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Starting from a multivalley model of a cubic semiconductor, a calculation of the eftect of elastic strain
on certain galvanomagnetic effects is carried out. It is found that the effects are sensitive to the strength
of the intervalley scattering. An experiment on germanium to which the calculation is applicable is described.
It is concluded from a comparison of the theory and the experiment that the coupling constant which
characterizes the coupling of the electrons to the intervalley phonons in the model of Herring is considerably
smaller than the coupling constant to the acoustic phonons.

I. INTRODUCTION

XPERIMENTS of Smith' have shown that, in a
& multivalley semiconductor, an elastic strain which

destroys the symmetry equivalence of the valleys can
produce large changes in the conductivity of the semi-
conductor. In such a strained crystal the minimum
energies in the various valleys are not necessarily equal.
Quantitative theories of the effects which result from
the shifting of the energy valleys have been given by
Herring' and by Adams. ' The treatment of Herring
shows that two principal mechanisms are involved in
the large elastoresistance eGect, namely, the transfer of
electrons from valleys of higher energy to valleys of
lower energy, and the alteration of the relaxation times
for intervalley (IV) scattering.

The importance of the second of these mechanisms
relative to the first depends on the strength of the IV
scattering. Measurement of the elastoresistance coeffi-
cient alone provides no way of distinguishing these
contributions. Extension of the above-mentioned theo-
ries to the Hall and magnetoresistance eGects in elasti-
cally strained germanium shows that these elasto-
galvanomagnetic eGects are quite sensitive to the
amount of intervalley scattering which takes place. In
this paper the calculation of certain elastogalvano-
magnetic effects is described in some detail, and it is
shown that the rate of IV scattering can be deduced
from such coeKcients. Some experimental data which
show that the amount of IV scattering is small in
germanium are presented.

threefold (111) or fourfold (001) symmetry in k space.
The minima are enumerated by a superscript (i), which
is often omitted in formulas which are applicable to
any single valley. Let a&'~ be a unit vector directed
from the origin in k space to the ith energy minimum.
Then the surfaces of constant energy are ellipsoids of
revolution about an axis along a. The energy as a
function of k, measured with the energy of the minimum
as zero and the location of the minimum as the origin
for k, is E= (h'/2m)k n k, where the second rank
effective mass tensor n=nrl+(ns —nr)aa, I being the
unit tensor.

In our model we neglect all eGects of strain except
those arising from shifting of the energy minima with
respect to one another. This approximation depends on
the assumption that all of the impurities are ionized,
and there are no intrinsic carriers, so that application
of a strain does not change the total number of electrons.
If u is the strain tensor as defined by Herring (8r= u r),
symmetry requires that 5(E&'&—i), the shift of the
energy minimum with respect to the Fermi level t,
has the form

8(E&'&—f') =SXO„t (a&o.e)'—-') (2)

8(E"'—f')=D (a" u a&'& —-'«)

where 0„ is a constant with the dimensions of energy
and ~=dilation=trace u. If a cylindrical specimen of
crystal with axial direction e is stretched axially by a
force per unit area X, application of elastic theory
shows that

II. PRELIMINARY DISCUSSION OF THE MODEL
where 5 is an elastic compliance, and is, in terms of the
elastic constants,

(3)

for (111)minima (Ge). (4)

' C. S. Smith, Phys. Rev. 94, 42 (1954).
~ C. Herring, Sell System Tech. J. 34, 23'? (1955).' E.N. Adams, Chicago Midway Laboratories Technical Report

CML-TN-P8 (unpublished).

In the detailed calculation of the eGects we treat the
phenomena due to elastic strain according to the model
and methods of Herring, ' while taking the point of S=1/(Crr —Crs) for (001) minima (Si),
view of Adams' toward the galvanomagnetic phe- S= 1/C44
nomena. In this section we describe the model and
some of the results of Herring in our notation, and Hereafter we designate these two types of energy
apply the ideas of statistical equilibrium to this model. mi»m»y Si and Ge, the fourth group semiconductors

The energy minima considered are located on axes of in which they occur.
Now we consider the two consequences of the energy

shifts, which are mentioned above:
1. It is assumed that the carriers are nondegenerate,

and also that 8E&&kT. Then the change in the number
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of electrons in a valley is

Sn(')

S(') So

where e(') =eo, independent of i, the number of electrons
in a valley in the unstrained state.

2. In an IV scattering process, an electron makes a
transition from a state in one valley to a state in
another val&ey. Since the energy of the electron plus
the energies of any phonons which participate in this
process must be conserved, and, since the density of
final states is proportional to the square root of the
energy of the final state above the bottom of its valley,
a shifting of the valley energies will affect the proba-
bility of an IV transition.

In the crystals considered, the vectors in k space
which connect pairs of minima, and which represent
the change in k in an IV scattering, may not all be
identical or symmetrical with one another. There may
be different kinds of IV transitions, which should be
considered separately in the theory. In this treatment,
however, we use the approximation introduced by
Herring, ' and employ the same functional description
for all the IV transitions, and, in considering phonon
induced transitions, attribute all the phonons involved
to the same branch of the vibrational spectrum. Since
symmetry requires that

In equilibrium, the number of electrons scattered from
valley i to valley j must be the same as the number
scattered from valley j to valley i:

1 j.
e(') =e(&" (10)

Here the angular brackets ( ) mean the average over
the Boltzmann distribution. In the case of averages
which are to be taken in the unstrained state of the
crystal, a subscript 0 is added to the bracket. By
differentiating Eqs. (9) and (10) with respect to E&'&

and using the definition (7), it is found that

and ro is the value of the r(&') in the unstrained state.
In Herring's model for phonon-induced IV scattering,

~Eq'T 1= Wr,
l

—
l

—+Wr l

—+1l
E k8) 8 exp(8/T) 1E—k8 )

where rz is the total IV scattering time, defined by

Ã —1
(12)

rI ro

. =Z
~ BE(» BE(&)

(6)
+e~ir

I
—1

(u8 i

(1
=~(~)l —~.; I,

BE"~ I iV ) (7)

where r(') is the relaxation time in valley i, E is the
number of valleys, and P is a function of E, the energy
of the electron above the minimum of its valley. The
change in r(') due to a strain is

the dependence of relaxation time on the energy
minima in the framework of this model can be described
by

in which the first term represents (1/sr, ) and the second
term (1/rr).

III. METHOD OF CALCULATIOH

The solution of the Boltzmann equation, for an
electron with ellipsoidal energy surfaces, in the presence
of uniform electric and magnetic fields, has been given,
to all orders of the magnetic Geld, in the form which
we wish to use, by Adams. ' In this form the conductivity
for one electron is

8 &"=Z ~(~) l

—8;; l»"'=-»(&&' —t-) (8)
E~

e («S),
3mkT

(14)

In (7) and (8), 8,, is the Kronecker delta.
Since the effect described by Eq. (8) arises from the

IV scattering, it is apparent that the magnitude of P
must depend on the strength of this scattering. We can
obtain a quantitative measure of this dependence from
considerations of detailed balancing. If r"&' is the
relaxation time for scattering from valley i to valley j,
and rl, is the relaxation time for intravalley scattering,
then

1

(' ')

1+ybX e

1—yb Xe+y'Ae-' bb

1+v'~n 'bb

and

f= ', Tre= —,'(2n, +ng), — (16)

Here y= e87./mc, 6= determinant e=ni2nq, b is a unit
vector in the direction of the magnetic field, and the
notation n—'bb means b e 'b. Setting
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(14) becomes

P, e (E.S)

f (Er)p
(18)

When (S&'&)' is expanded and the results

n (bXe)=&(1X -') b,

e. (bXn) (bXe)=h(bb —n 'bbe),

(29)

(3o)

The total conductivity is, then are applied, it is found that the only summations are

e—Q r&&&(&&) (19)
and

where

where P means sum over all valleys. If 8=0, then
S=1 and Q e&'&—'b(E&'& —f') = —(n,/6) JNA, (32)

g e&'&b(E&'& —f.)=JNA (31)

r= (& lf)
In the unstrained state e(') =no, and

(20) 2
3

A= 0
0

0
2

V 3
0 1

g 3

(33)

e= cr=Nrsp/o.

The change in conductivity when the crystal is
strained is

be —g ($&~)bN&oyoo&obg&o) and

0 e,e„e,e,
A= poe,e„O e„e, (Ge),

e,e, e„e, 0

J= (np —n&)XQ+/3.

(34)

(35)
The change of (&'& comes about through the change in
r&'&. It is easy to verify that b(rS)=So. Substituting
for bn«& from Eq. (5) and for br&'& from (8), we find $o EP (1—y'noh)

U—=

f(Er) p (1+y'noh)' p

(36)

soap
Q(e&'& (ErS&'&)o

(Er)p 4 EPv

f&p ) (~+&' »')ob(E&o f-)+e" E S&'" ohT, 23
hz

' and use (31) and (32), the change in conductivity can
be written

b = (111)/v3 for Si, (24)

with b(E&@—f) related to the stress by (2).

IV. MAGNETORESISTANCE

The evaluation of the summations in (23) for a
general direction of the magnetic field is quite lengthy,
and of little interest because of the small number of
constants required to describe our model. W'e, therefore,
specialize our consideration of (23) to a particular
direction of the magnetic field for each type of minima,
namely, that direction for which n 'bb is the same for
all the valleys. This means

be= JNr&p —UA 2Wn—g(1XA) b

tSoA+ngS&(1XA) b) . (38)
kT

(n~hS&,)' ASpSo-
fSol+n&hSglXb+ bb

fSo+&So

Nr& pP( fSp)'+ (nghS&)'j
(39)

In practice, the resistivity tensors are more useful.
The inversion of e gives

b= (001) for Ge,

and, in both cases, hn 'bb=n~h, where

25
and b(e ') can be obtained by straightforward multipli-
cation:

h=( 2n+pn) &/3 (26)
b(e ') =—e 'be e (4o)

Nr&0(fSol n&hS&.1X b+&Sobbed, (27)

With this restriction on the magnetic field, the denomi-
nator of S&'&, Eq. (15), is independent of i, and factors
out through the summation. The addition is much
simplified, and we find, for the unstrained state,

The most practical arrangement from the experi-
mental point of view is one in which the magnetic field
is perpendicular to the axial force e, and the current is
parallel to e. Measurement of the resistivity is accom-
plished, then, by measuring the component of the
electric field parallel to e. For detailed consideration we
choose

where
4 Erv"

5„=
J&z.&,&&+,&7'),

e= (1/V2) (110) (41)

(28) which satisfies the condition b e=O for both cases.
Figure j. shows the arrangement of sample, fields, and
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electrodes for making the elastomagnetoresistance
measurement under the conditions being discussed.

Let 8(B) be the electric field in direction e due to
unit current in direction e. Then, in the unstrained state

and the current parallel to e. We de6ne BII as that part
of the electric 6eld component in the direction bXe
which is proportional to the magnetic field. Then the
result for the elasto-Hall eGect can be expressed

where

8(B)=e e-'e=
NeofSo(1+r')

&8+/8' f 1+(2WokT/Si) b A b
(42) F= (47)

88(0)/8(0) k 1+(U'kT/Sp) e A e

r=aikSi/jSp. (43) VI. DISCUSSION OF RESULTS

The change in 8 when the strain is applied is

88(B)=e 8(e—') e

JeAe 1 1 UkT
I 1+

~
(44)

fkT NrlpfSp 1+r' k Sp i

With the geometry being considered, e A e=ip for Ge
and -', for Si. The ordinary elastoresistance is

58(0) Je A. e ( UpkTq
11+

8(0) fkT ( Spo ) (45)

So' 1+(UkT/So) —(1+r')
So 1+(Uok /TS)po

So'
— ——(1+r') . (46)
Sp

V. HALL EFFECT

The effect of elastic strain on the low-6eld Hall effect
follows by a similar calculation from (23). In fact, all
the results of the last section up to (40) are correct to
6rst-order terms in the magnetic 6eld for arbitrary
field direction, because the special direction of b was
only used in the evaluation of 0, 'bb. In the measurement
of the Hall effect it is also convenient to have b e=o,

in which a superscript 0 is used to mean "evaluated
with I3=0." To characterize the elastomagnetore-
sistance, we calculate

-s8(B)—s8(0) - ~8(0)
G=

8(B)—8(0) 8(0)

G=i-
f —Gik 1+pv

1+v
P=— —1

k 1+-,'v

(49)

(50)

An important characteristic to be noted in these
results is the sensitivity of the function G to the
strength of the IV scattering. For a mass ratio of 20,
which we take as representative of germanium, the
factor f'/(f' —nik) in (49) has the value 4.65. In actual
cases, in which dispersion of the relaxation times also
contributes to the magnetoresistance, this sensitivity is
reduced, but usually remains larger than that of the
function F. It should also be noted that, although in
the calculation of G all orders of the magnetic field
were included, the field exactly cancels in Eq. (49).

VII. EXPERIMENT

In order to compare formulas (46) and (47) with
experimental data, some evaluation of the integrals
involved is necessary. A very simple, although some-
what unrealistic, approximation in which the integra-
tions can be easily performed, and which gives some
insight into the relationship between the functions Ii
and G, and the IV scattering, is the approximation in
which rr, r, and P are regarded as constants over the
energy distribution. Let v= r/r&, the fractional amount
of IV scattering, and set N/(N 1)=1.T—hen, from (11),

PkT= ',vr-
and

Force
Current

(o)

)10

OOI

tic
a

Si

Force
Current

I IO

Previous work4 ' on e-type germanium has indicated
that IV scattering is not an important factor in limiting
the mobility of electrons below room temperature. In
an attempt to obtain a more precise estimate of the
amount of IV scattering, we have made some measure-
ments of the elastomagnetoresistance (EMR) effect in
this material. For this purpose, the KMR has certain
advantages over the elasto-Hall effect, one being the
greater sensitivity already referred to. In addition, in
the Hall measurement, the region of the crystal in
which the Hall voltage is determined, i.e., the cross
section at the Hall electrodes, .is not the same as that
in which the potential drop which determines the
resistance occurs. Thus, if there is any gradation in

FzG. 1. Sample arrangements which satisfy the conditions for
measurement of the EMR function described in the text.

4 R. W'. Keyes, Phys. Rev. 99, 1655 (1955).
5 R. W. Keyes, Phys. Rev. 100, 1104 (1955).
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FIG. 2. Experimental values of the EMR ratio, G. The indicated
errors represent only the scatter in the data.

sample properties or dimensions, or in the strain pat-
tern, the ratio of EMR to elastoresistance will probably
not be aGected as much as the ratio of elasto-Hall
eGect to elastoresistance.

The germanium used for the experiment was n type,
and contained 1.7X10" excess electrons per cm'. The
mobility product at 77'K was 27000 cm'/volt sec.
Contacts were applied to the sample with soft solder.
The technique of Smith was followed closely, in both
the mechanical features and the electrical instrumen-
tation. Magnetic fields to 3000 gauss at 77'K and to
8000 gauss at 300'K were used. The EMR ratios defined

by (46) were independent of field, to an accuracy of
about 10%, within these ranges. The measurements
were made at three convenient bath temperatures.
The results are shown in Fig. 2. The uncertainty due
to scattering of the data is also shown.

If this is so, 8 should be near the Debye temperature,
362'K according to Keesom and Pearlman. ~ Our highest
temperature point then corresponds to 0/T=1.25, and
our calculation of G as a function of Wr/Wr, for this
case is shown in Fig. 3. A comparison with Fig. 2 shows
that Wr/Wr. lies between 0.1 and 0.2. Measurements
of the temperature dependence of electrical properties' '
are inconsistent with the higher part of this range, and
we therefore feel that Wr/Wr, must lie near 0.1 (if
8=362'K). Herring and Uogts have recently concluded
that, if the energy minima are at the zone faces, the
smallness of the IV scattering is not in disagreement
with theoretical understanding of the electronic
properties of germanium.

The possibility that the energy minima are not at
the zone faces, and that the smallness of the IV scat-
tering at 300'K is due to a high excitation temperature
for the IV phonon has also been examined. According
to work of Hsieh, " the highest energy phonon in
germanium corresponds to a 8 of about 500'K. We
have, therefore, also calculated G as a function of
Wr/Wr. for 8/T=1.8 and shown this result in Fig. 3.
It can be seen by comparison with Fig. 2 that values
of Wr/Wr, of 0.25 to 0.5 are consistent with our data
in this case.

The calculation of G for 0/T= 1.8 can also be used to
compare our data point at 195'K with the theory
under the assumption 0=362'K. This comparison gives
the result that Wr/Wl, lies between 0.1 and 0.2, in
agreement with our result for the 290'K data point
and 0= 362'K.

Obviously, extension of measurements of this type
to higher temperatures in order to confirm the applica-
bility of the model and to fix more precisely Wr/Wr.

VIII. COMPARISON OF THEORY AND EXPERIMENT

The data of Fig. 2 indicate the presence of some IV
scattering in germanium at room temperatures. In
order to make the quantitative estimate of the strength
of this scattering which is required, we have calculated
by a numerical method the values of the integrals which
occur in G in the limit of small magnetic fields for
various values of Wr/Wr„ the electron-lattice coupling
parameters of Eq. (13). It is found that a factor Hs

can be cancelled from Eq. (46), and then, when the
magnetic 6eld is set equal to zero,

kT(EP)p (EP7')p ( v')p
3

(E ). (EP) (E ).
k1'(EP) p (Er') p nth (Er') p'

1+
(E)o «)o f' (E)o'

It has been suggested by Herman' that the energy
minima lie at the zone edges in the e-type germanium.

P F. Herman, Phys. Rev. 95, 84/ (1954).

!.0
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Fin. 3. Calculated values of G as a function of 7Fi/8's, the
ration of the coupling constants for intervalley and intravalley
scattering in the model of Herring.

7 P. H. Keesom and N. Pearlman, Phys. Rev. 91, 1347 (1953).
P F. Morin, Phys. Rev. 93, 62 (1953).
p (".. Herring and E. Vogt, Phys. Rev. 101, 944 (1956)."Y.Hsieh, J. Chem. Phys. 22, 306 (1954).
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and 8 is indicated. However, the use of less pure speci-
mens to extend the exhaustion region of conductivity
to higher temperature creates de.culties in the interpre-
tation of the results because of the simultaneous intro-
duction of impurity scattering.

A small amount of impurity scattering can have a
fairly large effect on the value of G. When the (EPr2)
integral is evaluated with the relaxation time of Eq.
(13) for a case in which there is only a small amount
of intervalley scattering, the relaxation time and the
integrand become very large near the zero of energy.
If some other scattering mechanisms, in particul. ar
impurity scattering, reduces the value of v- at low
energies, the value of the integral will be seriously
reduced. In our germanium we estimate that at 300'K
the value of the impurity mobility is 10' cm'/volt sec,
and that this much impurity scattering will decrease
(EPr') by 25'%%u~ if Wz/Wz, =0.1. The effect is smaller for
smaller values of Wz/Wz, . Small amounts of impurity
scattering may have a comparable effect" on the (Er')
integral also, but the total effect of impurity scattering
appears to be somewhat less than the other uncertainties
at 300'K.

Impurity scattering has a greater e6ect on the scat-
tering integrals at lower temperatures. However, it is
seen from (51) that, as P approaches zero, G approaches
1, regardless of the law of intravalley scattering, and
that our conclusion that the intervalley scattering is
small does not depend on an accurate evaluation of
the integrals. Ior the specific orientation considered
the transfer of electrons from one valley to another
produces the same change in the magnetoresistance as
in the resistance, and a deviation of G from one means
that the elastoresistance effect is not due entirely to
the transfer of electrons. The exact quantitative inter-

' H. Brooks, Advances in Electronics (Academic Press, Inc. ,
New York, 1955).

pretation of the value of G in terms of coupling constants
for intervalley scattering does depend on the ratio of
various scattering integrals. We expect such ratios to
be of order of magnitude 1, and, because their precise
values are sensitive to details of the scattering mecha-
nism, an intrepetation of t" based on the constant ~
approximation (49) would not be entirely unsatis-
factory.

CONCLUSIONS

A calculation, based on Herring's model of the elasto-
resistance e6ect, shows that the elastogalvanomagnetic
e6ects provide a sensitive measure of the amount of
IV scattering in germanium. The amount of IU scat-
tering increases with temperature, due to the increasing
excitation of the IV phonon. Experiment shows that,
at room temperature, 10 to 20%%uo of the scattering
is of the IV type. The scatter in the measurements of
the EMR eGect, and the uncertainties in other details
of the scattering mechanism which may aGect the
scattering integrals, prevent us from determining accu-
rately the values of 0 and Wz/Wz„ the parameters of
Eq. (13). If the energy minima are at the zone faces,
then 0 is near 360', and Wz/Wz, is small, about 0.1. If
the smallness of the IV scattering at room temperature
is attributed to a high excitation temperature for the
IU phonon, and 0 is assumed to have the highest value
consistent with the elastic properties of germanium,
530'K, then Wz/Wz, may have a value as high as 0.5.
In any case, it appears that the coupling constant for
IV scattering is considerably less than that for intra-
valley lattice scattering.
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