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Electronic Energy Bands in Potassium*
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The orthogonalized plane-wave method and the cellular method were applied to a calculation of electronic
energy levels in potassium, using a potential obtained from a self-consistent 6eld. The energies of twenty-
four states at four symmetry points in the Brillouin zone have been obtained. The lowest band has been
studied in detail and the qualitative features of the density of states were determined. Departures of the
lowest band from free-electron behavior were found. A comparison of higher bands with the results of some
other calculations suggests that certain features of band schemes may be reasonably independent of the
potential used.

I. INTRODUCTION The method of orthogonalized plane waves (OPW)
was chosen in preference to the cellular method for a
study of the higher states because in the OPW method
it is not necessary to satisfy boundary conditions
explicitly. The problem of accurately satisfying the
boundary conditions is quite serious and difficult in
the cellular method, " and it was felt that with the
cellular method, it would have been impractical to
study more than a small number of energy states. The
cellular method was used, however, to study states near
the bottom of the lowest band. The OPW method has
the disadvantage that an explicit potential must be
used, and more important, that the electron states in
the atomic core must be known. " There are reasons

why the OPW method should be expected to work well
for metallic potassium. As in the other alkali metals,
one has one electron moving outside of a relatively
compact ion core. Consequently, overlapping of core
wave functions will be negligible. The self-consistency
problem, also, should not be serious since it is reasonable
to expect that the average distribution of electrons in
the core should not be significantly affected by the
valence electron. This is supported by a calculation of
Hartree and Hartree for the K ion in which it was
found that the wave function of the 3P electron
differed only slightly from that for the K+ ion."The
approximation of Wigner and Seitz is also made: that
there is only one valence electron in an atomic cell. It
moves in the potential of the positive ion, all other
cells being neutral. The crystal potential and core wave
functions used here were obtained from a self-consistent
field with exchange for the K+ ion. '4

Because of the simplicity of the physical situation
potassium should be a very favorable system for an

energy band study. Such a study should furnish

information concerning: (1) Validity of the free-

electron approximation. There are three aspects here:

(a) Departures of effective mass values from one, (b)

'

ELECTRONIC energy levels in the alkali metals
~ have been studied for many years. The majority

of the work has concerned the lighter elements, lithium
and sodium. '

Principal attention has been devoted to the cohesive
energy and to related properties such as the equilibrium
lattice constant and the compressibility. The heavier
alkali metals: potassium, rubidium, and cesium have
been studied less extensively. ' ' The work here reported
concerns an application of the method of orthogonalized
plane waves' and of the cellular method' " to a calcu-
lation of electronic energy bands in potassium.

Gorin made a calculation of the cohesive energy of
potassium' using the cellular method and a potential
obtained from a self-consistent 6eld for the K+ ion.
The results of his work were in marked disagreement
with experiment, in that too little binding was obtained.
This failure gave rise to the belief that an energy level
calculation based on a self-consistent Geld would be very
inaccurate for the heavier alkali metals. The quantum
defect method was developed by Kuhn and Van Vleck'
and extended by Brooks' and Ham' to avoid this
difficulty by using observed spectroscopic data to
circumvent the construction of an explicit potential.
It has recently been shown, however, by Berman,
Callaway, and Woods' that if proper account is taken
of exchange interactions, a calculation based on a
self-consistent field gives a result of reasonable accuracy
for the cohesive energy of potassium. It then becomes
interesting to extend their work to a calculation of
higher electronic states.

* Supported by the Once of Naval Research.
' An extensive bibilography of energy band and cohesive energy

calculations is given by J. C. Slater, Technical Report No. 4 of the
Solid State and Molecular Theory Group, Massachusetts Institute
of Technology, 1953 (unpublished).

~ E. Gorin, Physik. Z. Sowjetunion 9, 328 (1936).' T. S. Kuhn and J. H. Van Vleck, Phys. Rev. 79, 382 (1950).
4 H. Brooks, Phys. Rev. 91, 1027 (1953).' Herman, Callaway, and Woods, Phys. Rev. 101, 1467 (1956).

F. S. Ham in Solid State I'hysics, edited by F. Seitz and
Turnbull (Academic Press, Inc., New York, 1955), Vol. 1, p. 12

7 R. M. Sternheimer, Phys. Rev. 78, 235 (1950).
C. Herring, Phys. Rev. 57, 1169 (1940).' E. signer and F. Seitz, Phys. Rev. 43, 804 {1933).' F. C. Yon der Lage and H. A. Bethe, Phys. Rev. 71, 61

(1947).

D. "F. S. Ham, Ph. D. thesis, Harvard University, 1954
7. (unpublished).

's J. Callaway, Phys. Rev. 97, 933 (1955).
"D. R. Hartree and %. Hartree, Proc. Cambridge Phil. Soc.

34, 550 (1938)."D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1936).
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presence of k4 and higher terms in the E(k) expansion
near k=o, and (c) departures of energy surfaces from
spherical symmetry. It is not justified to assume that
if the effective mass in the lowest band is nearly equal
to unity, that the free-electron approximation holds
in the other respects. Because of the possibilities of
degereracies at symmetry points and band crossings,
higher bands may be expected to show more complicated
behavior than the lowest band. (2) Comparison of
energy bands in potassium with those calculated for
other elements having the body-centered cubic structure
is particularly interesting since one of the most im-
portant problems in energy band theory is the question
of how sensitive are the general features of an energy
band to details of the potential. Comparison of energy
bands in diGerent elements of the same crystal structure
should furnish information on this question. In addition,
the eGect of changes in the potential on the bands in
potassium can also be examined.

Unfortunately, there is little accurate experimental
information pertaining to energy bands in potassium,
so that a detailed comparison of theory and experiment
is not possible. Qualitative comparisons and predictions
can be made in some cases. It is hoped this theoretical
discussion will stimulate experimental eGort.

II. THE CRYSTAL POTENTIAL

We assume that each electron experiences only the
potential of the corresponding positive ion. This
potential consists of two parts: (1) The Coulomb
potential of the atomic nucleus and the average
distribution of the core electrons, and (2) the exchange
interaction between the valence electrons and the core.
The Coulomb potential is obtained in the obvious way
from the core electron distribution. The exchange
interaction is apparently quite important in obtaining
quantitative results in a cohesive energy calculation.

We can define an eGective exchange potential for
the state fk' (ith irreducible representation of wave
vector k) in the following way:

l"'(r~)

0-i-*(r2) (2/r»)A'(r~) «2 4-~-(r~)
num

A'(r~)

where 1t „q represents a core wave function. The
exchange potential computed according to (1) will

diGer from state to state, and obviously depends on the
wave function of the state considered. This means that a
self-consistent solution of the Hartree-Fock equation
is required. Slater has proposed two methods of
averaging the exchange potential" which allow one to
use one exchange potential for all states. It is doubtful
that such procedures will have quantitative success. '~'

"J.C. Slater, Phys. Rev. 81, 385 (1951).
"Herman, Callaway, and Acton, Phys. Rev. 95, 371 (1954).
'~ J. Callaway, Phys. Rev. 99, 500 (1955).

TABLE I. The quantity r V is given in atomic units for 5, I, and D
states, and for the Coulomb potential.

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.40
1.60
1.80
2.00
2.50
3.00
3.50
4.00
4.50

rvs

38.00
36.78
35.61
34.51
33.46
32.53
31.64
30.83
30.12
29.60
28.42
24.78
22.22
20.10
18.33
16.99
16.08
13.41
10.91
9.86
8.85
7.93
7.15
6.47
5.93
5.321
4.262
3.090
2.545
2.286
2.130
2.055
2.025
2.009

rVp

38.00
36.76
35.57
34.39
33.30
32.27
31.32
30.41
29.58
28.77
28.02
24.77
22.12
20.00
18.29
16.82
15.64
13.73
12.08
10.48
8.84
7.94
7.17
6.50
5.95
5.093
4.526
3.462
2.839
2.199
2.049
2.020
2.009
2.005

rvD

38.00
36.70
35.49
34.30
33.19
32.15
31.19
30.29
29.46
28.67
27.93
24.70
21.92
19.62
17.67
16.00
14.64
12.56
11.06
9.87
8.88
8.02
7.26
6.56
5.94
4.887
4.054
3.428
2.971
2.350
2.141
2.076
2.035
2.013

rVc

38.00
36.52
35.12
33.82
32.63
31.54
30.54
29.61
28.75
27.93
27.15
23.74
20.86
18.50
16.57
15.02
13.76
11.81
10.29
8.98
7.83
6.81
5.93
5.17
4.54
3.598
2.982
2.595
2.357
2.099
2.025
2.006
2.001
2.000

It'probably would be more accurate to assume that
the exchange potential for a given state depends
primarily on the angular momentum of the state
considered, or in the case of the solid, on the pre-
dominant angular momentum in the decomposition of
f~' into spherical harmonics. "In obtaining the exchange
potential for a state of angular momentum L of a
valence electron, it is questionable whether it is desirable
to average the exchange potentials of the core electron
states of angular momentum I., since these have energy
values in general far below that of the state we are
considering. It seems more reasonable to construct an
exchange potential for a given L from an approximate
wave function for a valence electron state of that L.

Such a procedure was followed in this calculation.
An 5-state exchange potential was constructed from
the self-consistent field core wave functions and the
lowest orthogonalized plane wave for the state I'». This
potential was used for the states F», H», P» and E».
It is to be noted that the state X» will contain an
admixture of D functions. A P-state exchange potential
was similarly obtained from the lowest OPW for the
state H»~, and used in the calculations for F»5, H»5,

P4, X»', X3', and E4'. P4 will also have some D character.
A D-state exchange potential was obtained from a D
function calculated without exchange in a prior calcu-
lation of k4 terms in the E(k) relation. This potential
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detL(X~, HXh) —E(X~,Xh)]=0, (2)

was used for the D-like states I'25', I'~~, Bgs', B'12, P3,
E2, X3, and X4, and also for the F-like states F25, F2',
H2~, H2', Ps and lV2'. It was assumed in using the OPW
method that the core states could, with sufhcient
accuracy, be considered as eigenfunction in these
potentials 18

One unsatisfactory feature of this procedure is that
in the case of the S and P states the exchange potential
according to (1) will have in6nities where the approxi-
mate lt&' has zeros. These were removed in such a way
as to give a reasonably smooth exchange potential.
This smoothing is necessary in the OPW method but
not in the cellular method, since there the exchange
interaction can be treated as an inhomogeneous term
in the wave equation. The Coulomb potential and the
potential for S, P, and D states are tabulated in Table I.
Uncertainty as to the exact form of the exchange
interaction is significant near r= 2 for the S- and P-state
potentials.

III. CALCULATION OF THE ENERGY LEVELS

The OPW method leads to a secular equation of the
form

FIG. 1. Srillouin zone for the body-centered cubic lattice.

We assume that the core states p, are eigenfunctions
of the crystal Hamiltonian. ' In this case, the matrix
elements in (2) are

where II is the crystal Hamiltonian and X& is an
orthogonalized plane wave

and

(Xt,+Xh) =&'fish+ V(k h) Zj +jPie P&i (4)

(Xt,Xh)=Rh pjljgj Phj,

TABLE II. Fourier coeKcients of potential are given in rydbergs
as functions of the number m'=(ok/2~)~. Only even intergal
values of m' occur for the body-centered cubic structure.

0
2
4
6
8

10
12
14
16
18
20
22
24
26

va(m)

0.8677
0.2841
0.2314
0.1865
0.1489
0.1249
0.1143
0.1000
0.0879
0.0775
0.0686
0.0631
0.0585
0.0540

Vp(m)

0.8692
0.2900
0.2369
0.1913
0.1525
0.1266
0.1143
0.0996
0.0875
0.0772
0.0685
0.0632
0.0596
0.0552

VD(m)

0.8748
0.2843
0.2281
0.1824
0.1439
0.1192
0.1097
0.0973
0.0864
0.0769
0.0688
0.0636
0.0594
0.0562

Vc(m)

0.7924
0.2346
0.1965
0.1612
0.1298
0.1106
0.1035
0.0922
0.0821
0.0733
0.0657
0.0610
0.0572
0,0558

' The last statement is not strictly accurate. One should use a
procedure essentially similar to that of reference 12 to allow for
fact that the e6'ective exchange potential for the core states will
deviate from that of the valence electron. It was felt, however,
that 'the resultant gain in accuracy was not sufBcient to justify
the rather considerable labor involved.

'9 This calculation was made for a lattice parameter of 5.20 A,
or r~=&.8$ at;omjc unity.

Here p, is a core function for the core state j, r„ is a
lattice vector and p~, ——(1/Qsi) Jp,*(r)e'a'dr, with
00——the volume of the atomic cell."In practice we use
linear combinations of orthogonalized plane waves
which transform according to particular irreducible
representations in setting up Eq. (2).

where E; is the energy value of the core state j and
V(k) is a Fourier coefFicient of potential

The Fourier coefficients V(k) are given in Table II
as functions of te'= (ak/2s. )' for S, P, and D states
(a is the lattice parameter).

OPW expansions were constructed for 24 states
mentioned in Sec. II at the symmetry points F, H, P,
and E in the Brillouin zone. The Brillouin zone for
the body-centered cubic lattice is shown in Fig. 1.
Linear combinations of orthogonalized plane waves
were employed which transformed according to the
irreducible representations of interest (see appendix of
reference 17). Because high-speed electronic computing
equipment is not available at the University of Miami,
the computations did not in general involve higher
than fourth order determinants. Fifth-order determi-
nants were solved for two states: E1 and P4. Third- and
second-order determinants were used for the states in
the Ii band where only a qualitative indication of the
energy is required. Such highly excited states can
probably be reasonably well represented by small
numbers of plane waves. The lowest two eigenvalues
(in one case, three) of all the representations calculated
are given in Table III. The order of the levels at the
four symmetry points is shown in Fig. 2,
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TABLE III. Lowest energy states in potassium
(energies in rydbergs).

Repre-
sentation

r,
Hj.

Ng

~is
Hgs
P4

N4.

~25'

825'
H)2
P3
N2

N4

~25
r,.
+25
H2
Ps

Order of
determinant

No. of
waves

S-like states
135 —0.4304
62 +0.2651
40 +0.0544
22 —0.2239

P-like states
42 +0.6986
38 +0.0621
18 —0.1262
18 —0.1902
20 +0.1765
20 +0.3561

D-like states
48 +0.2200
54 +0.2640
56 +0.5372
54 —0.1322
36 +0.4856
24 +0.0552
28 +0.6939
24 +0.4363

F-like states
48 +0.2897
32 +1.7401
48 1.4246
56 +0.7046
36 +0.5967
24 +0.8945

Energies

+0.8346
+0.9760
+1.1445
+0.2682
+0.6274

1.3277
+0.9057
+0.9340
+0.5561

0.7813
1.0721

+1.4814
+0.9263
+1.2726
+1.1224
+1.3603
+0.8447
+1.2785

0.8300

+1.8382
4.1990
1.5285

+2.8097
+1.3760

2.0873

In order to study the convergence of the OPW
expansion, an eighth order secular determinant for
the state I'& was solved on the Whirlwind Computer
at the Massachusetts Institute of Technology through
the courtesy of Professor J. C. Slater and Mr. F. J.
Corbato. Convergence of the eigenvalue to the value
—0.447 found by the cellular method for this state for
the potential V, appeared to be slow. (The best value

of the energy of the lowest state is —0.453 rydberg
found from the Hartree-Pock equations directly
without the approximation of an exchange potential. )
Table IV shows the lowest eigenvalue in each order:
from first to eighth, and the lowest six eigenvalues in

eighth order. It is interesting to note that the major
change occurs between first and second order (where
there are 13 waves). There also seems to be a clustering
of eigenvalues in a region near 8=+1.25. A small

eigenvalue change in each order is necessary, but not
sufFicient to ensure convergence.

Using this example as a guide, we would expect that
those solutions of fourth-order determinants based on

forty or more waves should be convergent to about
0.04 rydberg. This estimate may be conservative, for
some of the higher states may be better represented

by a few orthogonalized plane waves than the lowest
state. In particular, the convergence of the D-band
states may be somewhat better. It is also reasonable
to expect that the difference between energy levels

TABLE IV. Lowest eigenvalues by order for F& (in rydbergs). The
lowest six eighth-order eigenvalues are also given.

Order
Lowest
Z(r1)

—0.2371—0.3834—0.3900—0.4049

Order
Lowest
B(r1)

—0.4125—0.4232—0.4246—0.4304

Lowest 6 eigenvalues in eighth order

—0.4304
+0.8346

1.1478

1.2621
1.3309
1.4525

"D.J. Howarth, Phys. Rev. 99, 469 {1955).
"D.J. Howarth, Proc. Roy. Soc. (London) A220, 513 (1953).
"W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).

found using approximately the same number of waves
is stable. For this reason, it is likely that the state
N~ will continue to lie below N~ .However, it is possible
that in higher order, P4 would be found to lie below
H», since H» appears nearly convergent in fourth
order with 54 waves while P4 is farther from convergence
in fifth order with 24 waves. (By a peculiarity of the
group theory, each order of the secular determinant for
P4 only includes a small number of additional waves. )
Many of the results of this work depend only on relative
positions of the levels and are probably reliable even
if the absolute value of the energies are somewhat
uncertain. Nevertheless, the convergence appears to be
much poorer than that of the augmented plane wave
method. "

A very important question in the calculation of
energy bands is the sensitivity of the electron energy
levels to changes in the potential. One would hope that
such features as the relative order of the levels at a sym-
metry point would be reasonably independent of details
of the potential. Unfortunately, the contrary result
seems to be indicated by some work of Howarth on cop-
per."Howarth found that the assumption that the po-
tential is constant in the region outside the inscribed
sphere in the atomic cell was sufhcient to invert the
triply degenerate and doubly degenerate D-band levels
at the center of the Brillouin zone in comparison to an
earlier calculation. "This modification of the potential
is used not only in the augmented plane-wave method
employed by Howarth" but also in the method of
Kohn and Rostoker. "The eGect of such a modi6cation
of the potential was examined in this case. Since the
core wave functions do not extend into the region in
which the potential is to be modified, it is necessary
only to consider the efIect of appropriate changes in the
Fourier coefficients of potential. To sufhcient accuracy,
we may assume that the original potential is just the
Coulomb potential 2/r of the positive ion. It is ad-
vantageous to choose the constant potential so that the
m'=0 coeKcient of the diQ'erence vanishes. Since the
Coulomb potential is reasonably Aat in this region, the
difference in the potentials is small, and the Fourier
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coeKcients of the difference in potential (which may be
computed analytically) are so small that the effects
on the energy levels are quite negligible. There may,
however, be good reason why this modification is not
so serious as in Howarth's case."

IV. DEPARTURES FROM THE EFFECTIVE
MASS APPROXIMATION

The effective mass near k=0 can be taken from the
work of Berman, Callaway, and Woods as 85.6% of
the free-electron mass. However, the proximity of D
band states at E, H, and P to the ground state I'~

(note that X&, and P4 contain D functions as well as
S and P, respectively) suggest that there may be
appreciable k' terms in the expansion of E(k) near
k =0. The coeKcient of )'p' can be calculated according to
the procedure of Silverman" within the framework of
the cellular method.

According to Silverman, if we write

+ l. l

+ 07

EOI' +ed-'l
IS
A
IL

lal
R
Qg +pl

"is

ps pl2
rp

Hi

His

Hps&

Pg
N2'

Np

Ni .

Ni&

Ny&

then
E(k) =Ep+Esk'+E4k', (6)

Ni~ —Ni

2 4 E,' (rf,') -'
E4——r'Es ——-r s~

5 15 y 4fsj

'yEs rc)gp)
+

Np(r, ) E r)EJ r„zp

p7 s

r, rsp (r,) P„'dr
~0

P„'(r,)

where r, is the radius of the atomic sphere, and

y =r,'Np'(r, )/3;

up is the cellular method wave function for k=0, fs is a
solution of the wave equation for a D state of energy
Eo, and P„ is the P function involved in the usual
calculation of the effective mass. This expression was
evaluated using the results for No, Eo, E2, and P„of the
previous calculation of Herman, Callaway, and Woods'
plus a D function calculated using the potential V~
given in Table I for energy Eo. The quantity
(BNp/BE)r, zp was evaluated by expressing Np for r) 4
as a sum of regular and irregular Coulomb functions
with coefficients that are known functions of energy
according to the procedure of Ham'4 and then differ-
entiating the expansion. The value of E4 obtained was
1.64 in atomic units. Such a term would give a contri-
bution to the cohesive energy in the cellular method
of 5.81 E4/(r, )' or 5.4 kcal/mole (a repulsion), which,
however, is probably canceled by the additional

s' R. A. Silverman, Phys. Rev. 85, 227 (1952).
~ F. S. Ham, Once of Naval Research Technical Report No.

204, Cruft Laboratory, Harvard University, 1954 (unpublished).

Fzo. 2. Order of the energy levels at the four symmetry points
F, H, P, and 37. All levels with 8&1 ry are shown.

attractions resulting from polarization and relativistic
effects.

This relatively large value of E4 indicates that there
will be marked deviations of the energy surfaces from
the free-electron approximation. As pointed out by
Cohen, " a large E4 also suggests that there may be
important deviations of the energy surfaces from
spherical symmetry, since if expanded in powers of k,
the lowest such terms will be proportional to the fourth
power of the wave vector.

V. STRUCTURE OF THE LOWEST BAND

In order to determine the form of the lowest E(k)
surface, it is necessary to determine the energies of a
large number of the states between the end points I'~,
and H» of the band. This is very dificult because a
very large number of terms in the OPW secular determi-
nant would be required in order to include a reasonable
number of waves, even along symmetry axes like (100).
Accordingly, we have recourse to an interpolation
scheme. It seems natural to expand E(k) in a Fourier
series, including only those terms which have the proper
symmetry. An expansion in powers of k, i.e., Kubic
Harmonics, about k=o does not seem desirable because

ss M. H. Cohen (private communication).
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«}
CO
C9
K
ILj
R
Q «e2

0
C9

LLj
X:
lil

P
P

FxG. 3. Lowest
energy band along
100 axis in the Bril-
louin zone as given
by Eq. (8) (solid
line), and as given
by a free-electron
approximation for
m/m*= 1.168 (bro-
ken line).

20 40 so IOO I 20 i@0 I60 ISO

C IN DEGREES

TAnLE V. Parameters in Eq (8). .

Ep ———0.2410
A = -0.1937
P = —0.0277

y =+0.0106
8=+0.0112

"J.C. Sister and G. F. Koster, Phys. Rev. 94, 1948 (1954).

it will be difhcult to obtain the proper behavior of
E(k) at symmetry points. The Fourier series approach
meets this requirement. If we consider the lowest
plane waves that are periodic in the reciprocal lattice,
we have

E(k) =Ep+u cosg cos'g cosf+P(c os2$+c o2sr+icos2$)
+7(cos2$ cos2g+cos2$ cos2f+cos2ri cos2f)
+b(cos3$ cosri cosl +cos3ri cos( cosl

+cos3$ cosr) cos)), (8)

where $=k,u, etc. Such an expansion will have the
proper zero gradient at symmetry points. This is just
the form of expression for a single S band that is
obtained from the tight binding interpolation scheme
of Slater and Koster. 26

An attempt was made to 6t the lowest band with an
expression of this form. A Ave-parameter scheme was
chosen using Ep, n, P, y and 8 as in (8). The constants
were determined from the energy of the I'~ state
fE(l'r) = —0.4525j, the effective mass near k =0
taken from the ca1culation of Berman, Callaway, and
Woods (Ep ——m/m*=1. 168),s and the lowest energies
of the states Hi, I'4, and E~. The constants are given in
Table V. The energy bands determined by Eq. (8)
are shown in Figs. 3 and 4, for the 100 and 110 axes,
where they are compared with the parabolic bands

for "free electrons" with an eGective-mass ratio
m/m*= 1.168.

The bands shown in Figs. 3 and 4 deviate in important
respects from the free-electron approximation. It is
likely that these deviations are too large, since if E4 is
calculated from (8), it turns out to be considerably
larger, though of the same sign, than that found from
the cellular method. It is not easy to fit a spherical
free-electron band accurately in this way. However,
the qualitative features may be correct. The bands
6rst rise somewhat faster than the free-electron approxi-
mation indicates and then level off so as to have zero
slope coming into H and E.

It was believed that the accuracy of Eq. (8) with
the five parameters given was not sufFicient to justify
a detailed and accurate calculation of the density of
states. The numerical calculation of a density of states
from (8) would have to be done very carefully since
we are looking for deviation from the LE—E(I'r))'
behavior of a free-electron band. In order to get some
insight into the qualitative features of the density-of-
states curve, it is probably sufficiently accurate to use
the method of Houston" in which the density-of-states
curve is computed along certain symmetry lines in the
Brillouin zone, and the over-all density of states is
found by interpolation. Houston's method is known
to give use to spurious singularities resulting from
exaggerated contributions from symmetry points such
as E, H, and I' where the energy surfaces have zero
gradient. But the occupied portion of the band, with
which we are primarily concerned, does not extend
up to X, which is the critical point closest to the origin.
Consequently, Houston's method will give no spurious

s' W. V. Houston, Revs. Modern Phys. 20, 161 (1948).



ELECTRON I C ENERGY BANDS IN POTASSIUM 1225

.20

FxG. 4. Lowest
energy band along
110 axis in the Bril-
louin zone as given
by Eq. ,'(8) (solid
line), and as given
by a free-electron
ap roximation for
rs sr*= 1.168 (bro-
ken line).
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singularities in the occupied portion of the density
of state curve.

A qualitative density of states curve is shown in
Fig. 5 where it is compared with that for a parabolic
band. For energies only slightly above the bottom of the
band, the density of states curve must coincide with
that for a free-electron band, since one of the conditions
on Eq. (8) was that it yield the correct effective mass.
As the energy increases, the physical curve rises more
slowly than the free electron curve due to the effect
of the positive k4 terms. But as the energy rises still
further, the band Qattens, and the density-of-states
curve crosses the free-electron curve. This crossover
has probably occurred before the Fermi surface is
reached, so that the density of states on the Fermi
surface should be higher than for a free-electron gas.
One would also expect deviations from spherical
symmetry.

Beyond the Fermi level, the density of states should
rise rapidly to a peak at an energy in the neighborhood
of the E& level. The density of states will then fall.
At an energy 0.46 ev above the E& level, the second
Brillouin zone begins with the P-like level Ei. The
proximity of Nj to E& will cause the lowest band to
curve sharply coming into Ei. This curvature is not
reproduced by Eq. (8). 1Vt is still 4 ev below the top
of the 6rst zone at II», so that there is considerable
overlapping of the bands. The total band width from
I'& to H» is 4.36 ev, approximately two volts less than
would be expected on the basis of the effective mass
approximation alone. The occupied portion of the band
has a width of about 3.1 volts using E(J't), Es, and E4.
Equation (8) would not give a signiftcantly different
result.

The structure of the x-ray E-absorption edge in

potassium has been examined by Platt."Deviations
from free-electron absorption in the direction of less
absorption are noticed in a region beginning a little
more than 1 ev above the Fermi level. One wouM
expect D states to be important in this region, and these
might serve to reduce the transition probability to the
1s core level.

It is interesting to compare the energy bands of
potassium with those of the other alkali metals. Since
reliable band calculations have not yet been performed
for rubidium and cesium, the principal comparison
will be with sodium. The band structure of sodium has
been studied by many workers, the most recent calcu-
lation being those of Ham" and Howarth and Jones."
Both calculations utilize the cellular method, but
Ham's work is based on the Quantum Defect Method
and does not utilize an explicit potential.

According to Howarth and Jones, the lowest level
at the zone corner H is H~s, which is a P-like state.
Next comes H» and then Ht. (This ordering was also
found by Ham. ) H» appears to be the lowest state at
this point in potassium. At P, the lowest state in
sodium is Pj, which is S-like. It lies 1.76 ev below P4
which mixes P and D states. In potassium, this order
is reversed. At E the lowest level according to Howarth
and Jones is Et, but Ham has found Er, which contains
P functions to lie lower than Ei. X» appears to be
lower in potassium.

It is likely that the principal differences in band
forms between sodium and potassium can be explained
in terms of increased importance D bands in the latter
element. In potassium, the lowest states which contain

's J.B.Platt, Phys. Rev. 69, 37'I (1946).
s'D. J. Howarth and H. Jones, Proc. Phys. Soc. (London)

465, 355 (1952).
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extensive calculation would be desirable in order to
.make a more detailed comparison.

There is a simple device which seems to reproduce
the calculated level order within a given band very well
in this case. Let fr,' represent the wave function for the
ith irreducible representation of the wave vector k.
fq' is expanded in orthogonalized plane waves

A'= Zh P'~. hM~yh, (9)

where Xg+h is given by (3). The vector h runs over all
reciprocal lattice vectors. The levels at symmetry points
may be ordered accordingly to the quantity (k+h')'
where (k+4') characterizes the OPW of lowest energy
belonging to ft,'. Since this is an ordering according to
kinetic energy, there is a vague resemblance to the
principle of maximum smoothness. "

This prescription says in essence, that the order of
levels at symmetry points in a given band is what
would be expected for free-electron bands. It is not
surprising that it gives the correct results for potassium.
It is more interesting that it seems to work reasonably
well in iron. Even in potassium, however, one must not
suppose that the numerical energy values of the levels
will be in good agreement with a free-electron model.
Inspection of Fig. 2 will reveal that some levels will

connect by bands which must depart severely from
the free electron form.

The successful comparison of these results with other
calculations for the various bands suggests that at
least the relative order of levels within a given band
is not very sensitive to details of the potential. It is

possible, then, that the general forms of individual

S, P, and D bands are now well understood for the
body-centered cubic lattice. It is important to note,
however, that the situation in regard to overlap of
these bands is much less clear because the overlap is
much more sensitive to the potential. "It is interesting
to note that there is apparently a very considerable
degree of overlap in potassium.

Since there is evidence that the general form of a
band is reasonably independent of potential, it is
interesting to consider the form of the F band. It is a
little dificult precisely to de6ne the I' band since some
representations (I'rs, Hrs, I'4, ill'r, Es, and X4.) also
contain P functions. At k=0, the states I'25, I'2, and
I'~5 contain F functions. At P we have P4, Ps, and P~,
and at E we have E2, X~, E4, E3. The lowest pre-
dominantly E-like state is F25, and the top of the band
also appears to occur at I" with F2. This order is
reversed at H: H2 lies below H25. We And F~s inter-
mediate between F~s and F2 and H~s intermediate
between H2 and H25. At P, the order is apparently P5,
P4, and Pi.
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Absorption Spectra, Zeeman EÃects, and Magnetic Properties of Neodymium Salts*f
G. H. DzzKz AND L. HEROUX
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The absorption spectra of nine neodymium salts were obtained in single crystals at liquid helium tempera-
ture and high dispersion. The Zeeman effect of the lines was observed in a Geld of about 37 000 gauss with
different orientations of the crystals, so that the magnetic splitting of the ground and excited states could
be measured. This provides valuable clues for the interpretation of the spectra and quantitative data for
the dirivation of the crystal Geld. The results are related to those obtained in paramagnetic resonance
measurements.

magnetic 6eld. It is also known since the work of
Bethe' and Kramers' that the crystal held splits the

1. INTRODUCTION
' T is well known that the salts of the rare earths may

- give sharp absorption lines particularly at low

temperatures and that often these lines are split in a show resolved patterns. This supplementary material has also
been deposited as Document No. 4886 with the ADI Auxiliary
Publications Project, Photoduplication Service, Library of Con-
gress, Washington 25, D. C. A copy may be secured by citing the
Document number and by remitting $13.75 for photoprints or
$4.50 for 35-mm microfilm. Advance payment is required. Make
checks or money orders payable to Chief, Photoduplication
Service, Library of Congress.' H. Bethe, Ann. Physik 3, 133 (1929);Z. Physik 60, 218 (1930).' H. A. Kramers, Proc. Acad. Sci. Amsterdam 32, 1176 (1929);
33, 960 (1930).

~ Work carried out with the support of the U. S. Atomic Energy
Commission.

f In order to conserve journal space, this paper has been con-
siderably condensed. More details can be found in a technical
report t U. S. Atomic Energy Commission Report NYO 397'7-'
(unpubhhshed) j of which a limited number of copies are available
to interested persons. This report contains in particular the
complete wavelength measurements of the field-free absorption
spectra of most of the salts and the Zeeman sects of all lines which


