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The consequences of spheroidal deformation of nuclei on the barrier transmission in alpha decay are
considered. A set of coupled differential equations is derived relating the amplitudes of the various groups
of alpha particles emitted from a nucleus described by the Bohr-Mottelson model. The cases of the decay of
Th"' and Cm'" were studied numerically and from them information regarding the probability distribution
of alpha particles on the nuclear spheroidal surface is obtained. It is found that the one-body model of an
alpha particle in a well does not yield these distributions, and it is thus concluded that "alpha-particle
clusters" have a short mean free path in nuclear matter. The shift in the surface distributions of Th" and
Cm~42 may be explained qualitatively in terms of the order of nucleon orbital 6lling.

The over-all penetration factors for the spheroidal case are compared with those for the spherical case,
and it is found that the resultant enhancement due to the deformation is not nearly as large as that pre-
dicted by Hill and Wheeler on the basis of a one-dimensional approximation.

INTRODUCTION

ECENTLY an impressive amount of data has
been amassed demonstrating the existence of rota-

tional spectra in regions far removed from closed-shell
configurations. ' The existence of such level schemes is
predicted by the Bohr-Mottelson' strong-coupling
model of the nucleus in which it is assumed that the
nucleus has an appreciable spheroidal deformation.

In the region of heavy nuclei (A &230) where alpha
decay is generally a prominent mode of decay, the
rotational bands are particularly well developed, and
some cases of alpha emission by even-even nuclei to
members of the rotational band as high as the 8+ level
have been observed. ' Alpha decay of even-even nuclei
to states other than the rotational band members has
been observed only in the case of a few nuclides.

One of the most conspicuous features of the recent
data involves the variation between nuclei of the rela-
tive intensities of the various alpha groups. Asaro4 has
calculated "hindrance" factors for all alpha groups,
where the hindrance factor is dehned as the ratio of the
intensity of the alpha group leading to the ground state
to the intensity of the alpha particles leading to the
particular excited state, corrected for the energy dif-
ference between the states. For the energy dependence
of the decay rate, he used Preston's' alpha-decay for-

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

1' Present address: General Electric Research Laboratory,
Schenectady, New York.' For a review of the experimental data and for an extensive
list of references see: A. Bohr, Rotationa/ States of Atomic EucLi
(Ejnar Munksgaard, Copenhagen, 1954), and A. Bohr and B. R.
Mottelson in Beta and Gamma Ray Spectroscopy, edited by
K. Siegbahn (North-Holland Publishing Company, Amsterdam,
1955).

'A. Bohr, Kgl. Danske Videnskab. Selskab, Mat, -fys. Medd.
26, No. 14 (1952); A Bohr and B. R. Mottelson, Kgl. Danske
Videnskab. Selskab, Mat. -fys. Medd. 27, No. 16 (1953}.

3I. Perlman and F. Asaro, Annua/ Remen of Nuclear Science
(Annual Reviews, Inc. , Stanford, 1954), Vol. 4, p. 157.

4 F. Asaro (unpublished, 1955}.' M. A. Preston, Phys. Rev. 71, 865 (1947).

mula (for no spin change'). Figure 1, which is due to
Asaro, summarizes the data. A more fundamental
presentation of the experimental alpha intensity varia-
tions is to be found in the comprehensive study by
tA'inslow. '

It is to be expected that the occurrence of large
spheroidal deformations will have pronounced eRects
on the process of charged-particle emission. In contrast
to the case of spherical nuclei, the electrostatic field of
a spheroid is not central. The coupling resulting from
the noncentral nature of the held will have a bearing
on the relative amplitudes of particles emitted with
different orbital angular momenta. It is one of the
purposes of this note to see whether it is possible to
explain the values and trends for the hindrance factors
of the l=. 2 and l=4 waves in the decay of even-even
nuclei in terms of the noncentral electrostatic 6eld.

Another consequence of the distortion of the nucleus,
earlier explored by Hill and %heeler, ' is a thinning out
of the potential barrier in certain directions leading to
directed alpha emission in those directions. They gave
an approximate expression for the penetrability based

~It is of interest to compare the hindrance factors for alpha
particles having angular momentum /&4 to the reduction from
the centrifugal barrier. R. G. Thomas LProgr. Theoret. Phys.
(Japan) 12, 253 (1954)g for example, has calculated the reduction
factors, q&, in the JWKB approximation and finds that for a
5-Mev uranium alpha emitter they are 0.59 for l =2 and 0.18 for
l=4. The smaller results of J. J. Devaney LPhys. Rev. 91, 587
(1953)j appear to be in error. From the approximate formulas of
G. Gamow and C. L. Critchfield [Theory of Atomic Nzzctezzs azzd

Sue/ear-Energy Sources (Oxford University Press, Oxford, 1949),
p. 173) one can obtain the following simple expression for v„
which agrees fairly well with Thomas' results:

A/(/+1)
3fR)y(Z —2}ye

'

In this equation, Z is the atomic number, R the effective nuclear
radius, and 3f the mass of the alpha particle. From the equation,
it is evident that nowhere in the alpha emitter region will q& be
small enough to account for the observed l &4 hindrance factors.

~ G. H. Winslow, Argonne National Laboratory Report ANL-
5381, 1955 (unpublished).' D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1134 (1953).
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on a one-dimensional WEB integration through the
"thinnest" part of the barrier. It is to be noted though
that if the decay is highly directional with respect to
the nuclear symmetry axis, it is necessary that com-
ponents of the alpha waves with high l values' occur
with large amplitudes. These would be the components
leading to the higher rotational states. Since these
components experience a much larger effective potential
than the S wave, because of the centrifugal potential
and the additional energy associated with rotation of
the recoil nucleus, one might expect significant devia-
tions from the penetration formula of Hill and Wheeler'
based on a one-dimensional WEB integration through
the thinnest part of the barrier. In the final section of
this note, the total barrier penetrabilities for Cm'4' and
Th"' are calculated.

In the next section we derive the general equations
governing alpha decay to a rotational band of the
daughter nucleus. In the following section, equations
for decay from an even-even nucleus are formulated in
prolate spheroidal coordinates, and these equations
serve as the basis for the subsequent exploratory nu-
merical work.
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FORMULATION OF THE ALPHA-DECAY PROCESS

To formulate the problem of alpha decay in the
region external to the nuclear surface, it is necessary to
take into account the electrostatic interaction between
the alpha particle and the residual nucleus. The first
question to be settled is which degrees of freedom of the
nucleus are required for an appropriate description of
the process. In the case of a spherical daughter nucleus
it is easy to see that it is unnecessary to consider the
Coulomb interaction between the alpha particle and
the protons individually, as this force is very much
smaller than nuclear forces. It thus suffices to consider
only the interaction of the alpha particule with the
nucleus as a whole, and the appropriate nuclear co-
ordinates are those of the center of mass of the system.
In the case of a deformed nucleus the interaction be-
tween the alpha particle and the quadrupole field of the
nucleus is not small compared to the energy character-
izing rotation. Here it is necessary to include in the
description of the process the rotational coordinates of
the nucleus. Alternatively, it is necessary to include in
the total wave function the low-lying rotational states.
The emitted alpha particle can then be thought to
induce transitions between the rotational states
through the quadrupole component of the 6eld.

In general the Schrodinger equation for the system
can be reduced to a system of coupled equations in the
variable r by expanding the wave function in terms of
some complete orthogonal set of functions in the re-
maining variables

a 2+ STATE
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FiG. 1. Hindrance factors of alpha groups in even-even nuclei
(defining the ground-state transition as unhindered) from
Asaro. 4

where x, is the set of variables required to describe the
recoil nucleus.

Multiplication by Q~ and integration over all vari-
ables except r reduces the partial di6erential equation
to a set of ordinary differential equations in r."Q~ can
be expanded in terms of products of eigenfunctions of
the residual nucleus and normalized spherical har-
monics, Y~, (0,@), in the angles of the alpha particle
with respect to axes fixed in space. The set necessary
to describe the decay process is limited by the con-
straints that the angular momentum of the parent
nucleus I; and its space projection 3f; be conserved.
The constraints are satisfied by the summation"

where (Ir/M, rwm~I~LI;M;) is a—Clebsch-Gordan co-
efficient and x(Iq, M, rN, f) is a normal—ized nuclear
wave function for a state with angular momentum I~
and component MJ=M,—m. The remaining quantum

o J. A. Rasmussen, University of California Radiation Labora-
tory Report UCRL-2431, 1953 (unpublished).

'0 For example, see M. A. Preston, Phys. Rev. 75, 90 (1949)."See E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectrc (Cambridge University Press, Cambridge, 1935).
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numbers used to describe the nuclear state are repre-
sented by f

The set of equations obtained from (1) and (2) will
contain coupling terms the strength of which will de-
pend on the magnitude of the electric transition mo-
ments connecting the nuclear states involved. The
outstanding examples of large electric moments be-
tween nuclear states are those resulting in the "fast"
electric quadrupole transitions between members of a
rotational band. Thus, we see that the low rotational
bands, both because their members constitute the
low-lying nuclear states and because band members
are connected by large matrix elements, are the appro-
priate nuclear states for our problem. We shall in the
following restrict ourselves to the decay to the states
of one band.

For explicit nuclear wave functions we turn to the
work of Bohr and Mottelson, ' in which nuclear motion
is approximately separated into "rotational" and "in-
trinsic" parts. In the Bohr-Mottelson model of strongly
deformed nuclei the rapid individual particle motion is
thought to take place in a deformed nuclear field (or
well) which rotates nearly adiabatically. The deformed
nuclear field is taken to have axial symmetry, although
there may be cases where this is not true. "The wave
function for the nucleus then approximately factors
(apart from a symmetrization) into

(2I+1) &,(I,M,K,Q) =q.(*,')
~ ~

D~ x(e,), (3)
& 8s.s )

where Pa(x, ') is the state function for the particle struc-
ture, x being the coordinates of the particles with
respect to a frame of reference fixed in the nucleus. 0 is
the particle-structure quantum number which for
approximately independent particles is given by 0
=Q,Q;, where Q; is the angular momentum of the /th
particle about the nuclear symmetry axis. The function

[(2I+1)/8s-']lD~ x (0,)
is the normalized state of rotation (or wave function
for a symmetrical top) having as arguments the
Eulerian angles, O~;(=8&,8&,8&); K denotes the projection
of the angular momentum of the nucleus, I, on the
symmetry axis, and is in this model an approximate
constant of the Inotion.

The Hamiltonian of which (3) is an eigenfunction is

H„„,)=H~(x )+H„g(O~), (4)

where HI (x,') is the energy operator for the individual
particles in the deformed well and H„t(O~;) is the rota-
tional energy operator which gives rise to a spectrum
of the form

Er= (h'/2~~)I (I+1).
3', which is interpreted as a moment of inertia, de-
pends on the details of the particle structure, in par-

~ B. Segsll, Phys. Rev. 95, 605(A) (1954).

ticular on the interparticle forces." Its value is, in
general, larger than that predicted from the irrota-
tional Quid picture but smaller than the moment
associated with a rigid rotation.

To obtain the complete Hamiltonian for the alpha
decay problem in the center-of-mass system, we add to
(4) the energy operator for the alpha particle in the
region outside the short-range nuclear force field

H = (A'/2p)A+V, )(r; 0;).
The inclusion of O~; in the electrostatic energy indicates
that the field at a point in the space-fixed system varies
as the daughter nucleus rotates. p, is the reduced mass
of the system.

A consequence of the assumption that the nuclear
well is axially symmetric is that the nucleons within
the nucleus have an axially symmetric distribution.
This will reQect itself in a corresponding symmetry for
the alpha particles on the surface. To incorporate this
symmetry into our formulation of the problem and also
to effect a simplification of the electrostatic interaction
we shall consider the description of the process in a
system of coordinates fixed in the daughter nucleus,
i.e., a coordinate system whose polar axis coincides with
the nuclear symmetry axis. We then expand the wave
function of the system as

P=P r 'w~, ~(r)Y(I;,M;; /, ns, Kf,Q),

where m~, —+ e'"" when r ~ ~,
Y(I,M;/, m, K,Q)=4&(& )(2I+1/8 ')'

XDsr'x~(«) &i, (8', v'), (7)

and (r,8',p') are the spherical polar coordinates of the
alpha particle in the new system.

That (7) is the appropriate state for this problem—
that is, contains the states of the daughter nucleus
belonging to the single rotational band with quantum
number E~ and has the proper transformation prop-
erties (i.e., represents a state with angular momentum
I; and component M~)—can be demonstrated by trans-
forming to the space-fixed frame of reference. For this
purpose, we make use of the transformation properties
of the spherical harmonics,

1'~,-(8', v') =2-D-"- (o') I'~,- (8,~)

where D't is the Hermitian adjoint of D', and the
Clebsch-Gordan expansion for the D's,

(O;)Dsf'x~(e;)

(I/M —m'
~

I/I' M—m') (Il K+m —m
~

I/I'K)'
XDsr 'x(O;), (9)

"A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 30, No. 1 (1955) and S. A. Moszkowski, Phys.
Rev. 103, 1328 (1956), this issue.
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to obtain

Y(I M; l m E Q) =ya (x') (2I+1/8~') &

Xpr (—1)"(I / E+m —mII /I' E)
XQ (—1)"'(I/ M —m'

I
I l I' M m')—

XD~ 'fc(O, ) I'&, (8,q)
=y.(*')P. ( 1)"—+' '(I-/K+m mII—/I'K)
XP (I'l M —m' m'

I
I'l I M) (2I'+ 1/gm') &

XDsf ' fc(O;)F( „(8,p). (10)

In the above formulas, well-known properties" of
Clebsch-Gordan coeKcients under interchange of in-
dexes were employed. From (2) and (3), we can irn-

mediately see that

Y (I;,M;; l,m, Ef,Q)

=Q (—1)m+ff r;(I / E—f+ m m
I I,/ IfKf)

If
XC (I;,M;; If,/, Kf,Q), (11)

and hence that Y(I,,M, ; /, m, Ef,Q) has the proper
transformation properties and generally contains a
mixture of rotational states of the daughter nucleus.

To obtain the differential equations for w& (y), we
substitute (6) in the complete Schrodinger equation,
multiply by Y*(I,,M, ; Kf,l', m'); and integrate over all
the independent variables except r. We get

l'(l'+ 1) 4gZe'2p,

+ (E—Ea, ref—)——
.& h

2p——Q hei, „(y)(l',m'IH. ..Il,m)
fp l,m

2y——P w(, „(y)I l',m' V—
2Z8

0, (12)

h2
(l'm' IH„ t,I/m)= B«p ( )m™If(If+1—)

X (I,l' Kf+m' —m'
I
I,l'If Kf)

X (I,l' Kf+m —m
I

I;l'If Kf). (13)

where Eo„xf merely determines the arbitrary zero of
energy. Since the states in general contain more than
one member of a nuclear rotational band, the nuclear
rotational energy operator is not necessarily diagonal
in the Y representation. The matrix elements of H„t,
may be readily evaluated with the aid of the expansion
(11) and the relationship

H„,t4 (I;,M, ; If,/, Kf,Q)

A2

If(If+1)C (I;,M;; If,l,Kf,Q),
2

and we find

The electrostatic interaction experienced by the alpha
particle, though rather complicated in the space-fixed
system, is in the body-fixed system merely the cha, rge
of the alpha particle times the electrostatic field of the
stationary deformed nucleus. If we make the usual
multipole expansion, V is given by

2Ze' 2e'QsPs(cos8')
V= +

2r3

where Qs is the "intrinsic" quadrupole rnorrtent of the
nucleus (the quadrupole moment with respect to the
nuclear symmetry axis). With the relation

F'&*(,8,&)Pk(cos8) F~(8,,g) Cku =c'"' (lm, l'm'), (14)

where the e("'(/m, /'m') are defined and tabulated by
Condon and Shortley, ""the matrix elements of elec-
trostatic energy can be readily evaluated. Equation
(12) then becomes

2Ze') l (l+1)
'N~, m f

d' 2P f'—+—
I

E Eo,fcf—
fP r2

p—2 ~i,- (y)( )'" "'I—f(If+1)

(I '/ Ef+m m
I
I /IfKf) (I''l Kf+m m

I
I /IfEf)'

2p Qoe'
(y)e's'(lm; l'm) =0. (15)

h

We now return to the question of the approximate
conservation of angular momentum about the sym-
metry axis and the related question of the axial sym-
metry of the alpha distribution. As mentioned above,
the distribution of alpha particles on the nuclear surface
is axially symmetric; then, because of the approximate
conservation of the projection of the total angular

'4 E. U. Condon and G. H. Shortley, reference 11, p. 175.
'5The C("){lm;l'm') can be expressed in terms of Clebsch-

Gordan coefficients; thus C&~)(lm; l'm') =(—1) (2l+1)&(2l'+1)&
X (2k+1) '(ll'00

~

ll'k0) (ll'm —m'
I ll'km m') See G. Rac—ah, P.hys.

Rev. 62, 438 (1942), Eq. (52}.
16 L. Dresner (unpublished).

For the alpha decay of an even-even emitter to the
lowest band of the daughter (Kf ——0), we have I,=K;
=Ey ——m=m'=0. The Clebsch-Gordan coe%cients ap-
pearing in (15) are then nonzero only for the terms
If l; and (15) reduces ——to a form derived earlier' ":

d' 2li
t

2Ze')
/

p 1q—+—
I

~ &nfrf —
,

I

——
I

—+—Il(l+1) 'w)(y)
dys As L. . y ) I, Q y'j

2p, Qse'
P w~ (y)c"'(/0, /'0) =0. (16)

A
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momentum on the symmetry axis, the only nonvanish-
ing m~, on the surface are those having no=DE
=K,—Kf. It is to be noted from (15) that the electro-
static potential has no o6-diagonal elements in m. The
only mixing in of components with m/AK results from
II„t,. This mixing is probably small in the region of
large nuclear deformation, so that the m~ with mghE
are not likely to be important in the barrier region. The
sum over m in (6) reduces to the single term m, = AK.

The above considerations with Eq. (11) provide us
with a means for determining the branching ratios for
decay to the different members of a band. A case of
special interest, which was discussed by Bohr, Froman,
and Mottelson, "is that of the "favored" transitions in
odd-3 nuclei. In these transitions the odd-nucleon
wave function is thought to remain essentially un-
altered. ""Thus, in the case of the favored transitions
AQ=O and E~——K;; hence, the decay is similar to the
decay of an even-even nucleus to the lowest band of
the daughter (K,=K~ 0). From——Eq. (11) with m=0,
we find that, for decay with alpha particles with angu-
lar momentum 3, the relative reduced transition proba-
bilities to the members of the rotational band with
E'f=E, are

B(I;,K;; l Ir) = (I; f Kg 0~I; t If Kf)'.

The relative reduced transition probabilities here may
be regarded as the alpha-group intensities expected for
the limiting case of infinite nuclear moment of inertia,
i.e., degenerate nuclear rotational levels. Bohr, Froman,
and Mottelson, " who first derived this relationship,
make an approximate correction to the limiting case by
applying the ordinary Gamow-type alpha decay rate-
energy relations to reduce the relative intensities of
alpha groups to the higher rotational states. To obtain
the branching ratios of the decay to various rotational
states, the reduced probabilities B(I,,K;; /, Ir), must be
multiplied by the relative probabilities, C&, of emitting
an alpha particle with angular momentum / (i.e.,
C) ~w[Qx~') and summed over l Approxim. ate Ci's
can. be obtained from the decay of neighboring even-
even nuclei. The agreement of the intensities computed
in this way with experimental values is generally good."

the alpha-group intensity measurements do not yield
information regarding the relative phases. )

In either approach it is necessary to work with the
equations in regions close to the nuclear surface, for
there the noncentral electrostatic field is most eGective
in coupling the various partial waves. Since, in the
following, we shall assume that the nuclear surface is a
prolate spheroid, it is convenient to use prolate sphe-
roidal coordinates.

AVe take the foci of the spheroids to be at (x=y=0;
s=&a/2) and define the spheroidal coordinates of a
point in space as

—1&g&1,

where

A2 A2

I.(8,&)+V (r,8) EQ=O, —
2p, 2Q

(18)

Since the lowest band of an even-even nucleus is
characterized by E=O, and since we are considering
only decay to the lowest band, the alpha-particle wave
function will be axially symmetric (% =K; Kr 0). — ——
In prolate spheroidal coordinates, Eq. (18) becomes,
for axially symmetric wave functions,

where rj and r2 are the distances between the point
and the two foci. The parameter u is specified by the
condition that one of the spheroids, $= )o, corresponds
to the surface of the nuclear spheroid. The connection
to spherical polar coordinates is most easily seen in the
asymptotic region:

$~ (2r/a), g
—+cos9 p=p, as r —+ ~.

We shall consider the special case of an even-even
(I,=O) nucleus. The wave equation in spherical co-
ordinates in the coordinate system fixed in the daughter
nucleus is, from (16),

DECAY EQUATIONS IN SPHEROIDAL COORDINATES

There are two procedures that one could follow in
treating alpha decay. In the first, the decay equations
are integrated outwards starting with nuclear surface
boundary values which may be arrived at by a model
describing the formation ' and behavior of alpha par-
ticles in nuclear matter. The other procedure is almost
the reverse of the first and consists of starting at
"infinity" with empirical amplitudes and integrating
in to the nuclear surface. (It should be noted here that

' Bohr, Froman, and Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd, 29, No. 10 (1955).' J. O. Rasmussen, Arkiv Fysik 7, 185 (1953).

The rotational energy term is not exactly represented
by the second term in (19).This term is an approxima-
tion good when p))ip. For the deformations expected
in actual nuclei the condition is not fulfilled near the
surface ($o

——1.5 for Pu"'), but near the surface the
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pG
+ 2 24' (t), ' Vio*L&, V(—k,n)3

2h2(P —1) i

X (P q2) U—ipdgd41 , =0 (21.)

It is now necessary for us to evaluate the potential
U($,q). Since the details of the charge distribution
inside the nucleus are not at present known, we shall
make the usual and probably reasonable approximation
that the charge density is constant throughout the
nucleus. The potential can then be found by integrating
the Green's function in spheroidal coordinates" over
the nuclear volume; and we 6nd

4Ze'
V(k,n) = LQO(k)

—~2(n)Q2(k)3 (22)

where Qp($) and Q2(() are Legendre functions of the
second kind and equal are to

(5+1i
E~—1i

((+1~
Q (&) =I' (~)li. I

E(—1)
Asymptotically, V(g,p) can be expressed in spherical
coordinates as

V(&,n) =
2Ze2 Qoe2E2(cose)

+

where the intrinsic quadrupole moment, Qp, is given by

Qp
——Zap/10. (23)

The above relationship between the intrinsic quad-
rupole moment, Qp, and the interfocal distance, a,
permits us to determine u from experimental data.

Evaluating the integral in (21) by using (14) and

V4, 0*(n)I'2 (n)~'V 4o(n)d~,
12 ii 2

c'4' (10,1'0)+—c"' (10,l'0)+—bi i, (24)—
35 2i i5

'9 P. M. Morse and H. Feshbach, Methods of Theoretica/ Physzcs
(McGraw-Hill Book Company, Inc. , New York, 1953), Part IT., p.
129i.

whole rotational term is negligible compared with the
potential energy. When the term becomes important
(near and beyond the turning point), the approximate
expression is accurate.

If we represent the wave function by the expansion

4(k,~) =Xi(P—1) '~4(t) V4, 0(cos 'n), (2o)

we obtain for the equations satisfied by the w&(P):

d Nl 1 pa2)

, + — —~(~+1)
I

+
dP . (P—1)' (P—1 4/4

we obtain for the Schrodinger equation in the exterior
region

28$ (Vo+.Vi)wi Q vl'J$ (V[4 "'+Vii "')=0, (25)
d(2 $/

2pZe
Vo(t) = (8—-')

52(P—1)

EG 2 1
x Qo(p)- +Q, (~) ——

4Ze' 15 (P—1)'

f 1 @42~
~

V, (g)=tg+1)] + (, l~O,
&P—1

Viv"'(5) =—2pZe'u
c~2& (10,l'0)

~'(e —1)

2( Eu ~ ( 11~
x -( Q.(s)- I+( e—iQ. (&),

3 ( 4Ze2) E 21)

2@Ze a 12
"'(5)= —"'(t0,~'0)Q (k)

f'(P —1) 35

The coupling between various / waves results in part
from the noncentral nature of the field and in part from
the nature of the spheroidal coordinate system. The
Coulomb term is contained in Vo, and V~~ & &, is sig-
nificantly larger than V«&4' throughout the region of
interest.

Numerical Work

In all of the regions that must be considered in the
treatment of decay through a single barrier (the
"barrier" region, the "turning-point" region, and the
"far" region), the calculations for the present problem
are obviously more difFicult than for the corresponding
problem with uncoupled waves. However, since the
coupling decreases rapidly with distance, we need only
give special consideration to the barrier and turning-
point regions (the wave functions being very nearly
Coulombic in the far region). "

In the following, we shall seek. approximate solutions
to

240 U0240= V0224 2+U0424'4y

24'2 . (Vp+ U2)24 2 V0224'0+ U2424'4)

24 4 (V0+ U4)24 4 U0424 0+ U2424'2)

(26)

which is the set of equations (25) in which all of the
partial waves with 1.&4 are neglected.

Within the barrier region, the wave functions undergo
extremely larg|: variations in their magnitudes, making

"R. F. Christy, Phys. Rev. 98, |205(A) (1955);and L. Dresner
and J. A. Wheeler (reference 13) have also studied the problem of
decay through a no@spherical barrier.
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direct calculations with (26) difficult. Instead we have
preferred to work with the ratios y($) =ws/res
s($) =w4/st s inasmuch as their magnitudes vary within
a small range. Solutions for y($) and s(g) arising from a
WKB-type approximation are

y(() = (Ks/Ks) i exp —"(Ks—Ks)dt,

s($) = (Ks/K4) ' exp — (K4 Ks) rj—p,
(27)

where
Ko= [&o+&osy+ &o4&]',

K,=r~o+~+~o/&+(/~)~ &'

K =LJ.+~+(1/s)l'. +4/s)&. l'
As a result of the coupling, the equations (27) them-

selves constituted an extremely complicated set of
integral equations. We have solved (27) by an iterative
procedure, in which y(g) and s($) are assumed over a
small range of $ and are used to calculate improved y's
and s s.

This procedure, which was continued until self-
consistent values were obtained, was found to converge
fairly rapidly. To circumvent the difficulty occurring
where y or s goes through zero, a change of dependent
variable of the type g= (ws+btes)w, —'=y+b, with fi a
constant, was made. Barrier region integrations were
made in this manner for both outward and inward
integrations.

The solutions (27) are, of course, inapplicable in the
turning point region. In this region the wave functions
do not vary radically, so that it is feasible to work with
the wave equations directly in the form of (26).

Outward Integrations for Cm'4'

It was decided at first to see whether the simpler
pictures of the alpha particle in nuclear matter could
lead to the observed ratios of the partial waves. Cm'4'

was selected as an interesting case, as it exhibits a
very large /=4 hindrance factor. Probably the simplest
models are the one-body model in which the alpha
particle is thought to move intact in nuclear matter
for at least a few traversals of the nucleus and the
model in which alpha particles are formed uniformly
on the surface of the nucleus. The angular distribution
with reference to the nuclear symmetry axis is then
altered by the nonuniform barrier.

For the individual alpha-particle model, we assume
that the alpha particle is in the lowest state in a
spheroidal well (of uniform depth), the depth of which
is adjusted so that the emitted alpha particle has the
experimentally observed energy. The wave equation
for the interior region is separable in spheroidal co-
ordinates and has as its solution an "angular" part
which may be expressed as an infinite sum of Legendre
polynomials in g and a "radial" part which is a sum of

~Qo~ =12ZZs &X10-'4 cm' (28)

where E is the charge. This formula is based on the
experimentally known relation between intrinsic quad-
rupole moments (from gamma, -ray lifetimes and Cou-
lomb excitation cross sections) in the heavy rare earth
region. The formula yields a

~ Qs ~

of 17&(10 "cm' for
Pu"'

~ Subsequent to the completion of our calculations,
data on the quadrupole moments of a few heavy
nuclei, obtained from Coulomb excitation experiments
and spectroscopic observations, have become available.
It appears that the values of

~ Qs ~
predicted by (28) are

somewhat larger than the empirical values"; but it is
not possible at present to state quantitatively by how
much the semiempirical formula overestimates the
correct values. " In view of this, the quantitative de-
tails of our numerical work are subject to some modi-
fication, but it seems unlikely that any of our qualitative
conclusions will be altered.

"On the assumption of spherical shape, various nuclear radii
have been obtained by different experiments. For example, the
Stanford high-energy electron scattering data )Yenni, Ravenhall,
and Wilson, Phys. Rev. 95, 500 (1954)] yield what might be
called a charge radius of 1.1A&)&10 "cm. This value is probably
small for our purpose, as it neglects the greater extension of the
neutrons (M. H. Johnson and E. Teller, Phys. Rev. 93, 357
(1954)], the finite range of nuclear forces, and the radius of the
alpha particle. The radius of the alpha particle is about 2X10 "
cm as determined by electron scattering. The alpha-particle
scattering measurements of 0, W. Farwell and H. E. Wegner,
Phys. Rev. 95, 1212 (1954) indicate a value of (1.50A&+1.4)
X10 "cm, but this is probably more a measure of the major axis
of the spheroid (because of the lower barrier at the tips) and hence
a large value for the spherical shape. See also H. A. Tolhoek and
P. J. Brussard, Physica 21, 449 (1955).

"The (Qo~ values for U"'and Ths" of 8X10 "cm'and 9X10 '4

cm' respectively, determined by Coulomb excitation LG. Temmer
and N. Heydenburg (private communication)], indicate that (28)
may be in error by as much as 50%. However, the recent spectro-
scopic quadrupole moment determination for Am~' and Am243 of
Q=+4.9X10 s4 cm~ by Manning, Fred, and Tomkins LSpec-
troscopy Symposium, Argonne National Laboratory, 83, 1956
(unpublished)] leads to an intrinsic quadrupole moment, Qa,
(for I=5/2) of Q~ +14X10 s4 cm' which is less than 15% below
the value predicted by the semiempirical formula.

spherical Bessel functions in $." From these solutions
the boundary values of the alpha-particle wave function
on the nuclear spheroid are obtained.

It is appropriate at this point to look into the ques-
tions of the size (in this context, the volume) and the
shape (i.e., the interfocal distance) of the nuclear
spheroid. There is some uncertainty regarding the
appropriate nuclear size" to be used in these considera-
tions. Thus, our calculations were performed for two
"sizes" of nuclei. One had a volume equal to that of a
sphere of radius 1.20A&&10 "cm, the other to a sphere
of radius 1.35A&)&10 "cm.

To determine the interfocal distance, a, of the sphe-
roidal coordinate system employed and hence the nu-
clear shape use was made of the relation (23) between

Qs and a. Since the intrinsic quadrupole moment for
Pu"' is not empirically known, we used a semiempirical
connection' between quadrupole moments and energy of
the first rotational state, Es(kev):
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TABLE I. Results of outward integrations for Cm~'~.

Boundary conditions at $o

+0 Sp

Calculated values at
$ =5.6

Calculated a group intensity (using
connection formula approximation)

a2.'ao a4'.ao

Uniform surface
distribution

One-body
model

1.406
1.514

1.406
1.514

—0.277—0.232

Values needed to match experimental intensities

+0.025
+0.016

+1.20
+0.91

+0.83
+0.72

+0.74

+0.298
+0.230

+0.202
+0.156

—0.02

1.13
0.68

0.56
0.43

0.357

0.058
0.035

0.029
0.017

4.8X10-4

The assumption of uniform charge density may be
open to question in that it is expected that the protons
beyond the closed shell of 82 will fill the lower energy
orbitals with maximum concentration in the ends of
the prolate spheroid. There is insufficient knowledge to
justify any such refinement here.

The interfocal distance, a, corresponding to the Qp

being used for Pu"' is 1.35&10 "cm. With this value
of u, the two surfaces of the spheroids of different
volume are given by $p ——1.41 and Pp= 1.51.

Table I summarizes the results of these calculations.
It is seen that there is some suppression of the /=4
group, but the agreement with the experimental in-
tensities is not satisfactory. We can conclude only that
neither simple picture represents the physical situation.

Dresner" has independently drawn the same con-
clusion from his work.

Inwaxd Integrations for Cm'4' and Th»'

As mentioned earlier, one can exploit the available
experimental data directly by integrating the equations
for the various partial waves inwards to the nuclear
surface and thus obtain information about the alpha
probability distribution on the nuclear surface. In the
following, we shall restrict ourselves to the study of
the two nuclides Cm'4' and Th"8. These nuclides are
of interest in that they exhibit opposite extremes in
the l=4 hindrance factors, Cm'4' being very strongly
hindered and Th" being virtually unhindered. The
data and information pertinent to our calculations on
these two nuclides are presented in Table II.

The observed intensities, of course, determine only
the amplitudes of the various / waves but not their
phases. The condition used to determine the possible
sets of phases was that the phase factors, e"~, of the
waves, which are pure outgoing waves at large separa-
tions, be such as to produce an exponential damping

of the imaginary part of the partial waves within the
barrier. With these phases, one can then obtain the
real part of the wave by inward integration.

In carrying out the above procedure of integrating
through the turning point and into the barrier region,
we have used two different methods. The first, which

is very simple but approximate, is based on the cir-
cumstance that Eqs. (26) are decoupled at the turning
point in that prolate spheroidal coordinate system in
which the interfocal distance u, is given by u'=6Qp/Z.
Assuming that the coupling terms remain negligible
(compared to the remaining terms in the equation) in
a small region about the turning point (an assumption
probably reasonable for the Th"' case), one can apply
the simple WEB connection prescription. A trans-
formation to the spheroidal coordinate system appro-
priate for the barrier region of the nucleus in question
is then performed.

It is important to note that the phase determination
procedure yields not one but four sets of relative phases
for the three partial waves. This is most readily seen
when the coupling can be neglected, as in the above-
mentioned approximation. If 8~ insures that the part
increasing exponentially as $-+ 1 is pure real, so will

8i+pr.
Because of the very small magnitude of m4 as com-

pared to m2 and mo in the case of Cm'4', the assumption
of negligible coupling in the turning point region in the
special coordinate system is not valid. In this case, we

resorted to direct numerical solutions to Eqs. (26) (in
spherical coordinates) on the UCRL Bush-Type electro-
mechanical differential analyzer. "

Table III summarizes the results for the integrations

through the turning point. The values of y(fr) and s($t)
contained therein served as initial values for the inte-

grations in the barrier region by the method described
in the preceding section. There are two additional phase

TABLE II. Information used in inward integration studies.

Nucleus

6.252
5.553

0.044
0.084

Alpha disintegration en- Energy of
ergy (including electron 2+ state

screening) (Mev) (Mev)

Energy of
4+ state

(Mev)

0.146
0.253

73.7
71

26.3
28

0.035
0.2

Relative alpha abundance to
0+ 2+ 4+

Assumed 00 of
daughter (10 24 cmm)

+17
+11.6

"J.Killeen, University of California Radiation Laboratory Report UCRL-2239, 1953 (unpublished).
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TABLE III. Initial values for the barrier integrations.

Cm24& (g& =5.6) Th»8 ($1 6.0)
Case I Case II Case I Case II Case III Case IV

y($r) 0.74 -0.77 0.93 0.94 -0.94 -0.93
s(gg) —0.022 0.025 0.18 —0.23 0.22 —0.17

choices for Cm'~ which because of the small magnitude
of m4 in the turning point region lead to essentially the
same results as the two listed sets.

While the several sets of y(Pt) and s(b) values lead to
the observed intensity and proper behavior of the
imaginary part, all but one for each nucleus are physi-
cally unlikely. Unless the distribution of alpha particles
on the nuclear surface is restricted to a narrow band
about the equator, we would expect that in the turning
point region the distribution will be at least somewhat
peaked at the poles because of the lower barrier in those
directions. On the basis of these considerations we can
select the physically most plausible set, and in Figs. 2
and 3 are shown the results of the integrations for these
cases in the two nuclei (Cases I).

The other choices of phases listed in Table III were
also studied. Case II for Th"' exhibits a somewhat
pathological behavior in that y and s increase drastically
in the integration inwards. Thus, this choice of phases
is unlikely to represent the physical situation.

In Fig. 4 we have plotted the surface distributions
for all the above cases. It is to be noted that the

~P~',„,&„, are symmetric about the equator, since only
even l values enter in the decay to the lowest band of
an even-even nucleus. In each case the distributions are
given for the two sizes of nuclei. The results do not
differ much with the variation in volume considered
here.

As expected, all but the two physically probable sets
of initial values at $r lead to ~P~'s„rfs«narrowly re-
stricted about the equator of the spheroids. Granting
that cases I probably represent the physically signi6-
cant cases for both Th" and Cm'" we can observe
that there is a shift in the surface distribution from a
broad peak about the poles in Th"' to one more con-
centrated in the regions midway between poles and the
equator in the case of Cm'". That the shift in surface
distribution is gradual can be inferred from the con-
tinuous growth of the hindrance factor in going from
Th" to Cm'" (see Fig. 1).

Th228

CASE I

.8

.6-
Cm

CASE I
2

FIG. 3. Results of an inward numerical integration of the alpha-
wave equation for Th"' in prolate spheroidal coordinates (Case I) .
Boundary conditions at )=6 are based on experimental alpha-
group intensities.

/ Z

FxG. 2. Results of an inward numerical integration of the
alpha-wave equation for Cm~~ in prolate spheroidal coordinates
(Case I). Boundary conditions at )=5.6 are based on experi-
mental alpha-group intensities. The parameter y goes over
asymptotically into the ratio of wave amplitudes of l=2 and
l =0 groups, and 3, into the ratio of the l =4 to the l =0 groups.

It was suggested in a preliminary report' on the
coupled alpha-decay problem that for nuclei of greater
atomic number and deformation than Cm'4' the con-
tinuation of the intensity trend might show a reversal
of the decreasing behavior of the 3=4 group. The
increasing 1=4 group of these heaviest nuclei would
bear a phase relationship with respect to the 1=0 group
which was the opposite of that of the lower mass alpha
emitters. Subsequent to this speculation the study' of
alpha emitters Cf"' and Fm'" actually showed the
increase in abundance of the l=4 group. The discussion
of the preliminary report' also suggested speculatively
that the intensity of the t=2 group might begin to
decrease for heavier nuclei, and this also was found
subsequently for californium and fermium isotopes.
The idealized model on which these guesses were based
considered a sharp angular alpha distribution of a delta-
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function nature. The qualitative success of the guesses
certainly does not imply any detailed validity of the
delta function picture. Indeed, it seems most probable
that the alpha angular distributions, particularly in
the turning point region, are fairly broad.

The 8-function model was intended only as a first
orientation of the eGect of the quadrupole coupling.
From the results of the present calculations it does not
appear probable that the distribution of alpha particles
on the nuclear surface is very sharp. The inclusion of
components of the wave function with l&4, which are
smaller than the ones considered in this work, should
not seriously alter the surface distributions of Fig. 4.

A comment on another section of the preliminary
report' is in order. Uncertainty was expressed as to

TAsLF, IV. Barrier penetration factors.

Alpha
emitter

Th228
Cm2~

log& Pc
(spherical)

—74.73—72.79

loge Pm
(spheroidal

case I
(this work)

—72.58
-70.39

log. (Pa/Pe)
Hill-Wheeler

log, 1-dimen-
X (Par/Pg) sional WKB
(this work) formula

2.15 4.98
2.40 6.77

IyI2zs

us deine a generalized penetration factor I' as

I I I I I I I I

Gm CASE I
I 1 I I I I I I

Th CASE I

Al
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Cm CASE 1I Th C

2-

0 —.
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4 - Th GAS

2-

0
0 20 40 60 80

COS q (IN DEGREES)

FIG. 4. Calculated alpha-probability distributions on the
spheroidal nuclear surface from inward integrations based on ex-
perimental alpha-group intensities. The different cases result
from different possible choices of relative phases of the various
partial waves. Cases I for Cm'" and Th"' are believed to be the
most likely physically signihcant cases. The solid lines correspond
to a choice of the surface to enclose a volume equal to that of a
sphere of radius 1.35)&10 "A& cm, and the dashed lines, that of a
sphere of radius 1.20X10 "A& cm.

Total Barrier Penetration

It is of interest to see how the occurrence of a sphe-
roidal deformation @Sects the total decay constant. Let

whether the variation in hindrance factors (especially
for l=4) for diferent isotopes meant a change in nuclear
surface boundary conditions or was simply a conse-
quence ot the increase ot Qo with atomic number. From
the work of the present paper we can now definitely
say that there must be a shift in nuclear surface bound™
ary conditions between thorium and curium alpha
emitters, yet the role of the large quadrupole coupling
is an important one in the detailed interpretation of
alpha emission in the heavy region.

where S„ is a surface at a large distance from the
nucleus and S„is the nuclear surface. f is the complete
wave function, which asymptotically goes over into a
pure outgoing wave. For the case of a spherical nucleus,
the penetration factor obtained using first order WEB
wave functions is

where E„is the nuclear radius and A&~ is the classical
turning point.

With y and s known as functions of $, it is a simple
matter to compute the penetrability for the spheroids
taken in the above calculations for Th and Cm4
with the nuclear volumes in all cases equal to those for
spherical nuclei with radii E.=1.20&10 "A& cm. The
inward integration results, Cases I, are used.

In the last column of Table IV are the values pre-
dicted by the Hi11.-%heeler' one-dimensional WEB
formula for the penetration factor, evaluated through
the thinnest part of the barrier. While both the Hill-
%heeler formula and the present work lead to larger
penetrabilities than in the case of the spherical nucleus
(as would be expected), the one-dimensional formula
predicts a much larger increase than the detailed treat-
ment and a much larger increase for Cm'4' than for
Th" . This last fact is rather dificult to reconcile with
the success of the old correlations of decay-rate data
with spherical barrier formulas. The much lower en-
hencement of penetrability which the present numerical
work finds does much to remove the above difhculty.

It appears then that the one-dimensional formula
does not give a good estimate for the alpha decay
problem. This implies that the alpha wave is unable to
take full advantage of the thinner barrier in the vicinity
of the poles. The reason for the failure of the one-
dimensional estimate may be expressed qualitatively
as follows: if the alpha wave function were to be
sharply channeled along the most favorable penetration
trajectory, the total wave function would contain high
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angular momenta components with large amplitudes.
The increased centrifugal barrier and higher nuclear
rotational energy associated with the wave function
would produce a dissipation of the wave function along
the trajectory much larger than the one-dimensional
WEB integral indicates. The wave function adjusts
itself to a compromise involving moderate angular con-
centration of the wave function a,long the favorable
penetration trajectory.

One can also note from Column 3 of Table IV that
the spheroidal shape enhances the penetration factor
of Th" almost as much as that of Cm'" despite the
fact that Cm'4' has appreciably larger deformation.
This is easily understood when we consider that the
distribution of alpha particles on the nuclear surface
is peaked about the axis in the case of the Th"' while
the peak for Cm'4' is closer to the equator.

DISCUSSION

The numerical studies of this paper, which are of an
exploratory nature, serve to illuminate some of the
general features of alpha decay from strongly deformed
nuclei. It appears that though the electric quadrupole
6eld plays an important role in determining the
abundances of the various alpha groups, the predomi-
nant factor in the shifting of relative alpha group in-
tensities with atomic number is the initial distribution
of alpha particles on the nuclear surface. While this
fact complicates the picture, it is fortunate in that it
makes the study of the relative abundances a tool
helpful in the understanding of the formation of alpha
particles in nuclear matter. From the failure of the
one-body model to yield the proper ratio of intensities
in the Cm'4' case and from the shift of the peaks of the
surface density with increasing atomic number, we can
conclude that the one-body model does not adequately
represent the physical situation. That is, the alpha
particle has a transitory existence in the nucleus and it
does not move intact for times of the order of a period.
We must envision the alpha clusters as continually
forming and dissolving with short mean free paths.

Also, the picture of alpha particles being distributed
uniformly on the nuclear surface does not appear to
represent the physical state of affairs.

We might think of the situation in the following way:
the alpha clusters that have any appreciable probability
of forming and penetrating the barrier are those which
are made up of the most loosely bound neutrons and
protons. The distribution of these clusters will then
reflect the distribution of the most loosely bound
nucleons. If, as we expect, case I is the one that corre-
sponds to the correct picture, we would conclude that
the outer nucleons tend to concentrate near the poles
in Th"' and nearer to the equator in Cm'4'. In a prolate
spheroidal well of appreciable eccentricity, the states
concentrated near the poles are expected to be filled
6rst. '4 These are the states with Bohr-Mottelson quan-
tum numbers 0=+-', (all other states have nodes at
the poles). One might suppose that orbitals with large
probability densities at the poles are 6lled around
3=230 and that subsequent nucleon pairs tend to fill

states with density distributions shifted toward the
equator.
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