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Application of the Orthogonalized Plane-Wave Method to Silicon Crystal*
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Approximate solutions for h=O of the Hartree-Fock-Slater equations for a perfect silicon crystal have
been obtained by the orthogonalized plane-wave method. Estimates of the energy eigenvalues of the valence
and conduction states for k=0 are given. A simple method for obtaining a first approximation to the crystal
potential and its Fourier coeKcients was used. Approximate analytic wave functions and corresponding
energy eigenvalues for the 1s, 2s, and 2p states in the isolated silicon atom were determined by a variational
technique.

I. INTRODUCTION the HFS equations are better than or as good as the
Hartree-Fock (HF) equations for all kinds of atomic
and crystal calculations, but they are convenient to
use in the present study. '

(2) We have based our determination of a crystal
potential for silicon on simpler atomic wave functions
than the Hartree or Hartree-Fock wave functions used
by Herman.

In Sec. VI of this paper, we discuss the results of our
calculations, which are given in Sec. V, and compare
them with the corresponding results obtained by
Herman. We also point out several of the inadequacies
of our work and mention problems connected with it in
the hope of encouraging others to improve and extend
it.

In Sec. II we give the specifications of a perfect
silicon crystal, to which our calculations relate; intro-
duce the HFS equations, which will be assumed to
provide a satisfactory description of the electronic
states in such a crystal; and refer to the OPW method'
for solving them. Section III is a description of the
determination of the electronic wave functions and
associated energy parameters for the isolated silicon
atom which are required in the analysis of the silicon
crystal problem. The wave functions given in Sec. III
are used to provide the Fourier coefFicients of crystal
potential energy and the orthogonality coe%cients
which enter into the solution of the electronic energy
eigenvalue problem for the crystal; numerical values
of these coefFicients are listed in Sec. IV.

' 'N this paper' we describe some of the results and
~ ~ problems which have come from an attempt to
solve the one-electron Hartree-Fock-Slater (abbreviated
HFS in the following) equations' for a perfect silicon
crystal by Herring's orthogonalized plane-wave (OPW)
method. ' We have been aided greatly in this inves-
tigation by the work of Herman' ' and of Herman and
Callaway7 on the energy band structures of diamond
and germanium. In his most recent work on germanium,
Herman has carried out an ambitious program for the
determination of the energy eigenvalues associated with
thirteen nonequivalent reduced wave vectors. Our
interest is primarily in the methods used for these cal-
culations, and not so much in their results; accordingly,
we discuss here the determination of energy eigenvalues
and wave functions only for k=0.

Our work on silicon divers from that of Herman on
diamond and germanium mainly in two ways:

(1) We have tried to make the whole analysis one
degree more rigorous by including the effects of exchange
on the core states in the crystal in a way consistent
with the way in which we have included these eGects
on the valence and conduction states. This point is
important, because in using the variation procedure to
obtain the higher states in a crystal potential by means
of a trial function orthogonalized to all of the lower
states, as proposed by Herring, ' it is essential that the
functions to which the trial function is orthogonalized
should be eigenfunctions of exactly the same Hamil-
tonian operator used to determine the higher states. '
The HFS equations were used to determine both the
atomic states and the crystal states in order to facilitate
this more consistent treatment. We do not believe that

II. HFS EQUATIONS AND THE OPW METHOD FOR
SOLVING THEM

According to current ideas, a real, single, diamond-
type crystal of a chemical element of atomic number Z
consists at standard temperature and pressure of
roughly 10" nuclei of that element per cm3, most of
them oscillating about the points of a space lattice of
the type associated with diamond, embedded in a cloud
of electrons, Z electrons for each nucleus. There are
always impurity atoms present in this system, and
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e C. Herring, Phys. Rev. 57, 1169 (1940).' F. Herman, Phys. Rev. 88, 1210 (1952).' F. Herman, Phys. Rev. 93, 1214 (1954).' F. Herman, Physica 20, 801 (1954).' F. Herman and J. Callaway, Phys. Rev. 89, 518 (1953).' J. Callaway, Phys. Rev. 97, 933 (1955).

' For critical comments on Slater's free-electron modification
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imperfections in the array of nuclei, such as vacant
lattice sites, interstitial atoms and dislocations. We do
not indeavor here to determine the quantum states of
such a complicated system. Instead, we abstract from
this system the regularity in the disposition of the
nuclei and ask for the wave function of all the electrons
in the potential Geld arising from a perfect, rigid array
of M nuclei of the element (where M 10") on the
points of the space lattice which we know from experi-
ment to be appropriate for that element. Next we
approximate the many-electron wave function by an
antisymmetric combination of products of one-electron
wave functions, and for the one-electron wave function
of the ith electron we tak.e a solution P, (r) of the
approximate Schrodinger equation

with

( 0 *(")4,(")
V(r) = —2Z P +2 Q dr'

/r —R„[ ~ ~„/r —r'f

—6L(3/g~)E 0 *(r)lt (r)3', (2 2)

where the integration is over the volume of the crystal,
R„ is the position vector of. the nucleus at the ith
lattice point, v runs over all lattice points in the crystal,
and j runs over all of the electrons, including the ith
electron. Whenever it is convenient, we shall go to the
limit in which our crystal is extended over all space.
Atomic units are used throughout this work: distances
are measured in units of the Grst Bohr radius Qp

(+o=5.2917X10 ' cm) and energies in terms of
Rydbergs (one Rydberg= 13.6050 electron volts).
Equations (2.1) and (2.2) are obtained from Slater's'
Eq. (14) for a crystal containing an equal number of
electrons of each spin by neglecting any dependence
of the one-electron wave functions on the electron spin
coordinate. The last term in Eq. (2.2) is called the
exchange term in the electron's potential energy; it is
an approximation to the exchange potential energy
which appears in the HI" equations.

The fact that the equations for the MZ functions

f;(r) are coupled by the exchange term and the elec-
tronic Coulomb term

2 P Lit;*(r')1t;(r')/
I
r—r'

I
]dr'

in V(r) complicates the problem of solving them. We
obtain approximate solutions for them by the self-

consistent Geld method of Hartree. " This study is
devoted entirely to the first stage in this self-consistent
field approach: guessing solutions f,&'&(r), using them
to compute V(r), and obtaining approximate solutions,
including the eigenvalues Z;, of Eq. (2.1) by the OPW
method. For our guess as to the solutions f,&'& (r) which

io D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1927).

—683/g~) 2 ~~*(r)v»(r) 3', (2 3)

where now io, (r) means that one of the q „i„(r) func-
tions which refers to the jth electron, or j can be
thought of as an abbreviation for the three quantum
numbers e, l, m, and summations over j are over those
values of e, l, m which we use in specifying the state of
the atom.

We obtain the crystal potential energy function
V"' (r) by superposing the atomic potentials V,&, ;,"&(r):

U &'& (r) =Q, U,t, ;."&(r —R„). (2 4)

(Here and everywhere in this study, the potential
function is the potential energy function of an electron;
its sign is the negative of that of the potential usually
used in electrostatics. ) The assumption on which Eq.
(2.4) is based, that the crystal potential can be written
as the superposition of atomic potentials, is rigorously
correct with respect to the first two terms of V(r), as
given in Eq. (2.2), but the superposition principle
would hold for the exchange term only if the atomic
charge distributions did not overlap in the crystal.

"J.C. Sister, Phys. Rev. 36, 57 (1930)."J.C. Sister, Phys. Rev. 42, 33 (1932).

we shall use to obtain an initial estimate Vl'&(r) of the
potential field V(r) for a diamond-type structure, we
follow Herman' in using the chemical idea that a
crystal of diamond or of one of the similar elements
silicon and germanium which form diamond-type
crystals can be formed by bringing the atoms in their
valence or combining state into proper positions on the
points of the appropriate space lattice, and that the
electron distributions about the atoms in these states
will be little changed by this process of crystal forma-
tion. The valence state of carbon is (1s)'(2s)(2p)', 'S;
by chemical analogy, the valence state of silicon should

( )'( )'( p)'(3 )( p)' '
Let y„i (r) be the wave function in the isolated

atom for the electron of total quantum number n,
azimuthal quantum number l, and magnetic quantum
number m. Then, q„~~(r)=Fi (H, y)P„i(r)/r, where

Yi (e,q) is a surface spherical harmonic normalized so
that fs' fo Vi Vi a cosededy=1, and P i(r) is the
radial wave function multiplied by r and normalized
so that fs"LP„t(r)]'dr=1. We determine the radial
wave functions P„i(r) which go into our initial estimate
of V(r) by very simple methods proposed by Slater. ""
The radial wave functions for silicon atom are given
explicitly in Sec. III. When one uses the wave functions

qr„i (r), the potential energy function for each of the
electrons in the isolated atom can be written
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%e know that the charge distributions of the valence
electrons certainly do overlap, but the error arising
from this source, which is given by

Applying Herring's work with neglect of any overlap
between atomic core wave functions, we Gnd that the
energy eigenvalues for the valence and excited states
in our crystal are approximated by the roots of

detL(xx, HXx )—E(Xx,Xx )$=0, (2.9)

should be small compared to the exchange term in the
final crystal potential at every point in the crystal,
and over the major part of the crystal's volume, it
should be much smaller. Since the exchange term itself
is much smaller than the other terms in the crystal
potential for almost all points in the crystal, we feel
that this superposing of exchange potentials is not
likely to introduce a major error.

The remainder of this paper is devoted to determining

energy eigenvalues and wave functions which are
approximate solutions of

with
H4, (r) =EH *(r),

H= —V+V&'&(r),

(2.5)

(2.6)

where y t, a(r) is the isolated atom wave function for
the electron of total quantum number e, azimuthal

quantum number l, and magnetic quantum number
nz=0 when the axis of magnetic quantization is taken
in the direction of k. The energy eigenvalue E t, s

which is associated with f„t,&(r) by Eq. (2.5) is given

to a good approximation by E„&, the energy eigenvalue

associated with y„& in the isolated atom by the equa-

tion for an electron in the isolated atom

t
—&7'+V. ~ .(r)]9 (r) =E. to t (r) (2 8)

'e A. H. Wilson, The Theory of Metals (Cambridge University
Press, Cambridge, England, 1953), second edition, pp. 38-41.

where V"'(r) is given by Eqs. (2.4) and (2.3) with &o;&'&

replacing q; for a crystal consisting of N identical unit
cells, each of volume Qo. (We let 1V become infinite when

convenient. ) Since V&" (r) is periodic in space, the
quantum numbers characterizing a solution E, lf(r)
of Eq. (2.5) and symbolized by the. subscript i include

the three components of the wave vector k.
If we imagine the crystal to be formed by bringing

together all of its constituent atoms simultaneously, as
suggested above, then it can be shown by means of the
tight-binding approximation" that the electrons oc-

cupying closed shells below the valence electrons (the
1s, 2s, and 2p electrons in silicon) will be very little
affected by the crystal formation process, and the
quantum states in the crystal of these electrons, which

we call the core electrons, can all be well represented by

P„t., a(r) =E & P„exp(ik R„)qr„t., s(r—R„), (2.7)

where K=k+g, K'=k+g', and g, g' are reciprocal
lattice vectors, Expressions for the orthogonalized plane
waves Xx and the matrix elements (Xx,Hxx. ) and
(Xx,xx) are given in Herring's paper. ' The matrix
elements depend on orthogonality coefficients A„t(K)
and Fourier coeKcients of the crystal potential energy,
v(K) (written ULK] in reference 3); numerical values
of these coefFicients are obtained in Sec. IV. Succes-
sively better approximations E&; are obtained from
Eq. (2.9) by increasing the volume about the origin in
reciprocal space over which g and g' range. By classi-
fying the orthogonalized plane waves and taking sym-
metric linear combinations of them in accordance with
the principles of the representation theory of space
groups, '4 it is possible to transform the secular deter-
minant of Eq. (2.9) for trial functions with special
reduced wave vectors, such as k=0, into a factored
form. Each factor in the determinant is associated with
a trial crystal wave function of a particular symmetry
type. The roots of Eq. (2.9) can be found by equating
each of the factors to zero and solving for E. By means
of this symmetry factorization, the order of the deter-
minantal equations which must be solved is greatly
reduced, and consequently, the computational eHort

required to find the solutions E&, , is decreased suf-

ficiently to make their determination with an automatic
computing machine practical.

III. ELECTRONIC STATES DT THE SILICON ATOM

From Eq. (2.8) we obtain for P„t(r), the radial part
of &t „t„(r),

d'P„(r)/dr'+ fE„t V, , ;,—&'& (r)
—l( +t1) r/')P t(r)=0, (3.1)

where V,t, ;,&s&(r) is the same as V,t;,&si(r) [Eq. (2.3)7
in the cases of interest to us, for which V,t;.&'&(r) is a
spherically symmetric function of r. The studies of
Slater' and Pratt". .. have established the fact that the
solutions P„t(r) of Eq. (3.1) provide reasonably
accurate radial one-electron atomic wave functions.
Using Slater's empirical rules"" we constructed the
following approximate radial one-electron atomic wave
functions P„i"&(r) on which all of the calculations for

'4 For details of this theory and its application to factoring the
secular determinant of Eq. (2.9) see T. O. Woodruff, Ph.D.
thesis, California Institute of Technology, 1955 (unpublished),
and references given there."G. W. Pratt, Jr., Phys. Rev. 88, 1217 (1952).
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the silicon crystal are based:

P„&s&=101.41702r exp( —13.70000r), (3.2)

Pre&" =65.474552r'exp( —4.925000r)
—33.578420r exp( —13.70000r), (3.3)

(3.4)Ps &o) =62.156271»'exp( —4.925000r),

Ps, &"=1.3304028r' exp( —1.383333r)
—10.769874r'exp( —4.925000r)

+5.1026382r exp( —13.70000r), (3.5)

Ps„&"=1328.8878trsexp( —1 383.333r)
—9.7757812r' exp( —4.925000r). (3.6)

To the extent that they are accurate, they should
resemble solutions of Eq. (3.1).

We could now use for the zero-order approximation
to g„~, E„~(", the quantum-mechanical expectation
value of H,~. , for the state y„~ "):

rough way to carbon and repeated the calculations of
E;(000) for diamond, using E„i&'& and values of A„i(E)
computed from y„i "'(r), we obtained agreement with
Herman's values of E,(000) to within the accuracy of
our calculation at each of the stages of the approxima-
tion which we attempted.

We made use of analytical rather than numerical
methods for obtaining y„& &"(r) and E„i"i because
when that work was performed, we did not have access
to automatic computing machinery, Using linear trial
functions for P„i(r) of a form suggested by the work of
Iowdin" and well-known quantum-mechanical varia-
tional procedures, we were able to determine the eigen-
values E„~&" given in Table I and the following nor-
malized analytical forms for P„i&i'(r), without numer-
ical integration:

Pi, &'&(r) =Pi, &s'(r) = 101.41702r exp( —13.70000r).
(3.7)

with

E„'&o)— p„'-&o)*( )~,. p &o)( )d
J

Ps &"=41.2929r' exp( —4.20r)
+12.9072r' exp( —7.96r)

—28.4408r exp( —13.70r). (3.8)

~atomic= '+Vatomie (r) ~

Also we could compute the required functions A„i(E)
from the functions q„i &"(r) and then proceed to the
solution of the secular equations of Sec. II for E,(k)
=—E~, , in the valence and conduction states. In a
previous eGort to reproduce Herman's results for the
diamond crystal, 4 we did carry through just this
program however, our results for E;(000) did not
converge as well as Herman's, and there was a serious
disagreement between our results so calculated, and
thoseof Herman, in that we found Ers (000)&Er»(000),
as far as we carried the calculation. We observed that
our results for diamond were very sensitive to the
values of I-A„i(E)j' which we used, and A„&(E) in
turn was very sensitive to the behavior of P„i(r), the
radial part of the wave function q„i (r) in its tail
region (the region r) rs, where rs is the largest number
such that dP i(r)/dr=0) Hence, we concluded,

q„i "&(r) and E„i&s& are not sufficiently good solutions
of the eigenfunction-eigenvalue problem of Eq. (2.8).
We then developed and used a method for obtaining
eigenfunctions qr i &'&(r) and eigenvalues E„i&" which
are better approximations to the solutions of (2.8) with

V,t,-;,&'&(r) still given by the substitution of yaim&s&(r)

in Eq. (2.3). When we had applied this method in a

TAnLE L Approximate energy eigenvalues (in Rydbergs) of the
Hartree-Fock-Sister (HFS) equations for the core electrons in
the isolated silicon atom.

Ps p&'i =rs[32.3954 exp( —4.20r)
+55.6008 exp( —7.96r)). (3.9)

It should be observed that with these methods it was
necessary in order to obtain (3.8)—(3.9) to carry out
lengthy, though straightforward, algebraic manipu-
lations and several hundred hours of computation with
a desk-type multiplying, dividing, and adding machine.
Also, better solutions of Eq. (3.1) than (3.7)—(3.9) could
be obtained in numerical form by direct numerical
integration. Note that in the computation of the
crystal potential V(r) (Sec IV), .we used the same
estimate of V,t, ;,(r) as we used in determining the
atomic core functions q„i &'&(r) upon which the com-
putation of the orthogonality coefficients A„&(E) was
based.

IV. ORTHOGONALITY COEFFICIENTS AND FOURIER
COEFFICIENTS OF CRYSTAL POTENTIAL ENERGY

A. Orthogonality CoeKcients for the Core States

The orthogonality coefficient A„i(E) is given by

A &(E)=Os—
&

t'
exp(iK. r) q„i,.x*(r)dr. (4.1)

In carrying out the integration we choose the s' axis
in the direction of K; then, by the definition of p„i.x(r),

Ao&(K) =Os
&~ exp(iE'r cos0) poia*(r)dr, (4.2)

1$
2$
2p

—134.597—11.1237—8.17697

where

&- o(')= 'P- (")~o(', ~). (4.3)
"P.O. I odin, Phys. Rev. 90, 120 (1953).



ORTHOGONAL I ZE 8 PLANE —WA VE M ETHOD

TABLE IL Orthogonality coefficients A 7(E). with

0
3
4
8

11
12
16
19

A Is(27rh/a)

0.0170094
0.0168074
0.0167409
0.0164787
0.0162861
0.0162226
0.0159724
0.0157886

A 20(27rh/fI)

0.171077
0.138815
0.129765
0.100072g
0.0831092
0.0782396
0.0618685
0.0522041

-iA 2j (27rh/a)

0.0000000
0.0704738
0.0769323
0.0879129
0.0888203
0.0884426
0.08509]0
0.0815371 Then

=ps 7&&"(g)'""'""exp( —ig. r). (4.11)

0(0& (g) sic& (g) Coulomb+7&(0&(g)exchange (4 12)

P'(0& Coulomb(r) —P P' . (0& Coulomb(& R )

=Zs e"&(g)'""-'em( —7g r) (4 1o)

lri0& exchense(r) p lr . i0&exchange (r R )

A„l(E)=
~0 ~0 v &'& (g) c-"m'= —(4a'/7rQeg') cos(Les(hi+he+he)]

E (4 3) d E (19 9) f S }'fp7 '
(4 2) we The Fourier coeKcients 7&&'& (g) '"" are related to the

Fourier coefficients of the charge distribution, p(r), andobtain
are easily computed by means of this relation. ' Thus,

4 (2i+1) ' 7" . for gWO,i ' rP„&(r)j 7(Er)dr. (4.4)

Substituting the functions P„i&i&(r) from (3.7)—(3.9),
together with the appropriate 70, /, values and Q0='a'/4,
where a=5.431)&10 ' cm is the lattice constant of
silicon, " we obtain the values of A„l(E) given in
Table II.

B. Fourier CoefBcients of the Potential
Energy Function

The only quantities entering into the secular equa-
tions of Sec. II which remain to be computed are
the Fourier coeKcients of the potential energy of an
electron, 7&(g).

Our crystal potential energy function is given by Eq.
(2.4), with

2Z (2& 7'"

V. . ;.&'&(r) = — +I —
I

4 "p( ')d '

r & r)&0

Sin(27rhr/a)
X Z — 47rr'p(r) dr, (4.13)

0 27rhr/u

where h= (a/27r)g. For the coe%cients 7&&0&(g)'x'"e s' it
follows from Eqs. (4.11) and (4.8) that

7& "&(g)exc"en«= —
I I exp(ig r)
(
LXQ0) ~„

3p(I r—R„I)-1
XP dr

(24a)
I

cosCx'7r(hi+he+ha)]
(Q,h)

t
" -3p(r)-1 (27rhr)

X — r sinI Id». (4.14)
~0 87r (g )

t'" 47rr"p(r') 3p(r)
+2 dr' —6

f' 8x .
where

p(r) = (47rr') —'{2IPl, (r)1'+2LP0, (r)j'+6LPs~(r) j'
+LP .(r)j'+3LP.(r)7). (4.6)

TABLE III. Absolute values (in Rydbergs) of Fourier coefficients
of the potential energy of an electron in the silicon crystal.It is convenient to write

) For hWO, then, 7&"&(g) is given by Eqs. (4.12), (4.13),
(4.6), and (4.14).

The values of I7&ie&(g)
I

for the silicon crystal given
in Table III were computed from these equations. The

2Z p2)
y . (0& co io b= +I I

47rr"p(r'')dr'
r r ~0

47rr "p(r')-
+2 dr', (4.7)

(0& exchange —
6I 3p(&)/87r Ji (4.8)

P'i0&(r) P'l0& Coulomb(r)+lr(0& exchenge(r) (4 9)

"L. I. Scbiff, Qlsasstlm Meeha7sies (McGraw-Hill Book Corn-
pany, Inc. , New York, New York, 1949).

'e E. M. Conwell, Proc. Inst. Radio Engrs. 40, 1327 (1952).

i,i,i
2,2,0
3,1,1
4,0,0
3,3', 1
4,2,2
4,4,0
3 3 3
5,1,1
5,3,1
6,2,0
5,3,3
4,4,4
7,1,1
8,0,0

I
e(0) (g) I

=
I v«)(2n-h/a)

I

0.50758
0.37197
0.21261
0.23367
0.14706
0.17707
0.14412
0.11524
0.11524
0.095326
0.12171
0.081308
0.10526
0.070819
0.082694
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In computing v( &(000), we again follow Herman' in

using
(16v')

V(o& (PPP) Coulomb —
[ [ r p (y)dr (4 16)
&3Q, j~,

with Q, =Qp/s, where s is the number of atoms in the
unit cell of volume Qp, to obtain the Coulomb contribu-
tion. The derivation of this relation is given by
Bethe and Sommerfeld. "From it, we obtain for silicon

v(p) (ppp) coulomb — 1 p0353 ry (4.17)

For the exchange contribution to v"'(000) we use

Eq. (4.14), which for the limiting case h=p becomes

~8v-p ~" r's(r)-
) (OPP)'"'"'"*'=—

[

—
[

— dr, (4.18)
EQpj ~p r

where s(r)/r= —6[3p(r)/8v]1. However, in deriving

(4.14) we assumed that the exchange contribution to
the crystal potential could be written as the super-
position of the atomic exchange potentials [Eq. (4.11)].
While this approximation is useful in computing the
higher Fourier coeScients of the exchange potential
which are sensitive mainly to the behavior of the
function s(r) near r=p, it breaks down completely for

v(000), where the integral is very sensitive to the
behavior of s(r) for larger r values. Although the first

part of Eq. (4.11) is not true, Parmenter has shown in

Appendix A of his paper" that functions V' can be
found such that

Vexchange(r) —P Vr (r R ) (4.19)

We expect these functions V'(r) to resemble

V . exchange(r)

for values of r less than half the smallest spacing of
lattice points in the crystal, but for larger values of r
We ezpeCt [

V'(r) [ ( [ Var m;c'"'h'""(r) [, SinCe the

superposition of the functions V.&, ;.' '"'"g'(r) makes

' H. Bethe and A. Sommerfeld, Haedbuch der Physik (Verlag
Julius Springer, Berlin, 1933),Vol. 24, Part 2, p. 422.

"R.H. Parmenter, Phys. Rev. 86, 552 (1952).

integration indicated in Eq. (4.14) must be carried out
numerically; to facilitate this integration, which had to
be repeated for each entry in Table III, we used numer-
ical methods to And a function closely approximating
[3p(r)/8v. ] which could be integrated analytically.
From Table III, we obtain v()(g) by means of the
relation

&
2vh~

v"'(0) =v"'IEgj
cos[-'~(hi+ hs+~g)]

v(P)
[ [ (4 15)

[cos[g~(hl+hs+ @3)][

the computed value of [V'*'"'"g'(r)
[ too large in the

regions of overlap. With these considerations in mind,
we replace s(r)/r in Eq. (4.18) by

3&[
for r &r„

core

[ (32m.srs j n, l 8~0,

and by zero for r &r„where Q, =Qp/s, with s the number
of atoms in the unit cell of volume Qp, r, is defined by
Q, = (4/3)(v-r, '), X is the number of valence electrons
per atom (those outside of closed shells), and g, i""
means summation over the values of e and l associated
with the core electrons in the atom (those in closed
shells). This estimate is based on the assumption that
the density distributions of core electrons on neigh-
boring atoms do not overlap and that

core

P 2(21+1)P„is=0 for r&r,
n, l

(both good assumptions for silicon), and that the
valence electrons can be thought of as uniformly dis-
tributed inside a spherical box of volume Q„centered
on the nucleus, in computing the average potential.
The last assumption is suggested by the feeling that
for the valence electrons the result of averaging the
charge distribution over the 0, sphere and then com-
puting its exchange potential should not greatly differ
from the result of computing the exchange potential
with the true valence electron distribution and aver-
aging that over the Q, sphere. Replacing s(r)/r in Eq.
(4.18) with the above estimates of 6[3p(r)/8v-]1 and
carrying out the integration numerically, we obtain for
the silicon crystal

Thus
U exchRllge 0 9955$ ry (4.20)

V. NUMERICAL RESULTS FOR THE SILICON CRYSTAL

We obtain approximations to the energy eigenvalues
associated with the electronic states of different sym-
metry types having 4=0 in the silicon crystal by
inserting the numbers E„l, A„l(E), and v(g) from
Tables I—III in the determinant of Eq. (2.9), equating
the factor determinants to zero, and solving each one
for E. Each factor determinant belongs to a particular
symmetry classification. In this work we have been
interested only in their lowest roots. The addition of
more symmetrized plane-wave combinations to 'the
trial function' increases the order of the determinant
of Eq. (2.9), and hence increases the order of some of
its component factor determinants. The successive

V (p) —V (p) Coulomb+ Vp (p) a~change
000

= —1.99904 ry. (4.21)

In all calculations for the silicon crystal we used a
rounded-off value of V000( ) .' Vppp( ) = —1.99900 ry.
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approximations to the various eigenvalues obtained by
this procedure, beginning with only one symmetry
combination of plane waves in the trial function and
successively adding others, are summarized in Table IV.
As noted there, the zth approximation to the energy
of a state of given symmetry type is the lowest root of
an eth order determinantal equation for that symmetry
type.

From our best approximations for the energy eigen-
values of the valence and conduction states, as given
in Table IV, we obtain an estimate of the diGerence
between the highest valence state energy, Er», and
the lowest conduction state energy, Er&5.

(Er»),—(Er».) &
——0.2616 ry~3. 6 ev.

Bell and his co-workers" obtained for this diGerence in
silicon crystal the value of i.3 ev from their calculations
based on an adaptation of Kohn's variational formula-
tion of the cellular method. " Both their calculations
and ours agree in 6xing the I'» state at a lower energy
than the I'~ state, in contrast with the results of
Vamaka and Sugita, " which make the lowest con-
duction state nondegenerate.

It is interesting to note that all of the numerical
results given in this paper were computed from 6ve
numbers: Z, a, and the three coeKcients appearing in
the exponents of (3.2)—(3.6). The numbers given in
Tables I—IV are the end productsof a great deal of
numerical work. In the later stages of this work we were
fortunate in having the assistance of the Illiac computer
at the University of Illinois: the final determinantal
equations were solved with the help of Illiac, and the
machine was also used to check the evaluations of the
complicated expressions for A ~(E) and e(g).

VI. DISCUSSION

The numerical results of the last section for the suc-
cessive approximations to the eigenvalues of the valence
and lowest conduction band states in silicon at k =0
should be compared with: (A) Fig. 2 of Herman's first
publication on diamond, (8) Fig. 1 of the preliminary
work by Herman and Callaway on germanium, ' and
(C) Figs. 2 and 4 of Herman's more refined work on
germanium. ' The order of the states at k=0 which we
find is the same as in (A) and (8). The rate of con-
vergence of the successive approximations to the
eigenvalues of all four symmetry types, adjusted for
the diGerences in energy scales, appears to be about
the same as in (A). For the 1» and I'» solutions the
convergence rate again is comparable to (C), but our
sequence of approximations to the F2 energy is very
different from that given in (C) in that our F2 energy
remains well above the I'» energy in all approximations,

"Sell, Hensman, Jenkins, and Pincherle, Proc. Phys. Soc.
(London) A67, 562 (1954)."W. Kohn, Phys. Rev. 87, 472 (1952)."K.Yamaka and T. Sugita, Phys. Rev. 90, 992 (1953).

TABLE IV. Sequences of estimates of the energies (in Rydherga)
of valence and conduction states in silicon crystal with %=0.

g1 8

E2
Es
g4
g5
~6

—1.3498—1.4624—1.4629—1.4733—1.4747—1.4793

—0.3996—0.7312—0.7663—0.7670—0.8217—0.8597

0.3996—O.5443—0.5472—0.5789—0.5929—0.5981

0.0338—0.0310—0.0655—0.0766

& The subscript attached to E refers to the order of the secular deter-
minant used in solving for E.

but does not level oG quite as abruptly after the second
approximation as in (C). From these comparisons it
appears that our more consistent treatment of the
effects of exchange in these calculations has not sig-
nificantly improved the rate of convergence of the
OPW procedure. Also, the convergence in the case of
the I'~5 and I'~5 solutions for silicon, where the trial
function contains terms coming from orthogonalization
to core state wave functions made from the 2p atomic
orbitals, does not appear much more rapid than in the
corresponding solutions for diamond, where the trial
function contains no such terms. It is possible that we
would have obtained better convergence if we had
used more accurate numerical solutions of Eq. (3.1)
for the atomic core wave functions than the analytical
functions (3.7)—(3.9) and the corresponding energy
eigenvalues of Table I. But from our experience with
these calculations we have tentatively concluded that
for solutions of symmetry types I'is and 1'» at k=0,
a trial function must contain roughly six symmetry
combinations of orthogonalized plane waves in order
to provide estimates of energies to two significant
figures. It should be possible to reduce the number
of independent terms in the linear trial function
necessary to obtain a given accuracy in these cases by
including terms other than symmetry combinations of
orthogonalized plane waves. Some of the possible ways
in which this might be done have been mentioned by
Herring ' and Herman. '

There are several inadequacies of the present work to
which we should like to draw attention. One which we
believe may be of comparatively small importance for
the present work, but which is related to a question of
considerable general interest, is the estimation of
e(000), or the average potential in the crystal. We
believe that the method used in Sec. IV to estimate this
quantity cannot be expected to approximate it to better
than 5%, even assuming that the atomic core wave
functions used are correct. We have experimented with
other choices for the value of e(000) and find that a 10%
change in it changes only slightly the convergence of
the successive approximations to the energies for k=0
and their relative separations.

Some of the degeneracies in the energy levels for
k=0 which we have obtained are removed when a
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more correct crystal Hamiltonian including relativistic
effects is used in place of the crystal Hamiltonian given
in Eq. (2.6). A complete treatment of the energy band
structure of silicon would include a determination of
the magnitudes of the splittings and displacements of
the various levels arising from spin and relativistic
effects, particularly, the spin-orbit interaction. '4

Ko eGort has been made to determine the crystal
eigensolutions for k vectors other than k=0. Once the
factored secular determinants have been obtained for
other wave vectors, the quantities E„&, A i(E), and
e(K) which enter into them can be taken from Tables
I—III or computed from Eqs. (4.4) and (4.12) to (4.14);
the solution of the resulting determinantal equations is a
routine procedure which has been programmed for
several of the automatic computers in use at present.

In connection with calculations of the sort described
here, it is important to ask how sensitive the results
are to changes in the quantities which are put in at the
beginning of the calculations, such as the crystal
potential and the atomic core wave functions. In
analyzing the eGects of such changes, one must be sure
that all quantities which depend on the changed inputs
are modified appropriately in the.new determination of
the final results. We are not aware of any work on the
sensitivity of the results or the rate of convergence of
OPW energy band calculations to changes in the inputs
which satisfies the last requirement. We would like to
encourage other workers with access to modern com-
puting facilities to investigate this question, and have
tried to organize the calculations for silicon which we
have described to facilitate such a study. It might
appear from a comparison of the preliminary results
of Herman and Callaway for germanium crystal, 7

based on calculations excluding exchange e6ects, and
the very different results of Herman's more refined
calculations' for the same crystal, in which considera-
tion was given to exchange eBects, that a change in the
crystal potential comparable in magnitude to the
exchange contribution to that potential would produce
such a violent change in the results as the reversal of
the order of the I'2 and V~5 solutions. We believe that
such a conclusion cannot at present be drawn from this
comparison, because in the transition from the first
calculation to the second, it would appear from the
papers' ' that the inputs of type E„i and e(K) were

changed, but appropriate changes were not made in the
A„&(E) type inputs. But the coefficients A &(E) with
exchange included should be different from those
without exchange, because they should be computed
from core wave functions which dier in these two

s4 R. J. Elliott, Phys. Rev. 96, 266 (1954); 96, 280 (1954)

cases. The energies calculated by the OPW method
depend on a delicate balance of all of these numbers,
and small changes in the A„i(E) can modify them
profoundly, as we found in our preliminary calculations
for diamond. It would be interesting to see how our
results for silicon would be affected if the Slater
exchange term were modified or omitted from the
crystal potential, the atomic core eigenfunctions p i (r)
and energies E„~ redetermined, either by methods we
have outlined, or better, by strictly numerical pro-
cedures, and the calculations for the valence and con-
duction states repeated. A calculation along these lines
would settle the question as to how sensitive the results
of energy band calculations are to the assumed crystal
potential.

If it turns out that the order of the bands and the
energy intervals between them are not highly sensitive
to small variations in the crystal potential, then the
use of the HFS equations, as in this work, would be
justified for many types of investigation. On the other
hand, if the calculated energy band structure is highly
sensitive to small variations in the crystal potential,
then it is doubtful that crystals can be adequately
treated by the HFS equations, and eGorts should be
made to apply a more accurate form of the HF equa-
tions to the solution of energy band problems. It may
well be that these eBorts would also fail, and that the
HF equations cannot be made to give information
about the behavior of the aggregate of electrons in a
crystal which is sufhciently precise for many purposes,
because they do not adequately describe the correlations
of the electronic motions beyond those introduced by
exchange. In that case, the methods for treating the
many-electron problem introduced by Bohm and Pines"
might make it possible to salvage at least part of the
existing structure of energy band concepts.
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