matrix element leading to the first inter-
mediate state

Pp= (an, bP, cP),

e = (.P,b'-;p),

P p
——(a'P, bP, c'n)

(A.11)

(A.12)

(A.13)
Clearly, particle cp must remain in the same state. It
is sufhcient to take the symmetry into account in the
initial state, so we write

0 = a' '(1)b'P'(2)~v (3). (A.S)
~8 D. H. Wilkinson, Proceedings of the Glasgow Conference on

ENclear Physics, 1954 (Pergamon Press, London, 1955), p. 162.

Then in going from P~ to Pp, the spins of the last two
particles get interchanged, as they did in the first step
of Case II.Thus, according to (A.6), the matrix element
for the second step is the negative of (A.10).

Third step. We let particles c a—nd a interact, thus
getting back to the initial state Pp.
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Case I. Since the con6guration in the second inter-
mediate states is (a'e, bP, c'y), application of (A.6) shows
that yNo. . Thus in case I, all three spins must be dif-
ferent. The matrix element is

—'(ac is i a'c')+-'(ac
i
v

i
c'u'). (A.14)

Case II. The second intermediate state is given by
(A.13). The requirement for (A.6) to be nonvanishing
is now n/P which is fulfilled anyway. The spins a
and P are interchanged again, so there is again a
negative sign.

General argument. —We consider a triplet of orbitals
a, b, c whose order is determined by the order of excita-
tion. We have then the following possible spin assign-
ments:

1. All 3 spins may be di6erent. There are 4&(3&&2
=24 possible assignments of spins to orbitals in this
class. We then obtain Case I, and the complete matrix

element in the cluster is the product of (A.7), (A.10),
and (A.14). This has been used in Sec. XII.

2. Two spins are equal, the third diGerent.
(a) Particle b and c have equal spins; there are 4&&3

=12 diGerent assignments in this class. Then we have
the situation of case II, Eqs. (A.11)—(A.13).The matrix
element is the same as in case I, except for three negative
Signs.

(b) Particle b has the different sign. In this case, the
matrix element is zero as can be seen by letting ac
interact first. (12 possible assignments. )

(c) Particle c has the different spin. Again matrix
element zero as shown by (A.6). 12 possible assign-
ments.

3. All three spins equal. 4 possible values of this
spin. Matrix element zero.

The total result is therefore (24-12) times the product
of (A.7), (A.10), and (A.14).


